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Abstract: In vitro anti-proliferative activity of Pinus palustris extract and its purified abietic acid was
assessed against different human cancer cell lines (HepG-2, MCF-7 and HCT-116) compared to normal
WI-38 cell line. Abietic acid showed more promising IC50 values against MCF-7 cells than pine extract
(0.06 µg/mL and 0.11 µM, respectively), with insignificant cytotoxicity toward normal fibroblast
WI-38 cells. Abietic acid triggered both G2/M cell arrest and subG0-G1 subpopulation in MCF-7,
compared to SubG0-G1 subpopulation arrest only for the extract. It also induced overexpression of
key apoptotic genes (Fas, FasL, Casp3, Casp8, Cyt-C and Bax) and downregulation of both proliferation
(VEGF, IGFR1, TGF-β) and oncogenic (C-myc and NF-κB) genes. Additionally, abietic acid induced
overexpression of cytochrome-C protein. Furthermore, it increased levels of total antioxidants to
diminish carcinogenesis and chemotherapy resistance. P. palustris is a valuable source of active abietic
acid, an antiproliferative agent to MCF-7 cells through induction of apoptosis with promising future
anticancer agency in breast cancer therapy.
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1. Introduction

Natural products (also known as secondary metabolites) were proven as a prolific
resource for the discovery of bioactive hit and lead compounds in the early stages of drug
discovery. Secondary metabolites are distinguished by being novel in terms of chemical
structures and biological activities [1]. In principle, natural products frequently encompass
three-dimensional scaffolds and various chiral centers that inevitably mediate their selective
interactions with disease-relevant macromolecular targets. In the anticancer drug discovery
pipeline, natural products are one of the most robust starting points for initiating the
development of anticancer therapeutics. This was demonstrated by the remarkable clinical
successes of paclitaxel, doxorubicin, vincristine, vinblastine, and many other eminent
examples [2]. Additionally, natural product-derived anticancer agents have the advantage
of being less toxic to normal cells than malignant ones. This should surely provide some
impetus to uncover the biological effects of natural products and study their interactions
with cancerous cells at the molecular level in order to better understand cancer biology and
hypothesize rational strategies for controlling cancers.

According to some ethnobotanical literature data, Pinus species have been used in
folk medicine in Algeria [3] and Turkey [4], as well as many Islamic [5] (and many other)
countries in the Cupisnique age, whether as analgesics [4], wound healers [4], or for their
anti-inflammatory properties [4]. Pine-derived oleoresins comprise multiple varieties of
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terpenoids; they are the largest group of plant secondary metabolites with more than
30,000 known derivatives [6]. Terpenoids are biosynthesized from five-carbon isoprene
units—namely, isopentyl diphosphate (IPP) and diallyldiphospahte (DPP)—via head-to-tail
condensation catalyzed by prenyl transferase groups of enzymes in plant cells. Two units
of IPP and DPP yield the basic cyclic geranyl diphosphate (GPP), which then condenses
with another molecule of GPP to yield geranyl geranyl diphosphate (GGPP), the precursor
of C20 diterpenes. After the construction of GGPP, a series of cyclization (via terpene
synthases) and oxidation reactions occur in order to furnish various scaffolds. Diterpenoids
are considered among the most ecologically useful traits in conifers, as they provide defense
against pests and their associated pathogenic fungi [7]. As denoted from the name, pine
oleoresin comprises a resin portion, known as rosin, and a volatile oil, known as turpentine.
It has been proposed that turpentine oil functions as a solvent to facilitate the mobilization
of resin constituents to injury sites. Meanwhile, rosin comprises various diterpene acids
(known also as resin acids) and functions as an antipathogenic agent [8]. Resin acids have
attracted the interest biologists, leading them to identify their biological effects and to
elucidate their structure–activity relationships. Pimarane and abietane tricyclic scaffolds
are the most abundant diterpenes in pine species. They have distinct biological activities as
well as versatile applications in agriculture and medicine [9–11].

Abietic acid is a diterpenoid acid that has been isolated from different species of
coniferous plants belonging to the genus Pinus, such as P. palustris, P. insularis, and
P. sylvesteris. Diverse biological activities have been reported for abietic acid and its analogs,
including anti-inflammatory [12,13], anticonvulsant [14], anti-obesity [15], cytotoxic [16],
antimycotic [16,17], and antiviral activities [18]. Such bioactivities are correlated to specific
interactions with relevant disease signaling mediators. For instance, the anti-inflammatory
effect of abietic acid was proven to be mediated via attenuation of interleukin-1 beta in
induced inflammatory models of human chondrocytes [13]. Furthermore, abietic acid
was shown to inhibit multidrug resistance-associated protein 2 (MRP2)- and breast can-
cer resistance protein (BCRP)-mediated membrane transports and their interactions with
substrates [19]. Additionally, a recent study by Lui et al. reported the remarkable antipro-
liferative effect of abietic acid on a panel of six non-small-cell lung cancer (NSCLC) cell
lines [20]. However, there remains a need to identify the illustrated mechanisms in order to
highlight abietic acid’s anti-cancer activities in different cancer cell lines in comparison with
previously known apoptotic agents, such as Raptinal [21], and chemotherapeutic agent,
such as Doxorubicin [22]. This study evaluated the biological activity of Pinus palustris ex-
tract, as well as its main constituent, abietic acid, for anti-proliferation and cytotoxic activity
in different cancer cell lines with comparison to known anticancer agents. Moreover, the
study shed light on different mechanistic pathways that may be modulated upon treatment
of abietic acid to the most sensitive cancer cell lines. The results of this study may guide
scientists to deepen our understanding of the mechanistic role of abietic acid—as well as
future therapeutic optimizations and applications in in vivo and preclinical phases.

2. Results
2.1. Abietic Acid Induces Growth Inhibition in MCF-7 Sensitive Cell Line

In the current study, MTT assay was used to assess the antiproliferative activity of
both pine extract and its pure abietic acid active compound against three different can-
cer cell lines. These were also compared to normal human fibroblast cell lines. Two
positive controls of documented antiproliferative activities were used for comparison
(Raptinal [21] and Doxorubicin [22]). The IC50 was calculated according to three parame-
ters and the logistic dose-response sigmoidal curve using GraphPad Prism 4.0 (Figure S1).
Table 1 shows positive controls, pine extract, and abietic acid with variable antiproliferative
activities against the different cancer cell lines (HCT-116, HepG-2 and MCF-7). In HepG-2
hepatocellular carcinoma cells, Raptinal and Doxorubicin showed antiproliferative
activity with IC50 = 0.74 and 0.8 µM, respectively, which was similar to the documented
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values in the literature [23]. Pine extract showed superior antiproliferative activity with
IC50 = 0.2µg/mL.

