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Abstract

Minimizing false positives is a critical issue when variant calling as no method is without error. It is common practice to 
post- process a variant- call file (VCF) using hard filter criteria intended to discriminate true- positive (TP) from false- positive 
(FP) calls. These are applied on the simple principle that certain characteristics are disproportionately represented among 
the set of FP calls and that a user- chosen threshold can maximize the number detected. To provide guidance on this issue, 
this study empirically characterized all false SNP and indel calls made using real Illumina sequencing data from six dispa-
rate species and 166 variant- calling pipelines (the combination of 14 read aligners with up to 13 different variant callers, 
plus four ‘all- in- one’ pipelines). We did not seek to optimize filter thresholds but instead to draw attention to those filters 
of greatest efficacy and the pipelines to which they may most usefully be applied. In this respect, this study acts as a coda 
to our previous benchmarking evaluation of bacterial variant callers, and provides general recommendations for effective 
practice. The results suggest that, of the pipelines analysed in this study, the most straightforward way of minimizing false 
positives would simply be to use Snippy. We also find that a disproportionate number of false calls, irrespective of the 
variant- calling pipeline, are located in the vicinity of indels, and highlight this as an issue for future development.

DATA SUMMARY
All analyses in this study use publicly available third- party 
software. All data and scripts necessary to replicate these 
analyses are provided within the article, through supplemen-
tary data files, and via the GitHub repository https:// github. 
com/ sjbush/ FP_ paper, which contains the benchmarking 
fasta, ‘truth set’ VCF and BED files. Sequencing data, for use 
with these benchmarking resources, was sourced from the 
FDA- ARGOS reference collection [1], and is available via 
BioProject accession PRJNA231221.

All supplementary material can be found at 10.6084/
m9.figshare.14597145.

INTRODUCTION
Minimizing false positives is a critical issue when variant 
calling, particularly when the presence of a given variant can 
inform a clinical decision (for instance, when diagnosing 
disease [2] or disease susceptibility [3], or genotyping bacterial 

isolates [4]). While the choice of read aligner, genome to 
which reads are aligned, and variant- calling algorithm are all 
critical aspects of a variant- calling pipeline [5, 6], no method 
is without error. Errors are more likely when the reads contain 
contaminants [7], are divergent from the genome to which 
they are aligned [5] (or if this sequence is fragmented [8]), 
or if the genome from which they derive is hypermutable 
[9, 10]. Neither circumstance is uncommon when variant 
calling from bacterial sequencing data. As such, it is routine 
practice to post- process variant- call files (VCFs) using hard 
filter criteria intended to discriminate false- positive (FP) from 
true- positive (TP) calls [11–15]. Hard filters apply the simple 
principle that certain characteristics are disproportionately 
represented among the set of false- positive calls and that an 
empirically determined threshold can maximize the number 
detected. Machine- learning approaches to bacterial TP/FP 
classification, which could obviate this need for hard filters, 
are not yet widely available due to the lack of truth sets on 
which they may be trained.
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The aim of this study was to identify which positional charac-
teristics – that is, statistics recorded for each position, such as 
read depth – were disproportionately associated with bacterial 
FP calls and to produce generalizable recommendations for 
hard filters broadly applicable across a range of datasets. We 
stress that the recommendations made in this study are inten-
tionally generic. We did not seek to optimize filter thresholds 
– these are invariably either caller- or dataset- dependent, or 
otherwise vary based on user requirements – but to instead 
draw attention to those filters of greatest efficacy and the 
pipelines to which they may most usefully be applied. This 
is because the choice of variant- calling pipeline and choice 
of filter criteria are inextricably linked. There is considerable 
flexibility within the VCF specification – variant callers differ 
in what is reported for each call, so there are different possi-
bilities for filtering depending on the caller used. Recommen-
dations for suitable filters must consider, therefore, the overall 
performance of each pipeline on bacterial data as well as what 
that pipeline includes in its VCF. Complicating this issue is 
that variant- calling solutions for eukaryotes are generally 
better- described but not necessarily appropriate for bacteria. 
For example, while previous studies have sought to optimize 
GATK filters [13, 16], it is important to note that GATK, and 
its best practice guidelines, were originally devised only for 
Illumina- centred human genome research [17].

To characterize the attributes of bacterial false- positive 
calls, we used an approach previously described [18], taking 
reads sequenced from one species with a closed genome, 
mapping them to another closed genome, calling variants, 
and then comparing this set of calls to the set of calls made 
using pairwise whole- genome alignment. We sourced 
sequencing data from the FDA- ARGOS reference collection 
[1], a public database of microbial genomes sequenced at 
high depth using both short- (Illumina HiSeq4000) and 
long- read (PacBio) technologies. Using this database, we 
curated six truth sets – data from the Gram- positive Bacillus 
anthracis and Enterococcus faecalis, Gram- negative Escheri-
chia coli, Francisella tularensis, and Salmonella enterica, plus 
Mycobacterium tuberculosis – manually selected to repre-
sent a range of degrees of divergence between the sequenced 
reads and the genome to which they will be aligned (this 
being one of the principal determinants of variant- calling 
accuracy [5]), and a variant density spanning several orders 
of magnitude.

For each of these six genomes, we called variants using 166 
different variant- calling pipelines. These pipelines comprise 
the combination of 14 short- read aligners [Bowtie2 [19], 
BWA- mem and BWA- sw [20], GASSST [21], GEM [22], 
HISAT2 [23], minimap2 [24], MOSAIK, NextGenMap, 
SMALT (http://www. sanger. ac. uk/ science/ tools/ smalt- 0), 
SNAP [25], Stampy, both with and without pre- alignment 
with BWA- aln [26], and Yara [27]] with up to 13 variant 
callers (DeepVariant [28], Freebayes [29], GATK Haplo-
typeCaller [30, 31], LoFreq [32], mpileup [33], Octopus 
[34], Pilon [35], Platypus [36], SNVer [37], SNVSniffer [38], 
SolSNP, Strelka [39] and VarScan [40]), plus 4 ‘all- in- one’ 
pipelines: Breseq [41], Snippy, SpeedSeq [42] and SPANDx 

[43]. The performance of each pipeline was evaluated on 
the basis of precision (positive predictive value), recall 
(sensitivity) and F- score, the harmonic mean of precision 
and recall [44], with true- and false- positive SNP and indel 
positions identified using the benchmarking tool  hap. py 
(https:// github. com/ Illumina/ hap. py). By plotting the 
distribution of various positional characteristics for the 
resulting set of true- and false- positive calls, we can high-
light where the distributions differ. A VCF filter applied at 
this point could then effectively distinguish the two.

