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ORIGINAL RESEARCH

Blood Pressure Complexity Discriminates 
Pathological Beat- to- Beat Variability as a 
Marker of Vascular Aging
Yun- Kai Lee , MSc; Sara Mazzucco , MD, PhD; Peter M. Rothwell , PhD, FMedSci;  
Stephen J. Payne , DPhil, FIPEM*; Alastair J. S. Webb , BMBCh, DPhil*

BACKGROUND: Beat- to- beat blood pressure variability (BPV) is associated with an increased risk of stroke but can be driven by 
both healthy physiological processes and failure of compensatory mechanisms. Blood pressure (BP) complexity measures 
structured, organized variations in BP, as opposed to random fluctuations, and its reduction may therefore identify pathologi-
cal beat- to- beat BPV.

METHODS AND RESULTS: In the prospective, population- based OXVASC (Oxford Vascular Study) Phenotyped Cohort with tran-
sient ischemic attack or minor stroke, patients underwent at least 5 minutes of noninvasive beat- to- beat monitoring of BP 
(Finometer) and ECG to derive the following: BPV (coefficient of variation) and complexity (modified multiscale entropy) of 
systolic BP and diastolic BP, heart rate variability (SD of R- R intervals), and baroreflex sensitivity (BRS; Welch’s method), in 
low-  (0.04– 0.15 Hz) and high- frequency (0.15– 0.4 Hz) bands. Associations between BPV or BP complexity with autonomic 
indexes and arterial stiffness were determined (linear regression), unadjusted, and adjusted for age, sex, and cardiovascular 
risk factors. In 908 consecutive, consenting patients, BP complexity was inversely correlated with BPV coefficient of variation 
(P<0.001) and was similarly reduced in patients with hypertension or diabetes (P<0.001). However, although BPV coefficient 
of variation had a U- shaped relationship with age, BP complexity fell systematically across age quintiles (quintile 1: 15.1 [14.0– 
16.1] versus quintile 5: 13.8 [12.4– 15.1]) and was correlated with markers of autonomic dysfunction (heart rate variability SD of 
R- R intervals: r = 0.20; BRS low frequency: 0.19; BRS high frequency: 0.26) and arterial stiffness (pulse wave velocity: −0.21; 
all P<0.001), even after adjustment for clinical variables (heart rate variability SD of R- R intervals: 0.12; BRS low frequency and 
BRS high frequency: 0.13 and 0.17; and pulse wave velocity: −0.07; all P<0.05).

CONCLUSIONS: Loss of BP complexity discriminates BPV because of pathological failure of compensatory mechanisms and 
may represent a less confounded and potentially modifiable risk factor for stroke.

Key Words: arterial stiffness ■ baroreflex sensitivity ■ blood pressure variability ■ complexity ■ heart rate variability ■ stroke 
■ transient ischemic attack

Uncontrolled high blood pressure (BP) increases 
the risk of stroke and all cardiovascular events,1 
whereas visit- to- visit,2,3 day- to- day,4 and beat- to- 

beat5 BP variability (BPV) predict the risk of recurrent 
stroke, all cardiovascular events, cognitive impair-
ment,6 and death. However, short- term, beat- to- beat 
BPV, estimated by conventional statistical estimates 

(eg, SD and coefficient of variations [CV]), shows a U- 
shaped relationship with age,7 likely reflecting higher 
BPV attributable to intact autonomically driven fluctu-
ation of BPV in younger people but also reflecting fail-
ure of compensatory mechanisms8,9 caused by aging 
and hypertension. The prognostic value of short- term, 
beat- to- beat BPV is therefore likely to represent both 
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impaired autonomic function, as seen after acute isch-
emic stroke,10 intracerebral hemorrhage,11 and sub-
arachnoid hemorrhage,12 as well as vascular aging 
(arterial stiffness and pulse pressure [PP]).13 However, 
its validity across all patient groups may be confounded 
by increased short- term, beat- to- beat BPV attributable 
to intact physiological processes9,14,15 in the young that 
manifests as a more physiologically organized fluctua-
tion within the physiological signals.

Entropy- based complexity analysis of BP measures 
variations in BP16– 18 that are related to nearby variations 

at different time scales, thereby reflecting structured or 
organized variability (ie, complex variability or complex-
ity), as opposed to random fluctuations.14 It has been 
proposed as a potential marker of physiological adapt-
ability and intact compensatory mechanisms.19,20 It is 
derived from the degree of nonlinear self- similarity of sig-
nals, hence reflecting “organized” variability in BP21– 23; 
and is more resistant to nonlinearity and nonstationarity 
of beat- to- beat recordings that undermine the accuracy 
and the validity of conventional analytic approaches.24

Reduced complexity of physiological signals has been 
associated with aging,9,15 increased risk and greater frailty 
during cardiac surgery21,22,25 and after extracorporeal 
perfusion,26,27 and worse outcomes after major ischemic 
stroke,28,29 hemorrhagic stroke,30,31 and traumatic brain 
injury.32,33 However, the physiological and clinical validity 
of BP complexity has not been determined, because of 
the lack of proper physiological definition, short recording 
length of measurements, and limited study sizes.

Therefore, we hypothesised that (1) beat- to- beat 
BPV has a similar physiological basis to heart rate 
variability, as well as longer forms of BP variability, 
and therefore BPV may be increased in both healthy 
patients and patients with age- related, vascular dys-
function,14,15 such as impaired autonomic function or 
arterial stiffening; and (2) BP complexity potentially 
reflects organized physiological processes, and there-
fore may discriminate physiological from pathological 
forms of BPV. We therefore determined the associa-
tions between short- term beat- to- beat BP complex-
ity with measures of BPV, clinical characteristics, and 
markers of autonomic dysfunction and vascular aging 
in a large, population- based cohort with recent tran-
sient ischemic attack (TIA) or minor stroke.

METHODS
Access to the data that support the findings of this 
study will be considered on application to the chief 
investigator on reasonable request. Please contact 
Professor Peter Rothwell for further information (peter.
rothwell@ndcn.ox.ac.uk).