Table 1. Antiproliferative activities of pine extract, abietic acid, Raptinal, and Doxorubicin against
different cancerous cell lines (HepG-2, MCF-7 and HCT-116) compared to WI-38 normal cell line.
SI (selectivity index) calculated as IC50 compound (WI-38)/ IC50 compound (cancer cell line).

Studied Plants &
Reference Standard Drug

* IC50 ± SEM and Corresponding SI

Wi-38
HepG-2 MCF-7 HCT-116

** IC50 SI ** IC50 SI ** IC50 SI

Raptinal 5.2 ± 0.9 0.74 ± 0.1 7 4.1 ± 0.76 1.3 96.2 ± 1.5 0.05

Doxorubicin 0.1± 0.1 0.8 ± 1.1 0.11 1.3 ± 1.0 0.07 0.97 ± 0.72 0.1

Pine extract 0.42 ± 0.1 0.2 ± 0.76 2.1 0.11 ± 0.76 3.8 0.25 ± 0.1 1.7

Abietic acid N/A N/A — 0.06 ± 0.5 >1 N/A —

* IC50 of the pine extract was represented as (µg/mL) while IC50 of pure abietic acid, Raptinal, and Doxorubicin
were represented as µM. ** IC50 Data represent mean ± SEM, n = 3. N/A (not applicable).

The selectivity index (SI) is defined as the ratio of the toxic concentration of a sample
against its therapeutic concentration [24]. The ideal drug for continuation in drug screening
should have a relatively high toxic concentration in order to cause toxicity at very low
doses for therapeutic effect. Candidate drug should have generally SI value > 1 and fall
into one of the following criteria: SI value = 1–1.99 is of low selectivity (general toxicity),
SI value = 2–2.99 is of moderate selectivity and SI value >3 is of high selectivity [25–30].
Therefore, evaluation of SI values for any herbal drug and/or isolated compound is crucial
for determining whether further work can be done. Pine extract’s SI value was 2, indicating
less cytotoxic effects than Raptinal (SI = 7). Abietic acid did not show any significant
antiproliferative effects on HepG-2 cells. The same scenario was observed in HCT-116
human colon cancer cells, where pine extract showed superior antiproliferative activity,
with IC50= 0.25 µg/mL, and minimal cytotoxic effects, with SI = 1.7, as compared to the
nonsignificant effects of abietic acid. MCF-7 was the most sensitive cell line, with minimum
cytotoxicity for both pine extract and its pure isolated abietic acid (IC50 = 0.11µg/mL,
SI = 3.8 and 0.06 µM, SI > 1, respectively (Table 1). SI > 1 for abietic acid indicated that it was
the safest, since very high concentrations, i.e., above 100 µM, were required for cytotoxic
effects on WI-38, as compared to IC50 on MCF-7 cells. The IC50 value for abietic acid was
not applicable on WI-38, HepG-2, or HCT-116, as we tested several x-fold concentrations
and dilutions of abietic acid on both extremities without 50% cellular viability inhibition.
Therefore, there was no need to perform further experiments with them on these cell lines;
there was almost no chance for them to be used as therapeutic drugs on these cell lines. Any
dose above 100 µM or 0.5 mg/mL is considered within cytotoxic margins, as documented
by many studies [31–35] and, consequently, calculation of SI value was not applicable.

2.2. Abietic Acid Induces MCF-7 Cells Apoptosis with Cell Cycle Arrests at Both G0-G1 and G2/M
Phases and SubG0-G1 Sub-Population

The SubG0-G1 subpopulation is an important fraction of the nondividing cells that
tend to enter cell cycle division. Hence, compounds that are able to induce cell cycle
accumulation in this subpopulation have a powerful apoptotic effect and inhibit scell
growth at early stage [36–38]. Since abietic acid showed potent antiproliferation activity
against MCF-7 cells, the next step was to investigate its apoptotic and cell cycle effects in
comparison to pine extract on MCF-7 cell cycle. MCF-7 cells were incubated with IC50 of
abietic acid and pine extract for 24 h and flow cytometry assay was undertaken. The cell
cycle phases, and subpopulation were set in gate, as previously documented [39]. The
data in Figure 1A, Tables 2 and 3 show that the number of cells arrested in the SubG0-G1
subpopulation increased significantly for cells treated with both abietic acid and pine
extract in a way similar to known apoptotic positive controls of Raptinal-treated cells.
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Consequently, the gated G0-G1 region was reduced significantly due to the massive arrest
in SubG0-G1 subpopulation after both pine extract and abietic acid treatment compared to
control, with 42.07% and 24.98%, respectively, compared to 66.59% of control cells treated
with 0.1% DMSO solvent, as shown in Table 2. Moreover, abietic acid showed additional cell
cycle arrest for cells at G2/M phase, which was not observed in pine extract, with 49.17%
and 11.34%, respectively, compared to control at 18.73% and Raptinal at 18.63%. This
was reflected in the G2M/G0-G1 ratio, which was <1 (0.71) for negative control, Raptinal,
and pine extract. Meanwhile, abietic acid had a significantly higher G2M/G0-G1 ratio,
2-fold higher than pine extract, suggesting that abietic acid was reducing the percentage of
dividing cell populations in G2/M phase.
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Figure 1. Flow cytometry analysis of treated MCF-7 cells over 24 h with 0.1% DMSO-treated cells
as control, IC50 of pine extract, abietic acid, and Raptinal; (A) Cell cycle analysis showing negative
control exposed to 0.1% DMSO solvent with a higher percentage of dividing cells in G0-G1 phase
(yellow), Raptinal with higher cell arrest in G0-G1 phase (magenta), abietic acid with cell cycle
arrest in G2/M phase (pink) and subG0-G1 subpopulation, pine extract with cell arrest in SubG0-G1

subpopulation (green). Pine extract induced SubG0-G1 subpopulation arrest, while abietic acid
induced both G2/M cell phase and SubG0-G1 subpopulation arrest. (B) Apoptotic analysis using
MCF-7 cells for negative control cells, Raptinal, abietic acid, and pine extract. Dot plots show early
apoptotic dead cells with abietic acid and pine extract in the right bottom quadrant.

Table 2. Percentage of cell distribution in different cell cycle phases and subpopulations of MCF-7
cells using flow cytometry. MCF-7 treated with IC50 of pine extract and abietic acid and compared
to both negative control (0.1% DMSO) and positive control (Raptinal). Pine extract and abietic acid
significantly induce cell cycle arrest in different cell cycle phases. G2M/G0-G1 ratio, as marker of cell
cycle arrest, was calculated for Raptinal-, pine extract-, and abietic acid-treated cells.