A key feature of this study is its scope. Variant callers that are, 
in general, higher- performing do not by definition generate a 
large number of false positives. We therefore needed a large 
number of VCFs in order to obtain enough false positives that 
we may characterize their distributions. Filter criteria derived 
on the basis of such a dataset would then have broad applica-
bility, and would not necessarily be limited to any particular 
species or pipeline. However, somewhat paradoxically, a 
practically applicable set of VCF filter recommendations also 
requires a set of ‘good’ false- positive calls, those produced 
by pipelines that already score highly both for precision 
and recall. These are more likely to represent contemporary 
methodologies, and to be routinely used. Poorly performing 
pipelines will generate many false positives, but by virtue of 
being poorly performing are unlikely to be commonly used 
to begin with. Accordingly, we examine the characteristics of 
false- positive calls both for the entire dataset and for a subset 
of the most highly performing pipelines. We take this position 
because the aims of our study are pragmatic. We sought to 
characterize the errors of variant- calling pipelines that already 
perform reasonably well, as through VCF filtering the user 
may then improve them further. There is an unavoidable 
circularity to this approach: we first needed to evaluate the 
performance of multiple variant- calling pipelines in order 
to discard those that produce ‘too many’ false calls (whether 
positive or negative), reasoning that on this basis they would 
not be representative of a reasonable use case anyway. Why 
optimize such a pipeline when the data suggests you should 

Impact Statement

This study contributes to the best practice literature 
on bacterial variant calling by providing guidelines for 
variant- call file (VCF) filtering. As there is flexibility within 
the VCF specification, one’s choice of variant- calling pipe-
line and choice of filter criteria are inextricably linked 
and so ‘universal filters’ – those applied routinely, irre-
spective of pipeline – should be avoided. This study char-
acterizes all false- positive SNP and indel calls made by 
a broad range of pipelines, and identifies both the filters 
of particular efficacy and the pipelines to which they may 
most usefully be applied. In conjunction with a compara-
tive performance evaluation of bacterial variant callers, 
it highlights those programs and filters which may best 
minimize false- positive calls.

http://www.sanger.ac.uk/science/tools/smalt-0
https://github.com/Illumina/hap.py
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have used a better one to begin with, and then optimize that? 
To that end, this study complements our previous performance 
evaluation of bacterial variant callers [5], and draws further 
attention to those which are particularly high- performing.

With regard to the false- positive calls, there are as many posi-
tional characteristics to examine as there are reported across 
the set of all variant callers. For practicality, we focused on 
nine characteristics generally applicable to multiple callers. 
These are:

(1) Read depth, the total number of reads mapped at a given 
position. Different variant callers report the depth dif-
ferently, with some reporting an absolute read count 
and others (such as GATK) only those reads which pass 
internal filters and that are actually used for variant 
calling. We also considered the total number of reads 
supporting the variant allele.

(2) Variant- call quality (QUAL), the Phred- scaled probabil-
ity that the variant call is correct. We also considered 
the ‘quality by depth’ (reported by GATK as ‘QD’), the 
average quality of each variant- supporting read. QD 
values normalize the variant quality in order to avoid 
misleadingly high values of QUAL brought about by 
deep coverage. For this reason, the GATK guidelines rec-
ommend that for filtering purposes it is better to use QD 
than either QUAL or read depth directly (https:// gatk. 
broadinstitute. org/ hc/ en- us/ articles/ 360035890471- 
Hard- filtering- germline- short- variants, accessed 28 
January 2020).

(3) Variant allele frequency, also known as allele balance, the 
proportion of reads that support the non- reference allele. 
In a VCF generated from a haploid genome, heterozy-
gous loci (which have a variant allele frequency <1) are 
not expected, their presence suggesting either mapping 
errors among repetitive regions, recombination between 
genes on the chromosome and extra- chromosomal ele-
ments (the extent of which varies between species [45]), 
that the input reads are sourced from multiple strains 
of the same species [46], or that they are a mixture of 
closely related, but different, species.

(4) Position of the reads with respect to the variants within 
them, considering both mapping location (whether 
reads map both up- and downstream of the call) and 
orientation (whether variant- containing reads map to 
both strands). Strand bias, where the alternate allele 
is disproportionately found on either the forward or 
reverse reads, increases the likelihood of a false- positive 
call [47]. Studies in cancer data suggest the efficacy of a 
‘both strands’ filter, which requires a minimum number 
of reads mapping to both the forward and reverse strand 
[48, 49].

(5) Distance to nearest variant call, either SNP or indel. 
Errors are not necessarily made in isolation, and vari-
ant calls in close proximity could indicate an underlying 
difficulty with calling in that region. Aligners map reads 
to the genome independently, but at any given locus the 
optimal combination of pairwise alignments (of each 
read against the genome) is not necessarily the optimal 

multiple sequence alignment (which would be used for 
variant calling) [50]. In these circumstances, many vari-
ant callers perform local realignment, although this is 
technically challenging around indels and in regions of 
low complexity. As such, we expect that false positive 
calls are more likely to be nearer to each other than to a 
true positive call.

We plotted the distribution of each of these nine character-
istics for the pooled set of all true- and false- positive calls 
made across all six samples, as well as per pipeline. On the 
basis of these distributions we can highlight those filters of 
particular utility and draw generalizable conclusions about 
effective strategies for minimizing false- positive variant 
calls. The datasets used for this analysis may also be used 
to benchmark bacterial variant callers, and are available at 
https:// github. com/ sjbush/ FP_ paper.

METHODS
Variant-call truth sets
To examine the characteristics of false- positive variants, we 
first required a truth set of variant calls against which the output 
of any given variant- calling pipeline could be compared. To 
do so, we can obtain sequenced reads from one sample with 
a closed genome, align them to another closed genome, call 
variants from these alignments (using a range of pipelines), 
and then compare that set of calls to the set of calls made 
using pairwise whole- genome alignment. For our purpose, 
the latter set of calls constitutes the truth set. To generate 
these, we sourced data from the FDA- ARGOS reference 
collection [1] (BioProject accession PRJNA231221), a public 
database of microbial genomes for diagnostic use sequenced 
using short- (150 bp paired- end Illumina HiSeq4000) and 
long- read (PacBio RS11 P6- C4) technologies. We parsed the 
FDA- ARGOS collection to produce a longlist of 122 bacterial 
samples, each with (a) an unambiguous species annotation 
(i.e. we excluded those with names of the form ‘Genus sp.’), (b) 
paired sets of publicly available Illumina reads and an associ-
ated Illumina/PacBio hybrid assembly, (c) an NCBI assembly 
classification of ‘complete genome’ (i.e. the core genome – and 
that of plasmids, if present – was gapless, with no runs of 10 
or more N bases, there were no unplaced scaffolds, and the 
assembly was not considered to have partial genome repre-
sentation). The FDA- ARGOS assemblies were created using 
a pipeline comprising SPAdes [51], Canu [52], HGAP [53], 
Celera Assembler [54], Pilon [35], and manual curation, as 
previously detailed [1]. For each assembly, the corresponding 
short- read sequencing data was high depth, approx. 300x.