Study Population and Research Ethical 
Approval
Consecutive, consenting patients within 6 weeks of a 
TIA or minor stroke (defined as National Institutes of 
Health Stroke Scale score, <5 ) were recruited be-
tween September 2010 and November 2019, as part 
of the Phenotyped Cohort of the OXVASC (Oxford 
Vascular Study).34– 36 Participants were recruited at 
the OXVASC daily emergency clinic, either following 
a referral after attendance at the emergency depart-
ment or after direct referral from primary care, usually 
within 24 hours. The OXVASC population consists of 

CLINICAL PERSPECTIVE

What Is New?
• Beat- to- beat blood pressure (BP) variability 

shows a U- shaped relationship with age.
• “Complexity” of BP, representing structured as 

opposed to random variability, is more linearly 
and inversely associated with age.

• Reduced complexity of BP is associated with 
major cardiovascular risk factors and markers 
of autonomic dysfunction and vascular aging.

What Are the Clinical Implications?
• Increased BP variability can be driven by either 

intact physiological processes in the young or 
pathological failure of compensatory mecha-
nisms that are more common in older patients.

• The nonlinear relationship between BP vari-
ability and age confounds understanding of the 
relationship between underlying mechanisms, 
risk of stroke, and response to treatment.

• Complexity discriminates organized and struc-
tured variations in BP from increased BP vari-
ability attributable to autonomic dysfunction 
and vascular aging, and may be a more precise 
marker of future modifiable vascular risk.

Nonstandard Abbreviations and Acronyms

BPV blood pressure variability
BRS baroreflex sensitivity
CV coefficient of variation
DBP diastolic blood pressure
HF high frequency
HRV heart rate variability
LF low frequency
modMSE modified multiscale entropy
OXVASC Oxford Vascular Study
PP pulse pressure
SBP systolic blood pressure
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>92 000 individuals registered with about 100 primary 
care physicians in Oxfordshire, UK.7,34– 36

All consenting patients underwent a standardized 
medical history and examination, ECG, blood tests, 
magnetic resonance imaging of brain and contrast- 
enhanced magnetic resonance angiography (or com-
puted tomography of brain and either carotid Doppler 
ultrasound or computed tomography angiogram), an 
echocardiogram, and 5- day ambulatory cardiac moni-
toring. All patients were reviewed by a study physician, 
the diagnosis was verified by the senior study neurologist 
(P.M.R.), and patients were followed up face- to- face for 
up to 10 years.7,34– 36 Consenting patients underwent a 
physiological assessment at the 1- month follow- up visit. 
Participants were excluded from this analysis if they were 
aged <18 years, cognitively impaired (Mini- Mental State 
Examination score, <23), or pregnant; had atrial fibrilla-
tion, active cancer, autonomic failure, a recent myocardial 
infarction, unstable angina, heart failure (New York Heart 
Association 3– 4 or ejection fraction <40%), or untreated 
bilateral carotid stenosis (>70%). OXVASC is approved 
by the Oxfordshire Research Ethics Committee A.34– 36

Data Acquisition
As part of the phenotyped cohort, a routine prospec-
tive cardiovascular physiological assessment is per-
formed at the 1- month follow- up visit in a quiet, dimly lit, 
temperature- controlled room (21 °C – 23 °C). Continuous 
3- lead ECG and noninvasive finger arterial BP (Finometer 
MIDI; Finapres Medical Systems, the Netherlands) were 
measured over at least 5 minutes, and up to 10 min-
utes, at 200 Hz during supine conditions via a Powerlab 
8/35 (ADInstruments) software, preferentially measured 
from the middle phalanx of the middle finger of the non-
dominant arm when possible.5,7,35,36

Consecutive R- R intervals of the ECG waveforms 
and beat- to- beat averages of systolic (SBP) and dia-
stolic (DBP) components of BP were automatically de-
rived and median filtered, with quadratic interpolation 
of the peak of the QRS complex and linear interpola-
tion across ectopic beats.4 All recordings were visu-
ally reviewed by an experienced operator (A.J.S.W.) for 
quality assessment (3, optimal; 2, adequate for anal-
ysis; 1, severe artefacts; and 0, no data) blind to clini-
cal information, based on the presence of artefacts or 
drift in the baseline, as previously described.7,37 Only 
the recordings with optimal and adequate quality were 
included in the analysis.7,36,37

Analysis
Complexity of BP

Beat- to- beat SBP and DBP signals were detrended 
by linear regression. Because of the relatively short re-
cording length of measurements, complexity of beat- 
to- beat BP was determined by the modified multiscale 

entropy38 (modMSE), which was specifically devel-
oped for shorter- length time series by Wu et al.38 The 
modMSE calculates the sample entropy39 across mul-
tiple time scales to quantify the degree of irregularity of 
the signal with a moving- average procedure to address 
the inaccurate entropy estimates caused by shortened 
data length in the conventional multiscale entropy algo-
rithm.19,20 By plotting sample entropy against the scale 
factor, the modMSE curve can be obtained.38 We set 
the scale from 1 to 10 and determined the complexity 
index by integrating the area under the modMSE curve, 
as described in previous studies.27– 29,31,32 (Details of 
calculations are described in Data S1, whereas we also 
refer the readers to the study by Wu et al38 for detailed 
derivations of modMSE).

Derivations of Indexes of Autonomic 
Function and Vascular Aging

Heart rate variability (HRV) was estimated by the SD 
of R- R intervals and root mean square of the succes-
sive beat- to- beat difference.28,30 Baroreflex sensitiv-
ity (BRS) was calculated from the mean values in the 
defined frequency regions of sympathetic and para-
sympathetic activations of low- frequency (LF; 0.04– 
0.15 Hz) and high- frequency (HF; 0.15– 0.4 Hz) bands, 
respectively,28,30 using the transfer function between 
SBP and pulse interval4 (Welch’s methods; by the 
CARNet transfer function script [http://www.car- net.
org/]) with criterion of default coherence threshold 
as set in the script, based on the 95% CI of the null 
hypothesis of no relationship between input and out 
signals.40 The power spectrum densities of SBP and 
DBP were also determined by calculating the area 
in the same defined LF and HF regions, with deriva-
tion of LF/HF ratio of sympathetic- to- parasympathetic 
balance.28,30

Aortic arterial stiffness was estimated by carotid- 
femoral pulse wave velocity, measured by applanation 
tonometry41 (Sphygmocor; AtCor Medical, Sydney, 
Australia). PP was calculated as the difference be-
tween SBP and DBP 3(PP = SBP − DBP), and the 
systolic and diastolic BPV were calculated as the co-
efficient of variation (CV = 100% × (SD∕mean)) of the 
continuous beat- to- beat BP monitoring (SBP- CV and 
DBP- CV, respectively).5,35,36

Statistical Analysis
The distributions of continuous variables were as-
sessed by histograms and tested for normality 
(Shapiro- Wilk). Clinical characteristics were compared 
by the χ2 test for categorical variables and ANOVA for 
continuous variables. Associations between BP com-
plexity with HRV, BRS, and continuous clinical char-
acteristics were assessed by linear regression with a 
log transformation to normalize the data and improve 

http://www.car-net.org/
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validity of the regression model, both unadjusted and 
adjusted for clinical characteristics, reported as partial 
correlation coefficients (r values), stratified by sex, age 
in quintiles (<54.2, 54.2– 64.7, 64.7– 71.4, 71.4– 77.7, and 
>77.7), and hypertension or diabetes.