Cell Cycle Parameters on MF-7 Cells Control Raptinal Abietic Acid Pine Extract

% Gated Sub G0-G1 phase 1.52 ± 0.3 36.18 *** ± 6.2 20.96 *** ± 1.6 37.30 *** ± 7.5

% Gated G0-G1 phase 66.59 ± 4.8 33.62 ** ± 3.2 24.98 ** ± 5.2 42.07 * ± 9.1

% Gated S phase 13.16 ± 3.7 11.66 ± 1.8 4.96 * ± 1.04 9.29 * ± 1.5

% Gated G2M phase 18.73 ± 0.2 18.63 ± 3.8 49.17 ** ± 2.3 11.34 ± 2.3

G2M/G0-G1 ratio 0.28 ± 0.01 0.55 ± 0.1 2.0 ± 0.1 0.27 ± 0.1

Data represent mean ± SEM, n = 3. p-values for comparison with control non-treated cells is * p < 0.1, ** p < 0.01,
*** p < 0.001.
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Table 3. Percentage of viable, apoptotic, late apoptotic, and necrotic MCF-7 cells using flow cytometry.
MCF-7 were treated with IC50 of pine extract and abietic acid and compared to both negative control
(0.1% DMSO) and positive control (Raptinal). Apoptotic index, as marker of apoptosis, was calculated
for Raptinal-, pine extract-, and abietic acid-treated cells.

Apoptotic Parameters on MF-7 Cells Control Raptinal Abietic Acid Pine Extract

% Viable cells (C− −) 93.65 ± 10.7 48.55 ** ± 4.8 8.48 *** ± 2.9 28.55 *** ± 10.9

% Early apoptotic cells (C+ −) 6.30 ± 2.4 51.35 *** ± 11.5 91.41 *** ± 12.9 71.39 *** ± 7.6

% Late apoptotic cells (C− +) 0.01 0.00 0.01 0.00

% Necrotic cells (C+ +) 0.04 0.1 0.1 0.06

Apoptotic index (AI) 0.06 ± 0.03 0.51 ± 0.4 1.0 ± 0.35 0.71 ± 0.11

Data represent mean ± SEM, n = 3. p-values for comparison with control nontreated cells are ** p < 0.01,
*** p < 0.001.

To quantify the cell populations in each apoptotic stage, we employed the Annexin
V-FITC/PI double staining assay using a flow cytometer. As shown in Figure 1B, the early
apoptotic cells were positive for Annexin V (the lower right quadrant). The late and necrotic
cell populations are shown in the upper right and left quadrants, respectively. The data
demonstrated that the amount of early apoptosis of MCF-7 cells was raised after exposure
to both pine extract and abietic acid, as compared to control, after 24 h treatment. As shown
in Table 3, IC50 of abietic acid and pine extract raised apoptosis from 6.3% for control cells
treated with 0.1% DMSO to 91.41% and 71.39%, respectively, with superior activity for
abietic acid (even higher than Raptinal at 51.35%). Apoptotic index (AI) is the marker for
apoptotic efficacy and can be calculated by dividing the percentage of early apoptotic cells
by the total percentage of viable and early apoptotic cells with AI = 1 or higher indicating
high efficacy. In control, Raptinal, and pine extract, AI was <1, while abietic acid had AI = 1.
This supported the previously observed apoptotic efficacy of abietic acid over pine extract.

2.3. Abietic Acid Modulates Key- Genes Regulating Multiple Controlling Pathways

It was essential to understand the possible molecular mechanisms regulating apoptosis
that occurred after treatment of MCF-7 with both pine extract and abietic acid on the level of
genetic expression in order to predict possible mechanistic changes at the early stage. Thus,
it was of particular interest to investigate the expression pattern of a group of apoptosis-
related genes (extrinsic and intrinsic pathways) over different time scales—4, 8, and 24 h.
The treatment periods chosen for the analysis of abietic acid action were based on previous
studies in the same area [40,41]. Table 4 shows the gene expression levels of different
genes of different pathways. Both pine extract and abietic acid were able to induce gene
overexpression of extrinsic apoptotic driven genes, such as Fas, FasL and Casp8, in all
selected time scales, with maximum peaks between 4 and 8 h.

However, abietic acid showed markedly significant increases in gene expression levels
after 24 h of Cyto-C, Bax, and p53, which play important roles in intrinsic pathways with
lower levels of Bcl-2 and a higher Bax/Bcl-2 ratio. Furthermore, p53-mediated transactiva-
tion of apoptosis comes from its ability to control transcription of proapoptotic members
of the Bcl-2 family. Additionally, p53 activation is able to activate other caspases, a cas-
cade that consequently activates Cyto-C and apoptosome formation [42]. Bax genes and
Bcl-2 were expressed in harmonic rhythm, wherein the Bax gene was overexpressed to
a maximum peak after 24 h, while the Bcl-2 gene was downregulated in the same ratio.
Additionally, the Bax/Bcl-2 ratio, which acts as a rheostat and determines cell susceptibility
to apoptosis [43,44], reached its maximum (13.9) with only abietic acid treatment after 24 h.

Finally, the p53 gene did not show any genetic modification after treatment with pine
extract, while it was overexpressed after 24 h with abietic acid. The ATG5 gene is an
important interplay mediator and was shown to overexpressed with both pine extract and
abietic acid after 24 h and to play a dual role in both autophagy and apoptosis. BNIP3
is the network mediator connecting the two types of cell death pathways; it was also
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over-expressed after 8 h. This may suggest that both pine extract and abietic acid activities
were achieved within 4–8 h of MCF-7 treatment, and maximum gene modifications were
observed after 24 h.

Table 4. Temporal gene expression analysis of selected genes at early stage, expressed as x-fold
change for MCF-7 cells treated with IC50 of pine extract and abietic acid at 4, 8, and 24 h, compared to
negative control cells treated with 0.1% DMSO. Data represent mean ± SEM, n = 3. Downregulated
genes have RQ values less than 1 with negligible SEM.

Genes Pine Total Extract-RQ, Fold-Change (Mean ± SEM) Abietic Acid-RQ, Fold-Change (Mean ± SEM)

4 h 8 h 24 h 4 h 8 h 24 h

Apoptotic genes

Fas 145.0 ± 10.2 308.0 ± 5.7 146.0 ± 6.4 7.0 ± 0.9 32.0 ± 2.7 33.0 ± 8.7

FasL 26.0 ± 2.3 319.0 ± 8.7 88.0 ± 12.5 10.0 ± 1.4 27 ± 5.4 5.0 ± 1.8

BINP3 0.15 57.0 ± 6.7 5.0 ± 2.6 7.0 ± 2.3 16.0 ± 4.7 0.22

Casp3 1.8 ± 0.2 28.0 ± 5.2 19.0 ± 6.9 0.009 0.02 1.1 ± 0.1

Casp8 2794 ± 15.7 1285.0 ± 51.9 37.0 ± 4.2 42.0 ± 5.2 7.0 ± 4.9 3.0 ± 0.7

Cyt-C 3712 ± 20.8 5036.0 ± 44.2 1009.0 ± 10.4 4.0 ± 1.4 772.0 ± 13.8 2688.0 ± 17.5