Further to quality checks (see below), we restricted analysis 
to a shortlist of six samples: Enterococcus faecalis (accession 
FDAARGOS_338), Escherichia coli (FDAARGOS_536), 
Francisella tularensis (FDAARGOS_598), Salmonella enterica 
(FDAARGOS_687), Bacillus anthracis (FDAARGOS_700) 
and Mycobacterium tuberculosis (FDAARGOS_751). For 
each sample we curated a quartet of files – fastq, fasta, VCF, 
and BED – as benchmarking resources. These files represent, 
respectively:

https://gatk.broadinstitute.org/hc/en-us/articles/360035890471-Hard-filtering-germline-short-variants
https://gatk.broadinstitute.org/hc/en-us/articles/360035890471-Hard-filtering-germline-short-variants
https://gatk.broadinstitute.org/hc/en-us/articles/360035890471-Hard-filtering-germline-short-variants
https://github.com/sjbush/FP_paper
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(a) the original FDA- ARGOS paired- end Illumina sequenc-
ing reads (for the aforementioned samples, the cor-
responding SRA run accession IDs are SRR5448651, 
SRR8180486, SRR8283296, SRR9163323, SRR9171533, 
and SRR9176751, respectively), randomly down- sampled 
to 1000000 reads using seqtk ‘sample’ v1.3 (https:// github. 
com/ lh3/ seqtk) with seed 42,

(b) an NCBI reference genome, against which these reads 
will be aligned and variants called,

(c) a truth set of variant calls, to be contrasted with the 
pipeline VCF using the haplotype comparison tool  hap. 
py (https:// github. com/ Illumina/ hap. py),

(d) a list of higher- confidence regions within the reference 
genome, to be provided as input to  hap. py using param-
eter -f.

This subset of FDA- ARGOS samples was handpicked to 
ensure that collectively the six species represented (a) a range 
of degrees of divergence between the sequenced reads and 
the genome to which they will be aligned, calculated using 
Mash v2.1 [55], and (b) a variant density spanning several 
orders of magnitude (from a ‘basic’ truth set containing 19 
SNPs and 13 indels to a ‘complex’ truth set containing 83385 
SNPs and 381 indels). Characteristics of the FDA- ARGOS 
samples are given in Table S1 (available in the online version 
of this article), with Mash distances relative to their refer-
ence genome varying from a negligible 2.38×10−5 (Bacillus 
anthracis) to 0.03 (E. coli).

We made whole- genome alignments between each FDA- 
ARGOS assembly and its corresponding NCBI reference 
genome using both nucmer [56] and paftools [24] with a 
range of parameters, then identified consensus calls within 
one- to- one alignment blocks. These consensus positions 
constituted the truth set for evaluation. All ambiguous 
positions – where the set of nucmer and paftools calls were 
discordant – were considered lower- confidence. For the 
purpose of comparing VCFs with  hap. py (see below), only 
calls outside of these regions were counted; the location of 
these regions comprise the BED.

This workflow also comprised several quality- checking and 
validation steps:

(a) Selection of NCBI reference genome

We required at least one NCBI reference genome that was 
not the same as the FDA- ARGOS assembly. Most bacteria, 
but not all, have only one associated NCBI reference genome. 
As of December 2020, there were only three species in the 
FDA- ARGOS collection with >1 reference genomes: Salmo-
nella enterica (Typhimurium str. CT18 and LT2), Bacillus 
anthracis (str. Ames and str. Sterne), and E. coli (K-12 substr. 
MG1655, O157:H7 str. Sakai, IAI39, O83:H1 str. NRG 857C, 
and O104:H4 str. 2011 C-3493). In these cases, we chose the 
first of the listed options.

(b) Soft- masking lower- quality loci in the FDA- ARGOS 
assembly

To identify lower- quality regions of each assembly, we 
re- mapped the corresponding Illumina reads using minimap2 

v2.17 [24] with default parameters, and soft- masked (using 
BEDtools ‘maskfasta’ [57]) all bases where there was either 
no coverage or the most common nucleotide represented 
<99 % of the total depth at that position. We then used the 
Illumina reads to call variants in the masked assembly using 
Snippy v4.3.6 with default parameters. This was a negative 
control: as these reads were in principle sourced from the 
FDA- assembled genome (that is, they are essentially short 
fragments of it), we did not expect variants to be present. 
We therefore considered any variants detected by Snippy to 
be discordant base calls between the Illumina and PacBio 
reads, ostensibly reflecting sequencing errors. We masked 
these ‘discordant call’ positions in the same manner as the 
‘low quality’ positions, above.

(c) Whole genome alignment of the soft- masked assembly to 
the NCBI reference

We used both nucmer v4.0.0 and paftools (packaged with 
minimap2 v2.17) to perform whole- genome alignment of 
the masked FDA- ARGOS assembly with the corresponding 
NCBI reference, standardizing the representation of vari-
ants in each VCF using the ‘ pre. py’ module of  hap. py with 
parameters --leftshift --decompose. As variant detection 
can be parameter- sensitive, we ran nucmer in default mode 
(which requires that anchor matches, used to seed the align-
ment, are unique in the reference genome) while varying the 
-c (minimum cluster length), -g (maximum gap size) and -b 
(break length) parameters, from 25 to 200 at increments of 
10, 90 to 900 at increments of 90, and 200 to 400 at incre-
ments of 200, respectively (the default values of -c, -g, and 
-b are 65, 90, and 200, respectively). We also ran paftools 
with default options with the exception of simultaneously 
varying the -l and -L parameters (minimum alignment 
length to, respectively, compute coverage and call variants), 
from 25 to 200 at increments of 25. In total, for each pair 
of genomes, we generated a set of n=548 VCFs (540 nucmer 
and eight paftools). These were parsed using BCFtools ‘isec’ 
[33] to create two summary VCFs: a consensus (intersect) 
set of variants present in all n VCFs (using isec parameter 
‘-n=n’), and an ‘ambiguous’ set of parameter- sensitive vari-
ants, those called in up to n-1, but not all, VCFs [using isec 
parameter ‘-n-(n-1)’]. Coordinates from the latter VCF were 
used to create a BED file, from which a complementary BED 
of ‘higher- confidence’ positions (those where either the same 
variant call, or no variant call, was made in every VCF) was 
created using BEDtools ‘complement’. This file was used as 
input to  hap. py.