For all analyses, a value of P<0.05 was considered 
to be statistically significant. All analysis was performed 
in Microsoft Excel, Matlab r2017, and R.

RESULTS
A total of 959 of 1013 (95%) eligible, consenting pa-
tients had at least adequate beat- to- beat BP record-
ings, of whom 51 (5%) had inadequate recording 
quality or atrial fibrillation during testing, 3 (0.3%) had 
poor quality ECG recordings, and 93 (9.7%) did not 
have pulse wave velocity assessed because of techni-
cal limitations, such as body habitus or significant ca-
rotid stenosis (Table 1).

Distributions of Beat- to- Beat BPV and BP 
Complexity
The distributions of BPV of SBP- CV and DBP- CV 
(medians [interquartile intervals]: 4.7 [3.5– 6.6] and 
4.6 [3.3– 6.6], respectively) were strongly positively 
skewed and nonnormal (P- normality <0.001; Table S1). 
Distributions of complexity of SBP and DBP (medi-
ans [interquartile intervals]: 14.5 [13.2– 15.7] and 14.7 
[13.4– 15.7], respectively) were less negatively skewed 
(Table S1 and Figure S1), and were more normally dis-
tributed than BPV, even when stratified by quintiles of 
age (Table S1). BPV and complexity remained skewed 
when stratified by sex, but complexity of both SBP and 
DBP was largely normally distributed and less skewed 

compared with BPV, even in the upper quintiles of age 
(Tables S2 and S3).

Associations of Beat- to- Beat BPV and 
BP Complexity With Age and Major Risk 
Factors
Complexity of BP was negatively correlated with meas-
ures of BPV (SBP complexity versus SBP- CV and DBP 
complexity versus DBP- CV: r=−0.36 and r=−0.31, re-
spectively; both P<0.001), with a linearly falling trend 
when stratified by quartiles (Figure  1; both P- trend 
<0.001). SBP- CV and DBP- CV were nonlinearly re-
lated to age, with greater BPV in the bottom quintile 
compared with the second and third quintiles, followed 
by a progressive increase in upper quintiles (Figure 2A 
and 2B). However, complexity of both SBP and DBP 
was more linearly reduced across quintiles of age, with 
a more pronounced reduction in women than men 
(Figure 2C and 2D; Figure S2). This falling complexity 
of both SBP and DBP across quintiles of age persisted 
when stratified by events of TIA and stroke (Figure S3).
Patients with hypertension or diabetes had higher 
SBP- CV and DBP- CV, with the highest BPV in patients 
with both comorbidities (Table 2), but with no interac-
tion between hypertension and diabetes even after 
adjustment for age, sex, cardiovascular risk factors, 
and smoking (adjusted P=0.95 and P=0.89, respec-
tively; Table  2). BP complexity was lower in patients 
with hypertension and diabetes, and lowest in patients 
with both comorbidities (Table 2), with no significant in-
teraction between hypertension and diabetes, includ-
ing after adjustment for clinical variables (complexity 
of SBP and DBP: P=0.49 and P=0.4, respectively; 
Table 2).

Table 1. Characteristics of Study Population, Stratified by Quintiles of Age

Characteristic All* Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5 P value

No. 908 182 181 182 181 182

Age, mean (SD), y 66.1 (13.3) 45.6 (8.1) 59.7 (3.0) 68.4 (2.0) 74.5 (1.8) 82.1 (3.4) <0.001

Women, n (%) 411 (45.3) 66 (36.3) 82 (45.3) 86 (47.3) 92 (50.8) 85 (46.7) 0.07

Hypertension, n (%) 442 (48.7) 40 (22.0) 73 (40.3) 96 (52.7) 109 (60.2) 124 (68.1) <0.001

Diabetes, n (%) 107 (11.8) 19 (10.4) 22 (12.2) 18 (9.9) 24 (13.3) 24 (13.2) 0.79

Current smoking, n (%) 152 (16.7) 60 (33.0) 43 (23.8) 28 (15.4) 12 (6.6) 9 (4.9) <0.001

Antihypertensive agents, n (%) 670 (73.8) 98 (53.8) 117 (64.6) 148 (81.3) 153 (84.5) 154 (84.6) <0.001

BMI, mean (SD), kg/m2 27.2 (5.3) 27.9 (6.6) 28.5 (5.5) 26.7 (4.9) 26.5 (4.2) 26.2 (4.5) <0.001

SBP, mean (SD), mm Hg 125.4 (18.0) 119.3 (15.8) 121.0 (13.8) 127.6 (18.3) 128.9 (18.5) 130.3 (20.1) <0.001

DBP, mean (SD), mm Hg 68.8 (10.0) 70.8 (10.5) 70.9 (9.2) 68.7 (10.3) 68.0 (9.4) 65.5 (9.9) <0.001

PP, mean (SD), mm Hg 56.6 (14.8) 48.5 (11.8) 50.1 (11.2) 58.9 (13.5) 61.0 (13.9) 64.7 (16.3) <0.001

PWV, mean (SD), m/s 9.6 (2.7) 7.5 (1.7) 8.5 (1.8) 9.7 (2.1) 10.6 (2.5) 12.1 (3.0) <0.001

Frequency, number (percentage), or mean (SD) are reported. P values are given for ANOVA for continuous variables and χ2 test for categorical variables. 
Quintile 1 indicates <54.2 years; quintile 2, 54.2 to 64.7 years; quintile 3, 64.7 to 71.4 years; quintile 4, 71.4 to 77.7 years; and quintile 5, >77.7 years. BMI indicates 
body mass index; DBP, diastolic blood pressure; PP, pulse pressure; PWV, pulse wave velocity; and SBP, systolic blood pressure.