Bax 0.01 0.07 2.0 ± 0.5 2.0 ± 0.7 5.0 ± 1.2 0.05

Bcl-2 10 ± 1.7 8.0 ± 2.8 3.0 ± 0.4 5.0 ± 1.8 3.0 ± 1.1 0.36

Bax/Bcl-2 ratio 0.01 0.01 0.7 0.01 0.7 13.9 ± 1.4

ATG5 0.45 1.1 ± 0.1 6.0 ± 1.7 0.14 0.88 1.5 ± 0.4

P53 0.45 0.13 0.53 0.06 0.81 2.0 ± 0.6

Proliferation genes

VEGF 0.45 0.52 0.03 3.0 ± 2.7 4.0 ± 1.3 0.03

TGF-β1 0.25 0.09 0.01 0.77 0.57 0.02

IGF1R 0.32 0.99 0.80 2.0 ± 0.7 1.3 ± 0.2 0.04

ATG12 0.20 0.28 0.22 0.12 0.36 0.03

Oncogenic genes

C-myc 0.16 0.15 0.03 0.18 0.29 0.05

TNF-α 2.0 ± 0.5 4.0 ± 0.9 4.0 ± 0.7 0.02 0.04 0.01

NF-κB 0.03 0.44 0.17 1.4 ± 0.2 2.6 ± 0.7 1.0 ± 0.1

Kinase’s genes

PKC-α 21.0 ± 8.7 2.0 ± 0.7 0.88 3.0 ± 0.9 2.0 ± 0.4 0.30

PRKAA1 0.49 42.0 ± 16.7 50.0 ± 7.8 0.77 0.5 7.0 ± 2.4

CDK-4 0.1 1.6 ± 0.3 0.47 9.0 ± 2.6 6.0 ± 1.5 0.1

The expression of proliferation target genes such as VEGF, TGF-β1, IGF1R and ATG12,
and levels of oncogenes C-myc, TNF-α and NF-κB were downregulated over all time scales
and did not change significantly. This may suggest the potential role of both pine extract
and abietic acid in apoptosis through angiogenesis and carcinogenesis.

It was noted that kinases play important roles as molecular therapeutic targets in
modern anticancer therapy. Pine extract and abietic acid were shown to downregulate the
level of PKC-α after 4 h, with superior significant reduction for abietic acid-treated cells.
This effect lasted at a minimum level after 24 h. Another key kinase in MCF-7 resistance
and metastasis is PRKAA1 (Protein Kinase AMP-Activated Catalytic Subunit Alpha 1); both
pine extract and abietic acid were able to overexpress PRKAA1, which activated AMPK after
4 h and increased in a time-dependent manner after 24 h. Finally, pine extract was shown
to slightly induce the overexpression of CDK-4 after 8 h, but downregulation occurred after
24 h, while abietic acid reduced CDK-4 gene levels after 24 h.

2.4. Abietic Acid Induces Increased Protein Level of Cytochrome-C Confirmed by
Immunocytochemistry (ICC) Analysis

The apoptotic effect was morphologically confirmed, as shown in Figure 2A. Cells
treated with IC50 of pine extract and abietic acid showed similar characteristic features of
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cellular apoptosis, with some cells detached and floating in cell culture media. In addition,
shrinkage of the MCF-7 cells was observed, with dark rounded apoptotic bodies, as shown,
with both total extract- and abietic acid-treated cells compared to control, 0.1% DMSO-
treated cells. Using ICC analysis, cytochrome-C release and overexpression was shown
with both MCF-7 cells treated with pine extract and abietic acid, compared to control
cells (Figure 2B). However, the expression level was significantly higher with abietic acid
compared to control and pine extract-treated cells (Figure 2C).
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Figure 2. Cell morphology and immunocytochemistry of MCF-7 treated with IC50 of pine extract or
abietic acid for 24 h and stained with anti-cytochrome-C; (A) MCF-7 cells treated with 0.1% DMSO
compared to effects of pine extract and abietic acid under an inverted microscope (OPTECH Biostar
IB, magnification, ×40). Arrows indicate dark rounded apoptotic bodies. (B) Comparative study for
anti-cytochrome-C staining of control cells compared to cells treated with either pine extract or abietic
acid and (C) significant increase in cytochrome-C protein expression level demonstrated with abietic
acid-treated cells, as compared to both control and pine extract. The values are considered statistically
significant to untreated control at ** p < 0.01. Results are expressed as the mean ± SEM (n = 3).

2.5. Total Antioxidant Assay

It was essential to screen the potential antioxidant power of pine extract and abietic aid
in order to diminish the endogenous oxidative stress in MCF-7 cells and to counteract free
radical overproduction after exposure to low levels of hydrogen peroxide. Data presented
in Figure 3 show that control MCF-7 cells treated with 0.1% DMSO secreted 0.04 mM of
total antioxidants (TAO). Both pine extract and abietic acid treatment with IC50 for 24 h
showed significantly increasing TAO, to 0.14 and 0.19 mM/L, respectively, compared to
control cells treated with 0.1% DMSO solvent. Abietic acid showed additional significant
increases in TAO levels compared to Doxorubicin-treated cells (0.11 mM/L). We observed
that abietic acid induced significantly higher levels of TAO compared to both Doxorubicin
and pine extract. Moreover, exposure of MCF-7 cells to 50µM of H2O2 for 1 h as inducer
for intrinsic low levels of oxidative stress, led to slightly increased TAO of control cells (to
0.05 mM). Treatment after H2O2 with either IC50 of pine extract or abietic acid induced
significantly higher TAO levels (0.13 and 0.14 mM/L, respectively) compared to control
treated with H2O2 and Doxorubicin-treated cells (0.11 mM/L). However, there was no
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significant difference in TAO with or without treatment with H2O2. This might have been
due to the significant apoptosis induced with the pine extract and abietic acid and the
associated reduced TAO content.
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Figure 3. Total antioxidant activity (TOA) of IC50 dose of both pine extract and abietic acid treatment
of MCF-7 cells for 24 h. Both extract and abietic acid induce significant increases in total antioxidant
capacity as compared to negative control without (W/O) H2O2. TOA calculated compared to
negative control only (in case of without H2O2), or treated with 50 µM hydrogen peroxide for 1 h.
Data represented as TOA ± SEM, n = 3. Results are presented as ± SEM, p value, for comparison
with Doxorubicin control, is ** p < 0.01, *** p < 0.001.