The set of fasta, VCF and BED files for each of the six samples 
is available at https:// github. com/ sjbush/ FP_ paper. The fastq 
files are available via the Sequence Read Archive, with acces-
sions given above.

Variant-calling pipelines
We used 166 different variant- calling pipelines, the pairwise 
combination of 14 read aligners [Bowtie2 [19], BWA- mem 
and BWA- sw [20], GASSST [21], GEM [22], HISAT2 
[23], minimap2 [24], MOSAIK, NextGenMap, SMALT 

https://github.com/lh3/seqtk
https://github.com/lh3/seqtk
https://github.com/Illumina/hap.py
https://github.com/sjbush/FP_paper
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(http://www. sanger. ac. uk/ science/ tools/ smalt- 0), SNAP 
[25], Stampy, both with and without pre- alignment with 
BWA- aln [26], and Yara [27]] with up to 13 variant callers 
[DeepVariant [28], Freebayes [29], GATK HaplotypeCaller 
[30, 31], LoFreq [32], mpileup [33], Octopus [34], Pilon 
[35], Platypus [36], SNVer [37], SNVSniffer [38], SolSNP 
(http:// sourceforge. net/ projects/ solsnp/), Strelka [39] and 
VarScan [40]], plus the four ‘all- in- one’ pipelines Breseq 
[41], Snippy (https:// github. com/ tseemann/ snippy), 
SpeedSeq [42] and SPANDx [43], each run with default 
parameters. Note that not all aligners could be successfully 
paired with each caller, due to the technical requirements 
of each program, and that not all callers simultaneously 
call both SNPs and indels. These pipelines were employed 
in a prior evaluation of bacterial SNP callers, with scripts 
available at https:// github. com/ oxfordmmm/ Geno micD 
iver sity Paper, and command lines and technical notes on 
their operation previously described [5]. The programs 
used, including version numbers and sources, are detailed 
in Table S2.

For each pipeline, the resulting VCF was compared with the 
truth set VCF to identify true- positive (TP), false- positive 
(FP) and false- negative (FN) positions, and to calculate 
performance metrics including precision (positive predictive 
value), recall (sensitivity), and F- score (the harmonic mean 
of precision and recall, a summary metric that ranks overall 
performance on a scale from 0 to 1). Precision is calculated as 
TP/(TP+FP), recall as TP/(TP+FN), and F- score as 2x ([preci-
sion x recall]/[precision+recall]).

As the same variant can be accurately represented in multiple 
ways, all VCF comparisons, and the calculation of perfor-
mance metrics, were made using  hap. py v0.3.12, which regu-
larizes VCF contents, with parameters --decompose --leftshift 
--engine=vcfeval --preprocess- truth --set- gt hom (the latter 
requiring alleles in the pipeline VCF to be on the same haplo-
type as that of the truth VCF). Performance metrics were 
calculated only for those positions where the VCF FILTER 
column, if populated, was ‘PASS’.

 hap. py produces two output files: a summary of the high- 
level performance metrics, including total number of TPs, 
FPs and FNs, plus a VCF comparing positions between the 
truth (i.e. FDA- ARGOS) and query (i.e. pipeline) VCFs. From 
this comparison VCF we obtained the positions of each FP 
call. The purpose of doing so was to cross- reference these 
positions with the original pipeline VCF, which contains 
positional information that may be used for filtering (for 
instance, by requiring a minimum read depth at that locus or 
variant allele frequency). As our interest was in VCF filtering, 
we were concerned only with biallelic calls, those where the  
hap. py comparison VCF showed ‘NOCALL’ for that position 
in the truth VCF and ‘FP’ in the query VCF, with neither 
the reference nor variant base(s) in each VCF represented 
by an ambiguity character (i.e. other than A, T, C or G). We 
also discarded those FP SNPs which were part of a complex 
variant or multi- nucleotide polymorphism. This was because 
it would not be possible to unambiguously interpret the 

positional information reported at these sites. A consequence 
of restricting analysis to biallelic sites is that the number of 
FPs reported in the  hap. py summary file will also be greater 
than the number extracted from the comparison VCF.

RESULTS AND DISCUSSION
Datasets used
For the purpose of benchmarking variant- calling pipelines, 
we first parsed data from the FDA- ARGOS reference collec-
tion [1] to generate six truth sets (Table S1). These truth 
sets constitute a broad range of bacterial genomes, both 
Gram- positive and Gram- negative, and contain between 19 
and 83 385 SNPs, and 13 to 381 indels. For each of the six 
genomes, we used 1 million Illumina HiSeq reads (150 bp 
paired- end) to call variants using 166 different pipelines 
(Table S2). The overall dataset comprised 990 VCFs (165 
pipelines * 6), and contained a total of 26 529 429 SNP and 
463 386 indel calls, of which 1 545 957 (5.8 %) and 246 852 
(53.2 %) were false positives (FPs), respectively (Table S3). 
The performance of each pipeline – assayed as precision, 
recall and F- score – is given in Table S3, and generally 
high (discussed further below). For the purpose of char-
acterizing the attributes of true- and false- positive calls, 
we discuss SNPs and indels separately, noting that some 
pipelines – those employing LoFreq, SNVer, SolSNP, or 
VarScan – could only call SNPs.

Empirical characterization of true and false-
positive SNP calls
Of the set of 990 VCFs, 479 (48 %) called SNPs with an 
F- score >0.95 (Table S3), as illustrated in Fig. 1 (compa-
rable plots of precision and recall are given in Figs S1 and 
S2, respectively). Across the six samples, the three highest 
performing pipelines, with comparatively little variation 
in F- scores, were Breseq, Snippy, and minimap2/Platypus 
(Fig. 1). The set of pipelines with F- scores >0.95 were also 
enriched for pipelines using DeepVariant and Strelka, 
consistent with a previous performance evaluation of bacte-
rial SNP callers [5].