*One patient with missing diagnosis of all comorbidities; 93 patients did not have PWV assessed; 2 patients with missing information of antihypertensive 
agents; and 63 patients with missing information of BMI.
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Associations of BP Complexity With 
Autonomic Functions and Vascular Aging

Greater complexity of SBP and DBP was correlated 
with impaired autonomic function, with a positive 
association with both SD of R- R intervals and root 
mean square of the successive beat- to- beat differ-
ence (SBP complexity versus SD of R- R intervals 
and root mean square of the successive beat- to- beat 

difference: adjusted r=0.12 and r=0.16, respectively), 
and a linear trend across quartiles (Figure 3A and 3B; 
Table S4; Figure S4). Similarly, SBP complexity was 
correlated with BRS gain in both LF and HF domains 
(adjusted r=0.13 and r=0.17, respectively; all P<0.001), 
before and after adjustment for clinical variables 
(Table  S4; Figure  3C and 3D; all P- trend <0.001), 
with a consistent result of association of complex-
ity of DBP with BRS (Figures S4 and S5; Table S4). 

Figure 1. Correlations of blood pressure complexity with measures of blood pressure variability.
Systolic blood pressure (SBP) complexity vs SBP coefficient of variation (CV) (A and B) and diastolic blood pressure (DBP) complexity 
vs DBP- CV (C and D), stratified by quartiles and for the linear regression with a log transformation of both indexes to normalize the 
data and improve validity of the regression model. Values of P- trend are given for linear regression. Data are presented as mean with 
95% CI and regression line with 95% CI.
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Across the entire frequency spectrum of BRS gain 
and power spectrum density of BP, higher complexity 
of both SBP and DBP was associated with a greater 
BRS gain but a lower power spectrum density of BP 
and LF/HF ratio, with a more pronounced difference 
in lower- frequency bands (Figures S4– S6; Figure 4A; 
P- trend<0.001), implying a reduced sympathetic to 
parasympathetic autonomic balance (Figures S4– S6; 
Figure 4B; P- trend=0.95).

There was an inverse correlation between complex-
ity of BP and indexes of vascular aging. Complexity 
of SBP was inversely correlated with both PP and 
pulse wave velocity (unadjusted r=−0.14 and r=−0.21, 
respectively), with a linear trend across quartiles 
(Figure 4C and 4D; all P- trend<0.001). However, there 
was no significant association between complexity and 
PP after adjustment for clinical variables (Table  S4). 
Associations of complexity of DBP with PP and arte-
rial stiffness were consistent with complexity of SBP 
(Figures S5 and S6; Table S4).

DISCUSSION
In this large, prospective, clinical cohort of high- risk 
patients with TIA or minor stroke, BP complexity and 
beat- to- beat BP variability were both found to be 
strongly associated with a history of hypertension and 
diabetes, with increased arterial stiffness, autonomic 
dysfunction, and increasing age. However, BP com-
plexity was at least as strongly associated as BPV, was 
more normally distributed, and had a negative linear 
association with age, as opposed to beat- to- beat BPV, 
which increased in the youngest patients, likely attrib-
utable to healthy, physiologically determined fluctua-
tions in BP. As such, BP complexity appears to provide 
both a specific measure of pathologically determined 
BP variability and a marker of vascular aging and auto-
nomic dysfunction.

Visit- to- visit, day- to- day, and beat- to- beat BPV 
predict the risk of recurrent stroke and cardiovascular 
events, independent of mean BP.5,7 However, currently 

Figure 2. Changes of beat- to- beat blood pressure variability and complexity, stratified by sex and by quintiles (Qs) of age.
A, Systolic blood pressure (SBP) coefficient of variation (CV). B, Diastolic blood pressure (DBP) CV. C, Complexity of SBP. D, 
Complexity of DBP. P values are given for ANOVA with post hoc analysis (Tukey test) for comparisons among the overall means across 
the 5 quintiles. Only the results that reach the statistically significant level are presented. Data are presented as mean with 95% CI. 
*P<0.05, **P<0.01, and ***P<0.001.
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ANOVA with post-hoc test for overall means across quintiles
- Q1 vs. Q4: p =0.033*
- Q1 vs. Q5: p <0.0001***
- Q2 vs. Q5: p <0.0001***
- Q3 vs. Q5: p <0.0001***

ANOVA with post-hoc test for overall means across quintiles
- Q1 vs. Q3: p =0.00106**
- Q1 vs. Q4: p <0.0001***
- Q1 vs. Q5: p <0.0001***
- Q2 vs. Q4: p =0.031*
- Q2 vs. Q5: p =0.00013**

ANOVA with post-hoc test for overall means across quintiles
- Q1 vs. Q5: p =0.00017**
- Q2 vs. Q5: p <0.0001***
- Q3 vs. Q5: p =0.000023***
- Q4 vs. Q5: p = 0.0025**

ANOVA with post-hoc test for overall means across quintiles
- Q1 vs. Q3: p <0.0001***
- Q1 vs. Q4: p <0.0001***
- Q1 vs. Q5: p <0.0001***
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available methods of assessing BPV on beat- to- beat 
monitoring show a nonlinear relationship with age 
that is confounded by increased variations in BP in 
younger patients, likely attributable to physiologically 
determined rhythmic fluctuations in BP.7,8 This is mixed 
with potentially pathological, random variations that are 
more common with increased age and that result in 
a strong positive skew to the distribution as patients 
become older.7 BP complexity measures organized 

and structured variations in BP across multiple time 
periods. Therefore, its consistent linear association 
with age19,20 and with markers of vascular aging and 
autonomic dysfunction supports the hypothesis that 
“raw” BPV is confounded by a mixture of healthy and 
pathological forms of BPV, whereas BP complexity is 
potentially a direct measure of healthy BP and its con-
trol. Its loss with age and underlying cardiovascular pa-
thology of hypertension17 and diabetes16 may therefore 

Figure 3. Values of complexity of systolic blood pressure (SBP), stratified by quartiles (Qs) of 
parameters of SD of R- R intervals (SDRR) (A), root mean square of the successive beat- to- beat 
difference (RMSSD) of R- R intervals (B), and baroreflex sensitivity (BRS) in low- frequency (LF) (C) 
and high- frequency (HF) (D) bands.
Three invalid quality of ECG recordings and those who do not meet the statistical criterion of BRS 
coherence were not included. Values of P- trend are given for linear regression. Data are presented as 
mean with 95% CI.
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be a direct measure of failure of these compensatory 
mechanisms.8,42