3. Discussion

Although conventional anticancer drugs exhibit high efficacy against different types
of cancer, obvious side effects have been observed. Additionally, the resistance of cancer
cells to these drugs as a consequence of cell mutations is considered an obstacle and
an enormous crisis in terms of increasing morbidity and mortality rates. Consequently,
multi-targeted approaches using medicinal plants and phytoconstituents in combination
with synthetic drugs are becoming an effective method to overcome these limitations.
Pine species are an interesting example of widespread medicinal plants, with over one
hundred species worldwide and a long track record of medicinal uses. Pine species’ needles,
inner bark, and resin are rich with many natural compounds possessing potent biological
activities, such as abietic acid [45]. Additionally, pine remedies have been proven effective
as anti-infection therapies for urinary tract infections, sinus infections, and lung-associated
illnesses or allergies such as coughs and colds [46]. Topically, pine has been reported as
anti-inflammatory agent with arthritis and skin infections [47]. Abietic acid is the major
constituent of P. palustris from the resin acid [48]. In vitro, abietic acid has been shown to
function as a testosterone 5α-reductase inhibitor and can be used for treatment of benign
tumors such as prostatic hyperplasia [49]. It was interesting to study its in vitro effects
in comparison to pine extract in order to understand its potential anticancer activity and
cytotoxicity against different cancer cell lines and normal cells.

The antiproliferation and cytotoxicity results showed that the isolated abietic acid
is more potent, compared to pine extract, against breast cancer cell lines (MCF-7), with
minimal cytotoxicity to normal cells. This observation matched recent studies that have
shed light on the ability of pine extracts and pure abietic acid prepared from various
pine species to exert anticancer effects [50–53]. However, data presented in this study
are the first, to our knowledge, to demonstrate the ability IC50 of pine extract and abietic
acid to suppress the viability of human breast cancer MCF-7 cells, and the first study to
elucidate the mechanism of their action. MCF-7 was put to use as the sensitive cell line
and tested with both pine extract and abietic acid for further analysis, to demonstrate
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its possible anticancer activity and potency. These may be developed as candidates for
chemoprevention or as a chemotherapeutic adjuvant for breast tumors.

Cell cycle analysis showed abietic acid increased cell population arrest exclusively in
the G2/M phase as well as the subG0-G1 subpopulation of breast cancer cell cycle, suggest-
ing that abietic acid-induced signaling leads to breast cancer cell antiproliferation [50,54].
Indeed, our live/dead assay (apoptosis assay) confirmed that abietic acid was able to
induce early apoptosis in a way similar to pine extract, as indicated by higher Annexin-V
staining than propidium iodide in MCF-7 treated cells relative to the control. The com-
bination of different bioactive ingredients in the extract may explain the difference seen
between pine extract and abietic acid affecting cells in cell cycle phases [55]. Still, abietic
acid showed more significant apoptotic effects on MCF-7 than pine extract, since it was
additionally able to induce MCF-7 cell cycle arrest in G2/M phase (more so than Raptinal, a
standard apoptotic agent). This observation suggested that pure isolated abietic acid could
have more specific effects on cell cycles and may induce cell population shifts in different
phases due to its standardization, thereby avoiding endo-interactions with other bioactive
ingredients. Hence, the purity potentiates its apoptotic effects, as opposed to the complex
nature of the pine extract [55–61]. Our data concurred with previously reported results
showing that abietic acid showed antitumor activity through apoptosis induction and
alteration of apoptosis-related proteins (Bax, caspase 3 and 9) in nasopharyngeal carcinoma
(NPC) and triggered cell cycle arrest at G2/M phase [50]. Taken together, the presented
results demonstrated that pine extract and pure isolated abietic acid were able to induce
MCF-7 cell apoptosis with potential differences in activity.

These findings were correlated at the molecular level while exploring the modulation
of different key-signaling genes controlling apoptosis, resistance, carcinogenesis, vascular-
ization, and cellular growth. Abietic acid was significantly able to induce an increase in
both key intrinsic and extrinsic apoptosis genes, such as (Fas, FasL, BNIP3, Casp8, Cyto-C,
Bax). This suggested that MCF-7 responded very well to the apoptotic genetic changes
within 24 h of treatment. However, abietic acid treatment was able, after a short time
(8–24 h), to render cells reliable for diminished resistance, since Bax and counteracting twin
Bcl-2 family genes are good prognostic markers for cellular progression and aggressiveness
and their levels were changed after treatment [62,63].

After 8 h of Bax overexpression and downregulation of Bcl-2 genes, Bax transcription
and induction induced stress-activated p53 apoptosis on the mitochondrial membrane
which, consequently, overcame the antiapoptotic effects of Bcl-2. Thus, abietic acid might
be able to induce p53-dependent apoptosis, after 24 h, that is attenuated in the presence of
Bax with diminished Bcl-2. Some reported studies demonstrated this correlation between
expression of Bax and p53 genes [64]. Hence, the ratio of Bax to Bcl-2 gene levels could influ-
ence the fate of a cell in response to apoptosis by abietic acid. This conclusion supported the
enhanced activity of abietic acid in apoptosis, as compared to pine extract. Another gene
marker is ATG5, which is known for its potential role in controlling apoptosis/autophagy.
ATG5 overexpression was evident after abietic acid treatment concurrently with Fas and
FasL genes after 24 h, suggesting its previously reported role in apoptosis through inter-
action with FADD (Fas-associated protein with death domain), and suggesting that this
interaction mediates interferon-γ (IFN-γ)-induced cell death [65]. Moreover, abietic acid
was able to induce downregulation of the key gene controlling vascularity and blood supply
to cancer cells such as VEGF and, hence, vascular permeability, angiogenesis, proliferation,
and cell resistance mediated through several cancer-causing factors [66]. Furthermore,
abietic acid was shown to inhibit the expression of c-myc, an oncogene that belongs to a
family of genes that potentially regulate transcription on the genome level. Previous studies
showed that its downregulation enhanced the effects of anticancer therapies on cell cycle
arrest, apoptosis, and the invasion and migration of different cancer cell in vitro [67]. This
effect could be explained by regulating the HIF-1α/SDF-1/CXCR4 signaling pathway [68].
Another marker deemed essential in cancer resistance is TNF-α, which is a proinflammatory
cytokine that exaggerates cellular inflammation, proliferation, and carcinogenesis in MCF-7
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cells [69]. The activation of NF-κB signaling, induced by TNF-α, has also been shown to be
a key element in resistance of apoptosis-based tumor mechanisms. Thus, it is an attractive
target for modulation by abietic acid in therapy in order to facilitate the enhancement of
TNF-α-mediated apoptosis for anticancer treatment in MCF-7 cells [20,69]. These results
could support the potency of pine extract and abietic acid in any combined adjuvant rem-
edy with anticancer therapies due to the inhibition of TNF-α-induced cancer cell invasion
and angiogenesis.