To identify common characteristics of false, relative to 
true, positive SNP calls, we restricted analysis to a set of 
23 683 336 biallelic TPs and 1 294 894 biallelic FPs (89 and 
84 % of the total TP and FP calls, respectively), i.e. those 
where the SNP was not considered part of a complex variant 
or multi- nucleotide polymorphism. This was because we 
were concerned with the positional information – the 
contents of the VCF INFO and FORMAT fields – uniquely 
attributable to each SNP as it is on the basis of this that 
calls may later be filtered. Although the same SNP could 
be called as TP or FP by multiple pipelines, each pipeline 
makes its calls on the basis of different alignments and so 
populates these fields with different information. These 
paired sets of TPs and FPs therefore represent all (biallelic) 
TP and FP calls per pipeline, and so may count the same 
SNP multiple times.

http://www.sanger.ac.uk/science/tools/smalt-0
http://sourceforge.net/projects/solsnp/
https://github.com/tseemann/snippy
https://github.com/oxfordmmm/GenomicDiversityPaper
https://github.com/oxfordmmm/GenomicDiversityPaper
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Characteristics of the total set of TP and FP SNP calls are 
summarized in Fig. 2 and summarized in Table 1. Char-
acteristics per pipeline are given in the Supplementary 
Archive. In general, however, FP SNPs have lower variant- 
call quality relative to TP calls, closer proximity to other 
variants (particularly SNPs), and are supported not only 
by fewer reads mapped to that locus and on either strand 
but with fewer variant- containing reads also mapped both 
up- and downstream. Generic hard VCF filter criteria may 
be suggested on the basis of the Fig. 2 distributions, noting 
that these are subjective and used here for illustrative 
purposes rather than as definitive guides to practice. These 
generic criteria would discard SNPs that have a variant- call 
quality ≤30, average quality per variant- supporting read ≤1, 
variant allele frequency (i.e. proportion of reads supporting 
the variant allele) ≤0.95, total read depth ≤5, number of 
reads supporting the variant ≤5, distance to nearest SNP 
and indel ≤3 and ≤10 bp, respectively, or ≤5 % of the reads 
mapping either to the least- covered strand or in the least- 
covered direction away from the variant (i.e. the variant is 
not proportionately supported by reads on both the forward 
and reverse strand, or both up- and downstream). These 
characteristics are not equally weighted, with some more 
informative than others. The most informative criteria – in 
terms of the percentage of FP calls detected – were prox-
imity to the nearest SNP and variant- call quality, which 
by themselves could detect 39 and 27 % of the total FPs to 
which these filters could be applied, respectively (Table 1). 
One might expect that as bacteria are haploid, all heterozy-
gous loci could immediately be dismissed as errors and that 
variant allele frequency would be the most efficacious filter. 

However, the data suggest that while filtering on the basis of 
variant allele frequency does indeed capture many FPs (25 % 
of the total FPs to which this filter could be applied), the 
majority of FPs were not mixed calls and that other filters 
had greater efficacy. It is important to emphasize that the 
distributions in Fig. 2 pool data from multiple pipelines, 
and that different pipelines have distinct error profiles. To 
that end, for some pipelines, it is not possible to cleanly 
distinguish the TP and FP distributions for a given charac-
teristic (see Supplementary Archive) and so not all of the 
above filters can or should be applied, a point returned to 
below.

In any case, incorporating this complex set of variables into 
a single mechanistic framework is difficult, as it requires we 
understand how each variable influences the likelihood that a 
variant is real as well as the interactions between them [58]. It 
is neither desirable nor realistic that a human should do this 
as the task is better suited to machine classifiers, discussed 
further below. However, in the absence of such a classifier, 
hard filter thresholds are a convenient, albeit subjective, trade-
 off between precision (generally improved by conservative 
thresholds) and recall (generally decreased by conservative 
thresholds). If requiring that any of the above thresholds 
were met in a given VCF, noting that not all VCFs report the 
relevant information, then 63 % of the total set of false- positive 
SNPs could be detected. Strikingly, 15 % of the total FPs could 
only be detected on the basis of proximity to the nearest SNP 
(Table 1). By contrast, <1 % of the total FPs could only be 
detected on the basis of the number of reads supporting the 
variant. Also of note is that all false positives with a read depth 

Fig. 1. Median F- score for 166 SNP calling pipelines. Boxes represent the interquartile range of F- score, with midlines representing 
the median. Upper and lower whiskers extend, respectively, to the largest and smallest values no further than 1.5x the interquartile 
range. Data beyond the ends of each whisker are outliers and plotted individually. Pipelines are ordered according to median F- score and 
coloured according to the variant caller employed. The performance metrics for each pipeline, from which this figure was generated, are 
shown in Table S3. The line y=0.95, denoting a particularly high F- score, is marked.
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Fig. 2. Characteristics of biallelic true- and false- positive SNPs. This figure shows data sourced from 990 VCFs, and represents 
23 683 336 biallelic true positive and 1 294 894 biallelic false- positive calls. Density plots show the distribution of nine characteristics for 
the true (blue) and false (red) calls: (a) variant- call quality, (b) average quality per variant- supporting read, (c) variant allele frequency, 
(d) depth (total number of reads mapped at that locus), (e) number of reads supporting the variant allele, (f) distance to nearest SNP, 
(g) distance to nearest indel, (h) percentage of reads mapping to the least- covered strand, and (i) percentage of SNP- containing reads 
mapping in the least- covered direction away from it (in the latter two cases, 50 % indicates the variant is equally supported by reads on 
both the forward and reverse strand, and by reads mapping both up- and downstream of the variant, respectively). Red lines indicate 
potential hard filter criteria, empirically suggested. These criteria would discard SNPs that have: (a) variant- call quality ≤30, (b) average 
quality per variant- supporting read ≤1, (c) variant allele frequency ≤0.95, (d) read depth ≤5, (e) number of reads supporting the variant 
allele ≤5, (f) distance to nearest SNP ≤3 bp, (g) distance to nearest indel ≤10 bp, or ≤5 % of reads mapping to (h) the least- covered strand, 
or (i) in the least- covered direction (i.e. the variant is not proportionately supported by reads on both the forward and reverse strand, 
or both up- and downstream). A summary of the number of false- positive SNPs detected using these thresholds is given in Table 1. 
Note that data from SolSNP is not shown in plot A. This is because SolSNP does not follow the VCF specification for defining QUAL 
continuously, instead capping QUAL at 30. Note also that the ‘read depth’ distributions in plots D and E are not smooth because different 
variant callers calculate read depth differently, with some reporting absolute values and others an average (detailed in Table S4). A 
version of this figure restricted only to pipelines with F- score >0.95 is available as Fig. S3, showing quantitatively similar distributions 
with identical empirically derived filters. The set of distributions per pipeline are given in the Supplementary Archive.
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≤5 could also be detected using one or more of the other 
criteria (Table 1). This serves to re- iterate the above point that 
these positional characteristics intersect in a complex manner, 
with some filters overlapping – independently detecting the 
same FP – to a greater extent than others.