There are no data on the long- term predictive value 
of complexity of BP for cardiovascular disease, and 
its association with the risk of stroke and dementia is 
unclear.43 However, markers of autonomic dysfunc-
tion and vascular aging predict major stroke,44 lacunar 
stroke, and cognitive impairment,45 whereas complex-
ity of HRV,19,20 cerebrovascular blood flow derived from 
near- infrared spectroscopy- derived signals,31 and in-
tracranial pressure32 predict outcome following acute 
ischemic stroke,28,29 intracerebral (supratentorial and 
intraventricular) hemorrhage,30,31 and severe traumatic 
brain injury,32,33 and during cardiac surgery.22,25,46 

Recent advances have also reported that this loss of 
“structured variability” in BP is associated with higher 
grade of white matter lesions in older adults47 and with 
elevated long- term risk of dementia.43 Furthermore, the 
systematic loss of complexity of BP with age is consis-
tent with smaller studies reporting reduced complexity 
of HRV in elder subjects.19,20 As such, BP complex-
ity has the potential to be an unconfounded marker 
of failure of compensatory vascular mechanisms that 
can be measured with 5 minutes of beat- to- beat BP 
recording. It therefore can help to determine to what 
extent failure of compensatory mechanisms explains 
the resulting risk of cardiovascular events with age, hy-
pertension, and cardiovascular disease. It is likely to 

Figure 4. Values of complexity of systolic blood pressure (SBP), stratified by quartiles (Qs) of 
parameters of SBP power spectrum density (PSD) in low- frequency (LF) (A) and high- frequency 
(HF) (B) bands; and indexes of vascular aging of pulse pressure (PP) (C) and pulse wave velocity 
(PWV) (D).
Patients (n=93) who did not have PWV assessed were not included. Values of P- trend are given for linear 
regression. Data are presented as mean with 95% CI.
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be more specific than BPV, but it is as yet not clear to 
what extent it is more sensitive than BPV, or to what 
extent any associated explained risk may be indepen-
dent or additive to classic markers of vascular aging, 
such as arterial stiffness or baroreceptor sensitivity.

Study Limitations
There are several limitations to our study. First, all pa-
tients were assessed for TIA or minor stroke events, 
predominantly in older patients. Hence, the understand-
ing of complexity of BP in other populations or those 
with major stroke remains unclear.7 However, BP vari-
ability and beat- to- beat BPV appear to be particularly 
associated with the risk of stroke and dementia, and 
this population is therefore ideal to determine the value 
of BP complexity for these outcomes.5,43 Second, this 
cohort is focused on prognostic factors and prevention 
of recurrent stroke and cardiovascular events; a signifi-
cant proportion of patients are commonly prescribed 
with multiple antihypertensive medications to control 
BP, according to the treatment guidelines.35 As such, 
we cannot exclude an interaction between effects of an-
tihypertensive drugs and cardiovascular mechanisms, 
and the standardized treatment protocol with agents 
from multiple classes prevents reliable comparison of 
class- specific differences. Furthermore, in this nonrand-
omized study, observational analyses of the role of differ-
ent BP classes are prone to confounding. However, the 
reduced BP complexity in our study is consistent with 
many previous studies reporting its age- related reduc-
tions in healthy subjects and in multiple pathophysiolog-
ical conditions.19,20 This therefore indicates the potential 
of BP complexity to discriminate potentially beneficial 
and harmful forms of BPV in future studies, such as the 
recently demonstrated sex difference in BPV in obe-
sity36 (eg, body mass index), effects of antihypertensive 
drug classes on BPV, and its association with future risk 
and clinical outcome.5,43 Further investigation will also 
be necessary to specifically determine the changes of 
BPV and complexity in patients with carotid lesions that 
may affect the baroreceptor functions, patients with a 
cardiac pacemaker, and those with atrial fibrillation as 
the irregular R- R intervals reflect a different physiological 
basis for BPV and BP complexity, and multiple studies 
have reported a different trend of complexity in patients 
with atrial fibrillation.19,20,28 Third, although previous 
studies have shown the effects of locations of hema-
toma on complexity (of HRV),30 this population had had 
TIA or minor stroke, including a significant number with 
no acute diffusion- weighted imaging lesion on mag-
netic resonance imaging, in whom the precise site of 
cerebrovascular ischemia is unknown. Therefore, we 
are unable to determine whether infarction site affects 
BP complexity in this population. However, this also 
means that it is unlikely that the cerebrovascular events 

themselves had a significant impact on complexity. 
Fourth, compared with the currently favored methods 
of assessing BPV, such as SD or CV,7 the derivation 
of entropy- based complexity is relatively complex. It is 
therefore necessary to investigate the feasibility, valid-
ity, and reproducibility of complexity indexes, before its 
integration to analytical tools in real- time bedside moni-
toring in clinical practice.

Finally, we have not yet investigated the prognos-
tic significance of complexity of BP for the risk of re-
current stroke as more patient- years of follow- up will 
be required for a reliable estimation. However, to our 
knowledge, this is the first large study investigating 
short- term beat- to- beat BP complexity and is the first 
in a population- based cohort with TIA or minor stroke 
to demonstrate its association with measures of BPV, 
clinical characteristics, and multiple systematic physi-
ological markers of autonomic dysfunction and vascu-
lar aging. Longer- term follow- up in this population will 
allow us to determine the prognostic significance of BP 
complexity, and its added utility compared with clas-
sic cardiovascular risk factors, beat- to- beat BPV, and 
markers of vascular aging.

CONCLUSIONS
Loss of BP complexity has the potential to differenti-
ate increased BPV attributable to intact physiological 
mechanisms from increased BPV attributable to patho-
logical failure of compensatory mechanisms, providing 
physiological information beyond only a single derived 
parameter. This provides a robust foundation of its ap-
plication for future epidemiological or clinical studies to 
assess its prognostic significance and potentially as a 
modifiable risk factor for future cardiovascular events 
and recurrent stroke and dementia.
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A1. Modified multiscale entropy (ModMSE)  

The code for ModMSE can be found in the Appendix in the original publication by Wu 
et al. 2013. Physica A. 2013. doi:10.1016/j.physa.2013.07.075.  