Abietic acid also showed modulating effects on some kinases’ expression, such that
their activity played a key role in controlling different carcinogenesis and malignant trans-
formation pathways through ATP regulation and enhancement of anticancer sensitivity
and cellular responses [70]. Moreover, dysregulation of kinases is considered an oncogenic
prognostic marker for apoptotic resistance and spread of cancer cells [70]. For example,
higher levels of PKC-α genes in MCF-7 have been associated with higher proliferation
rates and transformation of epithelioid morphological appearances into tumors in nude
mice [71]. MCF-7-inducing higher PKC-α genes exhibited significant reductions in estrogen
receptor expression and decreases in estrogen-dependent gene expression [71]. These
findings suggested that the inhibition of the PKC pathway could modulate the progression
of breast cancer to a more aggressive neoplastic process, which was observed in our study,
as well. Abietic acid and pine extract were able to inhibit the growth of PKC-α. Protein
Kinase AMP-Activated Catalytic Subunit Alpha 1 (PRKAA1) is another regulating factor
in carcinogenesis [72]. Cancer growth and metastasis is a result of imbalances between
energy-producing systems and consumption of the energy for growth. AMP-activated
protein kinase (AMPK) has been shown to regulate this process through regulation of AMP
and ADP levels. [72]. In carcinogenesis, AMPK signaling is inhibited and cells produce
energy for growth and motility, opposing the actions of insulin and growth factors. Increas-
ing AMPK activity could prevent the proliferation and metastasis of tumor cells [72]. In
addition, AMPK suppresses aromatase, which is responsible for production of estrogen and
breast cancer growth [72]. Thus, inhibition of AMPK is a good target in anticancer therapy.
Our observed data coincided with previously noted studies and could provide additional
approaches for the use of abietic acid in the prevention of breast cancer neoplasia, growth,
and metastasis. Cyclin-dependent kinase 4 (CDK-4) was shown, in MCF-7, to lead into
uncontrolled cell division, downstream of many mitogenic signaling pathways. This has
implications for resistance [73]. Many CDK-4 inhibitors were recently discovered and shown
to be effective inhibitors of MCF-7 poor prognosis and resistance [74]. Both pine extract and
abietic acid were able to suppress expression levels of the CDK-4 gene after 24 h.

It was essential, in this study, to investigate the role of the activation of all the previ-
ously mentioned pro- and apoptotic genes in activating the final executioner protein of
apoptosis on the mitochondrial outer membrane (MOM). MOM plays a key role in intrinsic
apoptosis, exaggerated by permeabilization and cytochrome c release to the cytoplasm [75].
Cytochrome-C release is activated by several proapoptotic stimuli, such as Bax and Bcl-2
gene levels and, once activated, it triggers the activation of a class of protease enzymes
called caspases that further activate the formation of apoptosome. Thus, investigating
protein levels of cytochrome-C is of substantial importance to confirm the activation of
pro-apoptotic (Bax/Bcl-2) and apoptotic (Casp-3 and casp-8) genes and apoptosome for-
mation. It has been suggested that the apoptotic effects of abietic acid and pine extract
are mediated through intrinsic apoptosis. Therefore, it was essential to assess apoptotic
changes after treatment on the protein level using cytochrome-C level [76]. There are
many techniques for assessment of cytochrome-C release, such as western blotting and im-
munocytochemistry. However, western blotting had some limitations, including difficulty
accurately determining the exact quantities of cytoplasmic cytochrome-C on X-ray film and
whether those quantities exceeded the amount normally present within cytoplasm. Hence,
immunocytochemistry was used in this study to assess the expression of cytochrome-C in
both cytosolic and mitochondrial fractions. This was done confocal microscopy coupled
with the sensitivity of an Alexa Fluor 488 for quantitative analysis [77].
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Cytosolic cytochrome-C activated further proteolytic activation of procaspase-9 to
caspase-9 which, in turn, further activated caspase-3 with formation of apoptosome com-
plex [78]. The cytosolic cytochrome-C can be linked also with previously observed gene
expression levels of apoptotic genes, such as Fas and caspase-8, and extrinsic apoptosis, as
described previously by others [79,80]. Thus, our ICC observed results could explain the
potent ability of abietic acid to induce cell apoptosis by overexpression of the cytochrome-C
gene through intrinsic dependent pathways. In summary, all the mechanistic actions of
both pine extract and abietic acid are shown in Figure 4.
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Figure 4. Summary of the suggested mechanistic effects of both pine extract and abietic acid on gene
expression levels.

Cellular oxidative stress is important factor that reflects the inability of cells to remove
intracellular reactive oxygen species (ROS) [81,82]. Although some ROS are beneficial for re-
dox signaling pathways [83], certain levels of ROS are toxic to cells [84,85] and can react with
all cellular components, e.g., proteins, lipids, and DNA, causing oxidative damage [86,87].
Moreover, ROS have been demonstrated to activate oncogenes, mutagenesis, and genomic
variability in cancer cells and to stimulate cancer progression [88,89]. Recent studies have
shown that cancer cells that have low ROS levels have augmented expression of ROS-
scavenging signaling proteins and better responses to chemotherapy [84,88]. Abietic acid
was able to induce overexpression of total antioxidants in MCF-7 in both resting state and
under exogenous oxidative stress induced by H2O2.

4. Materials and Methods
4.1. Plant Material Preparation
4.1.1. Plant Material and Resin Collection

Oleoresin was collected from a Pinus palustris Mill. (Pinaceae) tree growing at Helwan
Agriculture Road, Cairo, Egypt, between May and August 2017. A voucher specimen
# 01Ppa/2017 was deposited at the Herbarium of Pharmacognosy Department, Faculty
of Pharmacy, Helwan University (Cairo, Egypt). The oleoresin exudate was scraped off,
collected, and then subjected to stream distillation to remove turpentine oil. The remaining
marc was dried at 60 ◦C under reduced pressure to yield a yellowish mass.
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4.1.2. Extraction and Purification of Abietic Acid

About five grams of the dried residue, left after distilling the collected oleoresin, were
extracted with 50 mL methanol at 50 ◦C under reflux. The concentrated alcoholic extract
(2.7 g) was applied to silica gel open column (50 × 250 mm) and the elution was accom-
plished through stepwise gradient, starting with dichloromethane and gradually increasing
the polarity by adding methanol (5% increments). Eluted fractions were monitored and
collected based on their TLC patterns on precoated silica gel F254 plates (Merk, Darmstadt,
Germany) using dichloromethane:methanol (9:1) as the developing system. Spots were
detected under UV lamp (245 nm) and visualized by spraying with p-anisaldehyde/H2SO4
reagent followed by heating at 110 ◦C for 5 min for maximum color development. Frac-
tions eluted by dichloromethane:methanol (9:1) were collected together and purified over
multiple subcolumns of silica gel and finally subjected to purification by preparative
HPLC. Approximately 40 mg of abietic acid rich fraction was injected into an Interchrom
reversed-phase C-18 prep column (15 µm, 21.2 × 250 mm) installed on a Waters Alliance
HPLC system (Agilent, Milford, MA, USA). The Empower®3 software package (Waters
corporation, Milford, CT, USA) was used to control operation conditions and for spectral
acquisition. Elution was accomplished by isocratic system of water:acetonitrile (15:85)
with a flow rate of 10 mL/min. The Waters photodiode array (PDA) detector was set at
240 nm for the detection of eluted peaks. Abietic acid was eluted at 23.8 min (Figure 5A),
was collected by a fraction collector, and was then dried under reduced pressure to yield
about 13.5 mg.
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Figure 5. Analysis of purified abietic acid, (A) preparative HPLC chromatogram of abietic acid
purification, (B) analytical HPLC chromatogram of purified abietic, (C) mass spec. analysis of the
isolated abietic acid as total ion current of the injected sample, and (D) mass spec. analysis of the
isolated abietic acid as negative-mode ESI mass spectrum of the injected sample.