While combining multiple filters using OR logic greatly 
increases the number of false positives detected, it inevitably 
discards true- positive calls. In this case, 28 % of the total set 
of true- positive calls were also discarded when applying 
one or more of the above filters (Table 1). Consequently, we 
can consider a ‘value- added’ ratio for each filter: the ratio 
of the percentage of FP calls removed to the percentage of 
TP calls also removed, counting only those calls for which 
this filter can be applied. Higher values indicate that a filter 
removes proportionately more FPs for each TP (inadvert-
ently) removed, and so is ‘safer’ to use: precision will be 
increased with less of an effect on recall. On this basis, the 
‘safest’ individual filters are those with the highest ratios: up-/
downstream mapping bias (ratio 22.4) and the distance to 
the nearest indel (ratio 18.8) (Table 1). The latter is especially 
notable: 7.9 % of the total FPs can be discarded using this 
filter (including 2.7 % that can only be discarded using it), 
but it only discards 0.4 % of the total TPs (Table 1). This likely 
reflects the technical difficulty of SNP calling in the vicinity 
of indels, which requires complex alignment modelling. By 
contrast, the ‘riskiest’ individual filters to apply are the average 
quality of the variant- containing reads (ratio 1.9) and variant- 
call quality (ratio 2.2) (it can be seen in the Supplementary 
Archive that for many pipelines, the TP and FP distributions 
show significant overlap for these characteristics). This 
highlights the fact that false calls can often be made with 
confidence, ostensibly due to misalignments within the region 
of the variant (which may be lower- complexity or poorly 
represented in the reference genome), and that an efficacious 
means of detecting them is not to look at a single locus but to 
consider their neighbouring bases. For this reason, proximity 
to other variant calls is a particularly informative filter.

Aside from the subjective choice of thresholds, other prob-
lems with characterizing FPs (and thus, comparing VCF 
filtering criteria) are that different variant callers populate 
their VCF with different positional tags, so not all are avail-
able to be used as a filter, and that the same tag could be 
used by different callers without a common nomenclature. 
For example, depending on caller, ‘read depth’ can refer to an 
average or absolute count of reads mapped to a given locus, 
and either include or exclude internally filtered low- quality 
reads. A description of the positional tags available in each 
VCF, and used to derive Fig. 2, is given in Table S4. This table 
also highlights those variant callers that report more data 
per call, which in principle maximizes the opportunities to 
detect FPs. For example, 6 % of the total FPs could only be 
detected on the basis of a disproportionate number of reads 
mapping up- or downstream of the variant (Table 1), informa-
tion that is only reported by Freebayes (and pipelines which 
use it). Although this filter has the highest ‘value- added’ ratio 
(Table 1), it is limited to a few of the pipelines used in this 
study. Similarly, a strand bias filter, which requires a minimum 

proportion of reads mapping to both the forward and reverse 
strand, has a value- added ratio of 16.1, although this infor-
mation is not reported by many of the higher- performing 
pipelines, including Snippy and those employing DeepVariant 
and GATK.

On the basis of our previous evaluation [5], we anticipated that 
certain variant callers would be particularly high- performing 
in these simulations and would by definition produce few, 
if any, false- positive calls. Consequently, we required a large 
number of VCFs, spanning a broad range of pipelines – that 
is, that variant caller paired with multiple different aligners. 
Although this generated a large set of false- positive calls, it is 
important to re- iterate that the precision of each pipeline (and 
thus, the set of false- positive positions analysed above) had 
to be established in the absence of any VCF post- processing. 
In general, variant callers make one of two design decisions 
when producing a VCF: to list a maximal number of vari-
ants with the expectation the user will perform their own 
filtering (the approach taken by, for example, SolSNP), or to 
list only those variants that pass internal quality control filters, 
of varying stringency (either by not reporting those that do 
not pass, or by including them in the VCF with the ‘PASS’ 
flag not set, the two approaches employed, for example, by 
Snippy and DeepVariant, respectively). As a consequence, the 
precision values shown in Table S3 reflect negatively on those 
variant callers that expect the user to filter their output as a 
matter of course. This was most notable for SolSNP, Pilon and 
VarScan, all of which reported positions that passed only a 
comparatively basic set of internal quality filters; pipelines 
employing these callers generally had lower average precision 
(Fig. S1). This has two practical consequences for this study: 
firstly, the above results should not be taken as a comparative 
performance evaluation as not all pipelines were run under 
‘intended use’ conditions (having no VCF post- processing), 
and secondly, the overall set of false- positive calls could 
disproportionately contain those from poorer- performing 
pipelines (although these may only be considered poorer- 
performing because their output required post- processing).

As such, we tested whether the distributions shown in Fig. 2 
were affected by a disproportionate number of FPs contributed 
by the poorest- performing pipelines. It is important to note, 
therefore, that when repeating the analysis after restricting 
data only to those pipelines with F- score >0.95, quantita-
tively similar distributions were seen and identical filtering 
thresholds could be empirically derived (illustrated in Fig. S3 
and representing 17 645 245 biallelic true positive and 846 088 
biallelic false- positive calls, 75 and 55 % of the original totals, 
respectively). Furthermore, the set of filters showed similar 
performance, collectively capturing the same total fraction of 
FPs (63 %) and with the greatest unique detection rate (19 %) 
based on proximity to the nearest SNP (although filtering on 
this basis would also remove the greatest number of TPs; Table 
S5). With data from the lower- performing pipelines removed 
from consideration, the ‘value- added’ ratio of several filters 
greatly increases (Table S5). This was particularly apparent 
for read depth, the number of reads supporting the variant, 
and up-/downstream mapping bias, each of which showed 
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a ratio of approx. 60, i.e. they correctly removed 60 times 
as many FPs for each TP erroneously removed. Strand bias, 
proximity to the nearest indel, and variant allele frequency 
also had ‘value- added’ ratios of approx. 20. Explaining these 
high ratios, we found that with the higher- performing pipe-
lines – which by definition report a greater proportion of true 
calls with confidence – five of the nine filters removed only 
a fraction of 1 % of the TPs (the exceptions were variant- call 
quality, average quality of a variant- containing read, distance 
to the nearest SNP, and variant allele frequency; Table S5). 
Taken together, these results suggest that VCF post- processing 
cannot unilaterally improve the output of all pipelines and 
that the appropriate course of action is to consider choice 
of pipeline in conjunction with choice of filter criteria. The 
data support the use of pipelines which make relatively few 
false calls to begin with, such as Breseq and Snippy (Fig. 1). 
Notably, pipelines which make few false calls often apply 
their own internal criteria, sometimes under user control. 
For example, the default parameters of Snippy are to require 
a minimum read depth of 10 and a variant- call quality of 100, 
and for this reason the aforementioned filters have no added 
value (see Supplementary Archive).