Entropy has been proposed as an estimate to quantify the degree of irregularity (or 
randomness) of a signal, and sample entropy (SampEn) is one of the methods commonly 
used, originally proposed by Richman and Moorman in 2000 (Am J Physiol Heart Circ 
Physiol. 2000; 278:H2039-49. doi: 10.1152/ajpheart.2000.278.6.H2039).   

Its calculation is based on the negative logarithm of the number of the occurrence of 
repeating patterns (match components) that have distance smaller than the tolerance in the 
signal (figure A1). Given the time-series data 𝑺 = {𝑥1 ,  𝑥2 ,  𝑥3 , … 𝑥𝑁 }, the SampEn first 
constructs the similarity index (i.e., the 𝑖 th template vector) of length 𝑚 , 𝑋𝑚(𝑖) =

{𝑥𝑖, 𝑥𝑖+1, 𝑥𝑖+2, 𝑥𝑖+3, … 𝑥(𝑖+𝑚−1)}, as well as match vector of length (𝑚 + 1), 𝑋𝑚+1(𝑖). Sample 

entropy can then be described and calculated as follows:  

𝑆𝑎𝑚𝑝𝐸𝑛(𝑺, 𝑚, 𝑟, 𝑁) = − ln [
𝐴𝑖

𝐵𝑖
] 

where parameters 𝑚 represent the dimension of constructing the template vector pairs; 𝑟 
indicates the tolerance threshold; 𝑁 is the length of the signal; 𝐴𝑖 is the number of the matches 

(i.e., the template vector) of length(𝑚 + 1)  that has a distance smaller than 𝑟  times the 
standard deviation (SD) of the signal, expressed as: 

𝑑[𝑋𝑚+1(𝑖), 𝑋𝑚+1(𝑗)] < (𝑟 × 𝑆𝐷 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑖𝑔𝑛𝑎𝑙) 

and 𝐵𝑖 is the number of the matches of length(𝑚) that has a distance smaller than tolerance 
𝑟 times the SD of the signal: 

𝑑[𝑋𝑚(𝑖), 𝑋𝑚(𝑗)] < (𝑟 × 𝑆𝐷 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑖𝑔𝑛𝑎𝑙) 
 

Later, Govindan et al., 2007 (Physica A 376; 158–164) further modified the definition 
of the original SampEn and incorporated a time-delay in calculating the match template 
vectors, where the SampEn with time-delay can thus be expressed as: 

𝑆𝑎𝑚𝑝𝐸𝑛 = (𝑺, 𝑚, 𝑟, ) 
where  is the time-delay between the successive match components when constructing the 
match templates: 

𝑿𝑖
𝑚() = {𝑥𝑖, 𝑥𝑖+, … 𝑥(𝑚−1)} 

Similarly, the distances for each match components are calculated by deriving the number of 
matches in this modified version of SampEn (Wu et al. 2013), as determined by:  

𝑑𝑖𝑗
𝑚() = ‖𝑿𝑖

𝑚() − 𝑿𝑗
𝑚()‖

∞
, 1 ≤ 𝑖, 𝑗 ≤ 𝑁 − 𝑚, 𝑗 > 𝑖 +  

whilst 𝑚  and 𝑟  are the same parameters used for the dimension vector and tolerance 
threshold respectively. 

Costa et al., 2002, 2005 (Phys Rev Let. 2002; 89(6):068102) proposed an extended 
method, termed the multiscale entropy (MSE) method19,20, to determine the complexity of the 
signal. The process of this conventional MSE is: (i) to coarse-grain the signal by averaging 
the neighbouring data-points with non-overlapping window by the scale factor (i.e., 𝜏); and (ii) 
to calculate the SampEn of each coarse-grained time-series; and (iii) by plotting the SampEn 
against scale factor, the MSE curve can be obtained. The coarse-grained time-series,𝑦𝑗, can 

be expressed as follows:   

𝑦𝑗
𝜏 =  

1

𝜏
∑ 𝑺𝑖

𝑗𝜏

𝑖=(𝑗−1)𝜏+1

,            1 ≤ 𝑗 ≤
𝑁

𝜏
 



where 𝜏 represents the scale factor and 𝑁 is the data length. For both original SampEn and 
conventional MSE, a unity-delay was applied ( = 1)38. 

However, the coarse-graining process in the conventional MSE shortens the data 
length, which may result in inaccurate estimates, particularly in short-term time-series. In 2013, 
Wu et al., 201338 thus proposed the modified multiscale entropy (ModMSE). The modMSE 
applies the sample entropy with time-delay and replace the coarse-graining process in the 
conventional MSE algorithm with a moving-average procedure. The moving-averaged time-
series at scale factor 𝜏 is therefore expressed as:    

𝑧𝑗
𝜏 =  

1

𝜏
∑ 𝑺𝑖 ,

𝑗+𝜏−1

𝑖=𝑗

                  1 ≤ 𝑗 ≤ 𝑁 − 𝜏 + 1      

The size of the moving-average window is set for both the time-delay and the scale 
factor to overcome the limitation of shortened data length, and the ModMSE is expressed as 
follows:  

𝑀𝑜𝑑𝑀𝑆𝐸(𝑺, 𝑚, 𝜏, 𝑟) =  𝑆𝑎𝑚𝑝𝐸𝑛(𝑧𝜏, 𝑚,  = 𝜏, 𝑟) 
 
as described previously (Wu et al., 2013). Similarly, by plotting sample entropy against the 
scale factor 𝜏, the ModMSE curve can be obtained. 

Figure A2 demonstrates the simulation of modMSE with short-term time series signals 
using length of 500 data points. In this study, we set the parameters of r = 0.2, m = 2, and the 
scale from 1 – 10, which are the commonly selected numbers with better statistical validity24; 
and the complexity index is defined as the integration of the area under the modMSE curves, 
as described in previous studies28-32.  

 
 
 
 
 
 
 
 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure A1. Schematic of calculations of the original sample entropy, as described in Richman 

et al. 2004 (Methods Enzymol. 2004; 384:172-84. doi: 10.1016/S0076-6879(04)84011-4) and 

references [19,20,32]. Parameter r is set for the threshold for the tolerance for accepting 

matches; m, the dimension parameter (m = 2 in this case). Solid circles and dash circles are 

the match templates of (m+1) and (m) dimensions, respectively.  