4.1.3. HPLC Analysis of Abietic Acid and Percent Purity

The purity of isolated abietic acid was determined by HPLC analysis. A solution of
1 mg/mL of purified abietic acid in MeOH was prepared and 10 µL were injected on a
Waters Xterra RP-18 column (5 µm, 4.6 × 250 mm, Waters corporation, Dublin, Ireland).
The column was eluted with an isocratic system of water: acetonitrile (1:9) with a flow rate
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of 1mL/min and the detection wavelength was set at 240 nm. The Empower®3 software
package was implemented for spectral acquisition and data management. Abietic acid was
eluted at 6.13 min (Figure 5B) and its percent purity was calculated in correlation to the
percent area under each peak and was found to be 98.46%.

4.1.4. MS Analysis of Abietic Acid

The purified abietic acid was dissolved in HPLC-grade methanol and analyzed using
the single quadrupole Advion Compact Mass Spectrometer (Ithaca, NY, USA) with a
detection mass range of 10–2000 Da (Figure 5C). The MS was equipped with an electrospray
ionization (ESI) ion source and was operated in a negative mode (Figure 5D). The molecular
ion peak [M-H]− of abietic acid was detected at m/z 301.0 without correction. The CheMS
Mass Express user interface (Advion, Ithaca, NY, USA) was used to operate the spectrometer,
optimize the ion source, and control data acquisition parameters.

4.1.5. Preparation of P. paliustris Total Extract, Abietic Acid and Standard Control Solutions

Pine extract was prepared as a stock solution of (50 mg/mL). Abietic acid, Raptinal,
and Doxorubicin were prepared as stock solutions with 10mM concentration dissolved
in DMSO (molecular biology grade from Sigma-Aldrich, St. Louis, MO, USA). The stock
solutions were stored as aliquots at −20 ◦C in the dark. All reagents were molecular
biology purity grade, obtained from (Sigma-Aldrich, St. Louis, MO, USA) unless otherwise
specified in the corresponding sections.

4.2. In Vitro Study
4.2.1. Cell Culture

All cell lines were purchased from an Egyptian company involved in the production of
vaccines (VACSERA) and deposited in HSBR laboratory. Tested cancer cell lines included a
human liver cancer cell line (HepG-2), a breast cancer cell line (MCF-7), and a human colon
cancer cell line (HCT-116). The normal cell line used for comparison included fibroblast
lung cells (WI-38). These cancerous cell lines were cultured in standard conditions using
the corresponding documented media, including DMEM-high glucose for the cancerous
cells (HepG-2, HCT-116 and MCF-7). EMEM media was used for normal cells (WI-38). All
culture media were supplemented with 10% FCS as growth factor, 2m M-glutamine, and
suitable units of penicillin and streptomycin (100 units from each). All cells were cultured
at standard culture conditions, including temperature at 37 ◦C with 5% CO2. For quick
splitting of cells, culture media were replaced every 2 days with 85–90% confluency after
3–4 days. Cell cultures were passaged using 0.25% trypsin/EDTA solution for downstream
applications compatible with cell surface markers and cell membrane integrity.

4.2.2. Viability Assay

Assessment of relative numbers of viable cells was performed using an MTT tetra-
zolium assay according to our previous protocol [90]. Briefly, pine extract, abietic acid, and
standard positive controls (Raptinal and Doxorubicin) were tested in three independent
experiments for calculation of IC50 after treatment for 50% reduction in growth. Pine
extract was evaluated in cell lines at five dose concentrations (0.5, 0.05, 0.005, 0.0005,
0.00005 mg/mL in serial dilutions) while abietic acid and the positive controls were evalu-
ated (100, 50, 0.1, 0.05 and 0.01 µM) for 24 h. Additionally, 0.1% DMSO-treated cells were
used as negative control. The developed color, due to soluble formazan, was read at 570 nm
with a microplate reader (800TSUV Biotek ELISA Reader, Agilent, Santa Clara, CA, USA),
and corresponding optical densities were used for calculation of IC50. The corresponding
selectivity index was calculated based on IC50 values of the pine extract and abietic acid on
both noncancerous and cancerous cells according to Equation (1) [24,91]:

SI = IC50 (non-cancerous cells)/IC50 (cancerous cells) (1)
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4.2.3. Flow Cytometry and Apoptosis Assay

MCF-7 was the sensitive cancer cell line used for flow cytometric analysis at a density
of 1 × 106 cells per 25 cm2 flask for 24 h and treated with IC50 of pine extract, abietic acid and
Raptinal positive control for 24 h. Cells were scraped gently and suspended in 50µg /mL
propidium iodide (PI) staining solution and 20µg /mL RNaseA and incubated for 1h. Cell
cycle analysis was performed using (Beckman Coulter Cytoflex, Indianapolis, Indiana,
IN, USA) to detect cells in different cycle phases [92]. Fluorescence was measured on
flow cytometer and the obtained cell histograms were analyzed. Annexin V-FITC apoptosis
Detection ELISA kit was used for analysis of apoptosis. Apoptotic index (AI) is the parameter
used to represent the efficacy of apoptosis after in vitro cell culture. It was calculated by
dividing the percentage of early apoptotic cells (annexin+) by the total percentage of cells
in the sample (apoptotic [annexin+] plus nonapoptotic cells [annexin-]) [93,94]. Similarly,
G2M/G0-G1 ratio was calculated as % Gated cells in G2Mphase / % Gated cells in G0-G1
phase. The ratio was an indication of the proportion of dividing cells (cells in G2/M) to
non-dividing cells [95,96]. As cells in G2/M will have 2x as much DNA as cells in G0/G1,
they can be distinguished using simple DNA stains such as PI in flow cytometry.