Empirical characterisation of true- and false-
positive indel calls
Indel calling is technically more challenging than SNP calling, 
and not attempted by several of the pipelines employed in this 
study (LoFreq, SNVer, SolSNP and VarScan). To that end, 
indel- calling F- scores were generally lower than SNP- calling 
F- scores. Of the set of 990 VCFs, 710 of which contained 
indels, only 229 (23 %) called indels with an F- score >0.8 
(Table S3), as illustrated in Fig. S4 (comparable plots of preci-
sion and recall are given in Figs S5 and S6, respectively). It 
is notable that Snippy, one of the highest- performing SNP- 
calling pipelines, in terms of F- score, is also the highest- 
performing indel- calling pipeline (Fig. S4).

The full set of 990 VCFs contained a total of 463 386 indel 
calls, of which 246 852 (53.2 %) were FP (Table S3). For the 
purpose of characterizing the different attributes of TP and 
FP calls, we first restricted analysis only to biallelic indel calls. 
This reduced the dataset to 293 195 biallelic calls, of which 
135 295 (46.1 %) were FP. If further restricting the data only 
to those pipelines with indel- calling F- score >0.8, there were 
80 621 biallelic calls, of which 14 303 (17.7 %) were FP. Charac-
teristics of the full set of TP and FP indel calls, and the subset 
of calls from higher- performing (F- score >0.8) pipelines, are 
shown in Figs 3 and S7, and summarized in Tables 1 and 
S5, respectively. As with the analysis of SNP calls, both sets 
of distributions were quantitatively similar to each other. 
Furthermore, the distributions were broadly similar to those 
of the FP SNP calls, although several differences were notable: 
TP indels have generally lower call quality than TP SNPs 
(Figs 3a and S7a), both TP and FP indels have overlapping 
‘quality by depth’ distributions, so unlike SNP calls no obvious 
filter exists that may be easily distinguish the two (Figs 3b and 
S7b), and while FP indels have generally lower read depths 
than FP SNPs (Figs 3d and S7d), a high proportion of TP 

indels are supported by few variant- containing reads (Figs 3e 
and S7e) and for this reason, no filter could be applied on 
this basis either. It is important to re- iterate that these filters 
are derived from distributions containing pooled data, and 
that pipeline- specific distributions may differ; see Supple-
mentary Archive. Most strikingly, and irrespective of whether 
pooled or pipeline- specific data was considered, FP indels 
were disproportionately more likely to be close to another 
indel (Figs 3g, S7g and Supplementary Archive). Unlike SNP 
calls (Fig. 2i), no data was available for the number of reads 
mapped up- or downstream of an indel. On the basis of these 
distributions, different generic filter criteria may be suggested 
for indels as for SNPs, in particular a higher minimum read 
depth (10 rather than 5) and a lower minimum call quality 
(20 rather than 30) (Figs 3 and S7), although as with the 
SNP distributions, pipeline- specific considerations should 
apply when choosing filters (characteristics per pipeline are 
given in the Supplementary Archive). The most informative 
filter criteria, in terms of the percentage of FP calls uniquely 
detected, also differed between SNPs and indels. In the case of 
indels, these were proximity to the nearest indel and variant 
allele frequency, which by themselves could detect – using the 
full dataset – 64 and 38 % of the total FP indels to which these 
filters could be applied, respectively (Table 1). These values 
were reduced to 44 and 30 %, respectively, when restricting 
the data only to higher- performing (F- score >0.8) pipelines, 
although these filters nevertheless remained the most inform-
ative (Table S5). It is worth highlighting that both the SNP and 
indel distributions suggest that a particularly effective means 
of identifying a false call is by proximity to another SNP or 
indel, respectively.

Recommendations to reduce false-positive variant 
calls
The results of this study complement the best practices litera-
ture on variant calling in microbial genomes [59]. We have 
previously shown that dissimilarity between the reads and the 
reference genome has a significant impact on the number of 
false- positive calls, irrespective of variant- calling pipeline [5], 
and so the simplest means of reducing false- positive calls is 
to use one of the consistently higher- performing pipelines in 
conjunction with a reference minimally divergent from the 
source of the sequenced reads (to that end, some pipelines, 
notably Breseq [41], estimate sequence divergence and warn 
the user if it is relatively high). However, should an appro-
priate reference genome be unavailable, or the sequenced 
reads be of lower- depth or poorer quality – circumstances that 
are neither uncommon nor wholly avoidable – it is reasonable 
to believe that even the highest- performing pipeline would 
generate additional errors. As such, routinely filtering VCFs to 
discard potential false- positive calls is prudent. Nevertheless, 
while hard filters are effective instruments, they are crude 
ones. Overly stringent VCF filter criteria would generate a 
disproportionate number of false- negative calls from true 
positives, given the overlap between the FP and TP distribu-
tions (Fig. 2). An optimal set of VCF filters must therefore 
balance the number of false positives detected against the 
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Fig. 3. Characteristics of biallelic true and false- positive indels. This figure shows data sourced from 990 VCFs, and represents 
293 195 biallelic true- positive and 135 295 biallelic false- positive calls. Density plots show the distribution of eight characteristics for 
the true (blue) and false (red) calls: (a) variant- call quality, (b) average quality per variant- supporting read, (c) variant allele frequency, 
(d) depth (total number of reads mapped at that locus), (e) number of reads supporting the variant allele, (f) distance to nearest SNP, (g) 
distance to nearest indel, and (h) percentage of reads mapping to the least- covered strand. Red lines indicate potential hard filter criteria, 
empirically suggested, and not applicable to plots B and E. These criteria would discard SNPs that have: (a) variant- call quality ≤20, (c) 
variant allele frequency ≤0.95, (d) read depth ≤10, (f) distance to nearest SNP ≤3 bp, (g) distance to nearest indel≤10 bp, and (h) ≤5 % of 
reads mapping to the least- covered strand. A summary of the number of false- positive indels detected using these thresholds is given 
in Table 1. A version of this figure restricted only to pipelines with F- score >0.8 is available as Fig. S7, showing quantitatively similar 
distributions with identical empirically derived filters. The set of distributions per pipeline are given in the Supplementary Archive.
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number of false negatives introduced. We do not attempt to 
solve this problem here, noting instead that the division of 
a set of variants into TPs and FPs is a binary classification 
task, amenable to solution by, for instance, a support vector 
machine (SVM). While in eukaryotic systems there has 
been movement away from the routine use of hard filters in 
favour of machine- learning approaches to VCF filtering (for 
instance, SNPSVM [58] and GATK VQSR [30, 31]), these 
are not yet readily applicable to bacteria, given their smaller 
number of variants, considerable genomic diversity, and the 
lack of curated variant truth sets. It is in principle possible that 
for a given genome and pipeline, a SVM can be trained, stored 
and re- used in order to classify variants in subsequent VCFs. 
For this purpose, variants which fail multiple hard filters may 
be used as negative examples for training, as in [60].