Figure A2. Simulations of modMSE analysis for short-term time series (500 data points). (A) 

and (B) are white noise (completely random noise) and pink noise (1/f noise), respectively; 

and (C) represents the modMSE curves of the averaged 10 independent simulations. 

Errorbars are presented as mean ± standard error of the mean (SEM). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 100 200 300 400 500
-4

-2

0

2

4

A
m

p
lit

u
d

e

(A)

0 100 200 300 400 500

Data Length

-0.04

-0.02

0

0.02

0.04

A
m

p
lit

u
d

e

(B)

0 2 4 6 8 10

Scale Factors

1

1.2

1.4

1.6

1.8

2

2.2

2.4

S
a
m

p
le

 E
n
tr

o
p
y

(C)

White noise

1/f noise



Table S1. Distributions, skewness and normality of blood pressure variability and complexity for the whole population, stratified by 

quintiles of age. 

 SBP-CV Complexity of SBP 

 n Median (Interquartile Intervals) Skewness Normality Median (Interquartile Intervals) Skewness Normality 

All 908 4.7 (3.5 – 6.6) 2.66 <0.001 14.5 (13.2 – 15.7) -0.89 <0.001 

Quintiles of Age:           

Q1 (<54.2) 182 4.7 (3.5 – 5.9) 3.03 <0.001 15.1 (14.0 – 16.1) -1.51 <0.001 

Q2 (54.2 – 64.7) 181 4.3 (3.5 – 5.7) 2.74 <0.001 14.9 (13.6 – 16.1) -0.95 <0.001 

Q3 (64.7 – 71.4) 182 4.4 (3.3 – 5.9) 2.22 <0.001 14.3 (13.4 – 15.4) -0.96 <0.001 

Q4 (71.4 – 77.7) 181 5.3 (3.8 – 7.5) 1.49 <0.001 14.3 (12.9 – 15.6) -1.02 <0.001 

Q5 (>77.7) 182 5.3 (3.7 – 8.8) 2.32 <0.001 13.8 (12.4 – 15.1) -0.29 0.253 

  DBP-CV Complexity of DBP 

 n Median (Interquartile Intervals) Skewness Normality Median (Interquartile Intervals) Skewness Normality 

All 908 4.6 (3.3 – 6.6) 7.98 <0.001 14.7 (13.4 – 15.7) -1.03 <0.001 

Quintiles of Age:        

Q1 (<54.2) 182 4.6 (3.4 – 6.1) 4.29 <0.001 15.4 (14.1 – 16.4) -1.69 <0.001 

Q2 (54.2 – 64.7) 181 3.9 (3.1 – 5.5) 3.69 <0.001 15.2 (13.9 – 16.1) -1.21 <0.001 

Q3 (64.7 – 71.4) 182 4.1 (3.0 – 6.1) 2.86 <0.001 14.4 (13.2 – 15.4) -0.65 <0.001 

Q4 (71.4 – 77.7) 181 5.0 (3.6 – 7.1) 1.61 <0.001 14.4 (13.0 – 15.4) -1.28 <0.001 

Q5 (>77.7) 182 5.4 (3.7 – 8.6) 6.49 <0.001 14.0 (12.4 – 14.9) -0.66 0.0016 

 

 

 

 

 



Table S2. Distributions, skewness and normality of SBP-CV and SBP-Complexity, stratified by sex and by quintiles of age. 

 SBP-CV Complexity of SBP 

 n Median (Interquartile Intervals) Skewness Normality Median (Interquartile Intervals) Skewness Normality 

All Men 497 4.6 (3.5 – 6.0) 3.85 <0.001 14.6 (13.4 – 15.9) -0.42 <0.001 

Quintiles of Age:        

 Q1 (<52.5) 99 4.9 (3.6 – 6.0) 0.72 0.0018 15.0 (13.8 – 16.1) -0.89 0.0004 

Q2 (52.5 – 62.9) 100 4.3 (3.6 – 5.3) 1.87 <0.001 15.2 (13.8 – 16.1) -0.45 0.057 

Q3 (62.9 – 70.7) 99 4.0 (3.2 – 5.6) 2.48 <0.001 14.3 (13.4 – 15.7) -0.21 0.12 

Q4 (70.7 – 77.5) 100 4.9 (3.4 – 6.3) 1.98 <0.001 14.5 (13.5 – 15.9) -0.40 0.029 

Q5 (>77.5) 99 5.1 (3.9 – 7.5) 3.73 <0.001 14.3 (12.5 – 15.1) -0.16 0.39 

        

All Women 411 4.9 (3.5 – 7.7) 1.85 <0.001 14.5 (13.0 – 15.5) -1.04 <0.001 

Quintiles of Age:        

Q1 (<56.3) 82 4.4 (3.3 – 6.2) 2.73 <0.001 15.0 (13.8 – 16.2) -1.63 <0.001 

Q2 (56.3 – 66.1) 82 5.0 (3.4 – 7.1) 1.36 <0.001 14.8 (13.6 – 15.7) -1.11 <0.001 

Q3 (66.1 – 72.3) 83 4.6 (3.6 – 7.4) 1.82 <0.001 14.5 (13.2 – 15.2) -1.25 <0.001 

Q4 (72.3 – 78.0) 82 6.0 (4.0 – 8.1) 2.29 <0.001 14.2 (12.4 – 15.5) -1.00 0.0007 

Q5 (>78.0) 82 5.9 (3.4 – 10.5) 0.84 <0.001 13.6 (12.2 – 14.9) -0.43 0.35 

 

 
 
 
 
 
 
 
 
 
 
 
 



Table S3. Distributions, skewness and normality of DBP-CV and DBP-Complexity, stratified by sex and by quintiles of age.  