4.2.4. Real-Time Quantitative PCR (qPCR)

MCF-7 was also used in this assay for qPCR analysis of responded genes. Cells were
seeded in 6-well plates at a density of 0.2 × 106 cells per well for 24 h after pine extract
and abietic acid treatment, compared to 0.1% DMSO negative control cells. GeneJET RNA
Purification spin column Kit (K0731, Thermo Fisher Scientific, Cairo, Egypt) was used for
purification of RNA. High-Capacity cDNA Reverse Transcription Kit (4368814, Thermo
Fisher Scientific, Cairo, Egypt) was used for cDNA synthesis. Quality and quantity of
extracted RNA extraction and its cDNA copies were assessed using Nanodrop 2000C®

(Thermo Fisher Scientific, Cairo, Egypt) Optimization for used annealing temperatures
of the primers, quantity of started cDNA and endogenous gene was performed before
qPCR analysis with HERA SYBR® Green qPCR Kit system (Willowfort, Birmingham, UK).
GAPDH was selected as the endogenous gene and cDNA (3.02 ng/µL) as the constant
starting concentration between different treated groups with calculated R2 = 0.97 (data not
presented). Primer’s sequences of all selected genes are shown in Table S1.

4.2.5. Immunocytochemistry

MCF-7 cells were seeded at 5000 cells on cover slips 22 × 22 mm (HUIDA, Yangzhou,
China), with high precision (170 ± 5µm) in 6-well plates. MCF-7 cells were treated with
both IC50 and 10-fold lower IC50 dose of pine extract and abietic acid for 24 h. At the end of
the experiment, cells were fixed in 4% paraformaldehyde (PFA) in PBS for 30 min at room
temperature and rinsed with PBS. For intracellular staining with both cytochrome-C in
mitochondria and cytosolic release, 1% Triton-X-100 in PBS was used as permeabilization
buffer for 10 min at room temperature. Nonspecific labelling was blocked by incubation
for 1 h at room temperature with 1% bovine serum albumin in PBS with 0.2% Tween-20.
Recombinant anti-cytochrome C antibody (Alexa Fluor® 488) (ab192485, Thermo Fisher
Scientific, Cairo, Egypt) was diluted (1:50) in blocking solution and incubated with cells
overnight at 4 ◦C. After washing three times with PBS, nuclei were stained with Hoechst
33342 (Molecular Probes) at dilution 1:1000 in blocking solution and the coverslip was
transferred in mounting media on standardized slides, then sealed with nail polisher.
Fixed and stained cells were visualized using Carl Zeiss LSM 710 (Carl-Zeiss, Oberkochen,
Germany) confocal microscopes. Each slide was scanned for different thicknesses and 10 µm
was selected for maximum intensity of green staining (Supplementary Materials, scanning
videos). Densitometric measurements of individual cells following immunocytochemical
cytochrome-C were used to demonstrate the average intensity between different samples
and each slide was scanned at eight different fields. Average intensity was calculated using
ZEN 2.3 (Carl-Zeiss, Oberkochen, Germany). The fluorescent intensity levels within the
areas of individual cells were obtained by detecting the outline of a cell and precured
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(Supplementary Materials, quantification images). For linearization and optimization of
the experiment, whole cell measurements in different fields were taken, including nuclei, to
ensure robust digitization each time cells were measured with their relative density within
the nucleus and cytoplasm.

4.2.6. Total Antioxidant Capacity

MCF-7 was used for assessment of antioxidant capacity of pine extract and abietic acid,
compared to Doxorubicin, using commercial kits (Biodiagnostic, Giza, Egypt) with and
without exposure to low conc. of H2O2 as an inducer of oxidative stress [97]. Briefly, MCF-7
were seeded in 6-well plates at a density of 0.2 × 106 cells per well for 12–24 h in standard
conditions. A curve for the sensitivity of cell viability to H2O2 different concentrations (100,
50, 25, 12.5, and 6.25µM) was constructed using MTT assay. The chosen concentration was
50µM of H2O2. Subsequently, MCF-7 cells were seeded at a density of 0.2 × 106 cells/well
into 6-well plates under standard culture conditions. Then, two different independent
experiments were performed for antioxidant calculation, as follows: (1) cells were treated
with IC50 of pine extract, abietic acid, and Doxorubicin for 24 h, followed by lysis of cells,
and total antioxidant induction was determined in cell lysate; (2) cells were exposed to
50 µM of H2O2 for 1 h, followed by treatment with IC50 of pine extract, abietic acid, and
Doxorubicin for 24 h, followed by lysis of cells and determination of total antioxidant
induction in cell lysate. The developed colored product was measured at 570 nm with a
microplate reader (800TSUV Biotek ELISA Reader, Agilent, Santa Clara, CA, USA).

5. Conclusions

Breast cancer is one of the most prevalent types of invasive cancer in women. The
treatment of breast cancer is obstructed by the adverse effects of existing chemotherapeutic
agents, as well as the high progression of drug resistance. Plants serve as a pool of chemical
entities that can assist in curbing various diseases, including cancer. Herein, pine extract
and abietic acid, its naturally extracted pure compound, were tested for their anticancer
potency against MCF-7 cancer cell line and a normal cell line, WI-38. We found that abietic
acid showed dose-dependent growth inhibitory effects on the MF-7 cells. Abietic acid
showed relatively lower cytotoxic effects over normal WI-38 cells. These observations
agreed with the few available investigations in which abietic acid was studied, showing its
suppressive effects on the growth and progression of some cancer cells. Moreover, it was
found that abietic acid triggered total antioxidants in MCF-7 cells. This was accompanied by
diminished intrinsic oxidative stress, which is responsible for carcinogenesis and resistance
of MCF-7 cells. Since apoptosis is a vital anticancer target, used to eliminate cancer cells and
maintain tissue homeostasis, we carried out annexin V/PI double staining of pine extract
and abietic acid on treated-MCF-7 cells and found that abietic acid triggered cell cycle
arrest in MCF-7 cells in G2/M phase as well as the SubG0-G1 subpopulation. Abietic acid-
induced early-stage apoptosis was also accompanied by an upsurge of caspases-3, caspase-8
and Bax and a decline in Bcl-2. Abietic acid could modulate gene expression of oncogenic
genes such as c-myc, TNF-α and NF-κB. Abietic acid also downregulated the expression
of many proliferation genes, such as VEGF, TGF-β1 and IGF1R, that are known for their
potential effects on angiogenesis, proliferation, metastasis, and invasion of MCF-7 cells.
All these gene markers have been reported to be essential therapeutic biochemical targets
for anticancer drugs. Cytosolic cytochrome-C protein expression release was observed,
with significant increases in abietic acid-treated cells. Our recommendation for future
studies on abietic acid would be to carry out an in vivo study using breast cancer animal
models to confirm our hypothesis and suggest the appropriate sublethal dose for future
clinical studies.

Supplementary Materials: The following are available online, Figure S1: Sigmoidal dose-response
relation for calculation of IC50 of (A) Pine extract and (B) Abietic acid on HepG-2, MCF-7 and
HCT-11 cancerous cell lines and WI-38 normal cells. Table S1: Primer’s sequences of apoptotic genes
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used for gene expression analysis, Video S1: Scanning video for immunocytochemistry fluorescence
calculation of abietic acid.
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