In the absence of a machine- learning solution, we have taken 
an empirical approach to the problem of filter selection, char-
acterizing the distributions of TP and FP SNP (Figs 2 and 
S3) and indel (Figs 3 and S7) calls across a broad range of 
pipelines (see also Supplementary Archive). We re- iterate that 
the purpose of doing so was not to optimize thresholds but to 
call attention to those filters of greatest apparent efficacy in 
bacteria and the pipelines to which they may most usefully be 
applied. Hard filter criteria can be applied using, for instance, 
the ‘filter’ module of BCFtools [33], with parameters detailed 
in Table S5. To apply the ‘proximity’ filters, the BCFtools ‘filter’ 
parameters -g (--SnpGap) and -G (--IndelGap) remove SNPs 
and indels, respectively, within a certain number of bases of 
an indel. A similar function is performed by the VCFtools 
[61] parameter --thin, which removes all sites from a VCF 
within a given distance of any other. However, our results 
suggest different thresholds are generally appropriate for 
removing calls within a certain distance of a SNP or an indel 
(Figs 2 and 3 and Supplementary Archive). As such, to remove 
SNPs within, for example, 3 bp of another SNP and 10 bp of 
another indel, we could first apply VCFtools --thin 3, and 
then apply BCFtools ‘filter’ --G 10. Although proximity to 
another variant is one of the most prominent characteristics 
of a FP, it would be prudent to apply ‘thinning’ operations 
after all other filters have been used. This would minimize 
the number of TPs discarded on the basis of a neighbouring 
FP, provided that FP would also be discarded on the basis of 
another characteristic (which, as Table 1 indicates, is likely).

It is important to note, however, that many variant callers do not 
allow certain filters to be applied, as the requisite information 
is not included in the VCF. The ‘both strands’ and ‘either side’ 
filters, for example, require variant- containing reads to map 
on both strands, or to map both up- and downstream of the 
variant, respectively, but of the 17 distinct VCFs produced in 
this study, only two contain it – those produced by Freebayes 
and a pipeline which employs it, SpeedSeq. As such, ones choice 
of filter criteria cannot be entirely disentangled from the choice 
of variant caller, and so these recommendations dovetail with 
those of our previous performance evaluation [5].

We can also conclude from the distributions in Fig. 2 (and the 
Supplementary Archive) that there are two broad classes of FP 

SNP. The first, and largest, class comprise data- deficient loci: 
false calls made on the basis of insufficient data. As shown in 
Fig. 2, these manifest as peaks in the FP distributions towards 
the lower end of their range, with FPs easily detected by applying 
minimum thresholds of depth, quality, proximity to another 
variant, or the number of reads mapped to both strands or to the 
left and right of the variant. This class of FPs is the focus of this 
paper. By contrast to data- deficient loci, however, a smaller class 
of FPs may be considered ‘data- surfeit’ loci. These positions are 
supported by a large number of reads, have correspondingly high 
quality scores, and at face value appear to be confident predic-
tions – the evidential basis for the call seems unambiguous. This 
is especially apparent in Fig. 2d, where a number of FP calls have 
depths far exceeding the majority of TPs (this is particularly 
apparent for the read depth distributions generated by mpileup; 
see Supplementary Archive). These FPs would not be detected 
using ‘minimum threshold’ filters, and are perhaps more likely 
to represent errors in the reference genome. For instance, if the 
sequenced genome had multiple copies of a region which only 
appears once in the reference, reads from disparate copies could 
only be aligned to the single copy in the reference. A mutation in 
any of these copies would, relative to the deficient reference, be 
falsely called a SNP. This is a particular consideration for bacteria 
as they are characteristically diverse, with the alignable fraction 
of any two genomes from a given species often rather low [62]. 
We make no attempt to formalize a definition that discriminates 
between these broadly sketched ‘data- deficient’ and ‘data- surfeit’ 
classes, noting only that ‘minimum threshold’ filters are not 
practically applicable to the latter, and that the error is likely 
not with the reads but the reference. While it would be possible 
to apply a ‘maximum depth’ threshold – for example, on the 
basis of coverage being a number of sigma greater than the mean 
(read depth following a negative binomial distribution [63]) – 
it may perhaps be more reasonable to consider an alternative 
reference instead. While the choice of a single (close) refer-
ence genome for variant calling is a pragmatic one, alternative 
methodologies will likely mitigate these reference- associated 
sources of error. For example, a recent tool, Pandora, takes a 
pan- genomic approach to variant calling by approximating a 
reference as a mosaic of known genomes, an approach superior 
to simply aligning reads to the closest RefSeq genome [62]. Pan- 
genomic references will also inevitably mitigate the number of 
FN calls – no single reference genome contains all variants – and 
although FNs have not been an aspect of this study, it is worth 
noting that they may have greater impact on data interpretation 
than FPs. For example, if predicting antibiotic resistance from 
sequencing data, omitting a single critical SNP may alter the 
conclusion. In such circumstances, overly stringent VCF filter 
criteria would be detrimental.

Irrespective of methodology, we are not in a position to suggest 
optimal filter criteria for all possible pipelines or analytic require-
ments, and so – given there is no such thing as a ‘universal filter’ 
(see Supplementary Archive) – limit ourselves only to general 
recommendations for bacterial short- read variant calling. To that 
end, on the basis of these results, we would filter SNPs and indels 
separately, and pay particular attention to a ‘proximity to nearest 
indel’ filter: irrespective of pipeline, a disproportionate number 
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of FP calls are found in the vicinity of indels (see Supplementary 
Archive). We also suggest it would be preferable to use a variant 
caller which is generally higher- performing (for instance, on the 
basis of this as well as our previous study [5]), calls both SNPs 
and indels (in the absence of which, proximity filters cannot 
be satisfactorily applied), and reports only higher- quality posi-
tions, thereby not requiring much in the way of hard filtering to 
begin with. As shown in Table 1, hard filtering cannot discard 
errors without also making them, so it is arguably better to use 
a pipeline which reports few errors in the first place than to 
catch errors already made. It is also clear from the distributions 
in the Supplementary Archive that filters cannot be universally 
applied – that is, routinely used irrespective of pipeline – as each 
pipeline has a distinct error profile, with those making fewer 
errors not necessarily showing a clear distinction between TP 
and FP on the basis of a given characteristic (for example, the 
variant allele frequency of all FPs reported by Breseq, Freebayes 
and Snippy is 1; see Supplementary Archive). Of the pipelines 
analysed here, our results suggest that the most straightforward 
way of minimizing false positives would simply be to use Snippy.
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