 DBP-CV DBP-Complexity 

 n Median (Interquartile Intervals) Skewness Normality Median (Interquartile Intervals) Skewness Normality 

All Men 497 4.4 (3.2 – 6.1) 5.30 <0.001 14.7 (13.5 – 15.9) -0.90 <0.001 

Quintiles of Age:        

 Q1 (<52.5) 99 4.7 (3.4 – 6.2) 2.65 <0.001 15.5 (14.0 – 16.4) -1.91 <0.001 

Q2 (52.5 – 62.9) 100 3.7 (3.0 – 5.0) 1.74 <0.001 15.3 (14.1 – 16.2) -0.58 0.037 

Q3 (62.9 – 70.7) 99 3.8 (2.9 – 5.7) 1.41 <0.001 14.3 (13.3 – 15.3) -0.13 0.25 

Q4 (70.7 – 77.5) 100 4.4 (3.3 – 5.9) 2.46 <0.001 14.8 (13.2 – 15.6) -1.52 <0.001 

Q5 (>77.5) 99 5.2 (3.8 – 7.6) 4.81 <0.001 14.1 (13.0 – 15.2) -0.14 0.91 

        

All Women 411 4.8 (3.4 – 7.2) 7.67 <0.001 14.7 (13.0 – 15.6) -0.99 <0.001 

Quintiles of Age:        

Q1 (<56.3) 82 4.3 (3.3 – 6.2) 3.47 <0.001 15.3 (14.0 – 16.4) -1.47 <0.001 

Q2 (56.3 – 66.1) 82 4.3 (3.2 – 6.3) 2.65 <0.001 15.2 (13.9 – 15.9) -1.14 0.00012 

Q3 (66.1 – 72.3) 83 4.5 (3.3 – 6.8) 2.66 <0.001 14.5 (13.0 – 15.3) -0.17 0.01 

Q4 (72.3 – 78.0) 82 5.6 (3.6 – 7.5) 7.70 <0.001 14.2 (12.3 – 15.5) -1.34 <0.001 

Q5 (>78.0) 82 5.6 (3.3 – 9.6) 1.27 <0.001 13.9 (12.2 – 14.8) -0.79 0.01 

 

 
 

 

 

 

 

 



Table S4. Correlates of blood pressure complexity, markers of autonomic function and vascular aging, unadjusted and adjusted for 

clinical variables. 

 

 

  Complexity of SBP Complexity of DBP 

  Un-adjusted Adjusted (A+S) Adjusted (A+S+RF) Un-adjusted Adjusted (A+S) Adjusted (A+S+RF) 

 n r p Partial r p Partial r p r p Partial r p Partial r p 

HRV-SDRR 905 0.20 <0.001 0.14 <0.001 0.12 <0.001 0.17 <0.001 0.11 <0.001 0.09 0.01 

HRV-RMSSD 905 0.22 <0.001 0.17 <0.001 0.16 <0.001 0.18 <0.001 0.13 <0.001 0.11 <0.001 

BRS in LF 857 0.19 <0.001 0.14 <0.001 0.13 <0.001 0.20 <0.001 0.15 <0.001 0.13 <0.001 

BRS in HF 824 0.26 <0.001 0.21 <0.001 0.17 <0.001 0.26 <0.001 0.21 <0.001 0.17 <0.001 

SBP-PSD in LF 908 -0.33 <0.001 -0.31 <0.001 -0.30 <0.001 - - - - - - 

SBP-PSD in HF 908 -0.0006 0.99* 0.004 0.91* 0.003 0.92* - - - - - - 

SBP-PSD LF/HF ratio 908 -0.51 <0.001 -0.49 <0.001 -0.47 <0.001 - - - - - - 

DBP-PSD in LF 908 - - - - - - -0.30 <0.001 -0.30 <0.001 -0.30 <0.001 

DBP-PSD in HF 908 - - - - - - -0.02 0.49* -0.05 0.12* -0.06 0.074* 

DBP-PSD LF/HF ratio 908 - - - - - - -0.43 <0.001 -0.40 <0.001 -0.39 <0.001 

Pulse Pressure 908 -0.14 <0.001 -0.05 0.15* -0.02 0.56* -0.13 <0.001 -0.04 0.25* -0.01 0.70* 

PWV 815 -0.21 <0.001 -0.11 0.001 -0.07 0.048 -0.21 <0.001 -0.11 0.0014 -0.07 0.055* 

The association was determined by general linear model with a log-transformation. Three invalid quality of HRV recordings and those who do not meet the statistical 

criterion of BRS coherence were not included in the analysis of HRV and BRS. All analyses are statistically significant, except for analyses with a *. Adjusted (A+S), 

adjusted for age and sex; Adjusted (A+S+RF), adjusted for age, sex and cardiovascular risk factors of hypertension, diabetes, and smoking habit. 



 

Figure S1. Distributions of complexity index and BPV, with Kernel-fitting curve. (A) 

SBP-CV; (B) DBP-CV; (C) SBP-complexity; and (D) DBP-complexity. 
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Figure S2. ModMSE curves of SBP and DBP, stratified by sex and by quintiles of age. 

(A – B) are modMSE of SBP and DBP in men, respectively; and (C – D) are modMSE of 

SBP and DBP in women, respectively.  

  

 

Figures are presented as mean ± standard error of the mean (SEM). 
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Figure S3. ModMSE curves of SBP and DBP, stratified by patients with TIAs and by 

strokes, suggesting that reverse causation is unlikely. (A – B) are modMSE of SBP and 

DBP in TIA patients, respectively; and (C – D) are modMSE of SBP and DBP in stroke 

patients, respectively.  

 

 

 

Figures are presented as mean ± standard error of the mean (SEM). 
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Figure S4. (A – B) The whole frequency spectrum for BRS-gain and SBP-PSD, stratified by high and low complexity of SBP (i.e. greater 

and lower than mean complexity values of SBP: 14.3 respectively); (C) the relationship between log-transformed SBP-complexity and 

SBP-PSD LF/HF ratio; (D – E) the whole frequency spectrum for BRS-gain and DBP-PSD, stratified by high and low complexity of DBP 

(mean DBP complexity: 14.4 respectively); and (F) the relationship between log-transformed DBP-complexity and DBP-PSD LF/HF ratio. 

Data are presented as mean ± standard error of the mean (SEM) and regression line with 95% CI.  
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Figure S5. Values of complexity of DBP, stratified by quartiles of parameters of (A) 

SDRR and (B) RMSSD of R-R intervals; and BRS in (C) LF and (D) HF, respectively. 

Three invalid quality of HRV recordings and those do not meet the statistical criterion 

of BRS coherence were not included. 

 

 

 

 

Data are presented as mean with 95% CI. 
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Figure S6. Complexity of DBP, stratified by quartiles of parameters of DBP-PSD in (A) 

LF and (B) HF bands, respectively; and (C) PP; (D) PWV. 

 

 

Data are presented as mean with 95% CI. 
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