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Abstract

Background: Predictive biomarkers for antibodies against programmed death 1 (PD-1) remain a major unmet need
in metastatic melanoma. Specifically, response is seen in tumors that do not express programmed death ligand 1
(PD-L1), highlighting the need for a more sensitive biomarker. We hypothesize that capacity to express PD-L1, as
assessed by an assay for a PD-L1 transcription factor, interferon regulatory factor 1 (IRF-1), may better distinguish
patients likely to benefit from anti-PD-1 immunotherapy.

Methods: Samples from 47 melanoma patients that received nivolumab, pembrolizumab, or combination ipilimumab/
nivolumab at Yale New Haven Hospital from May 2013 to March 2016 were collected. Expression of IRF-1 and PD-L1
in archival pre-treatment formalin-fixed, paraffin-embedded tumor samples were assessed by the AQUA method of
quantitative immunofluorescence. Objective radiographic response (ORR) and progression-free survival (PFS) were
assessed using modified RECIST v1.1 criteria.

Results: Nuclear IRF-1 expression was higher in patients with partial or complete response (PR/CR) than in patients
with stable or progressive disease (SD/PD) (p = 0.044). There was an insignificant trend toward higher PD-L1 expression
in patients with PR/CR (p = 0.085). PFS was higher in the IRF-1-high group than the IRF-1-low group (p = 0.017), while
PD-L1 expression had no effect on PFS (p = 0.83). In a subset analysis, a strong association with PFS is seen in patients
treated with combination ipilimumab and nivolumab (p = 0.0051).

Conclusions: As a measure of PD-L1 expression capability, IRF-1 expression may be a more valuable predictive
biomarker for anti-PD-1 therapy than PD-L1 itself.
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Background
Blockade of the PD-1/PD-L1 axis has revolutionized
treatment of metastatic melanoma in recent years, with
five-year survival rates as high as 34% for patients
treated in the initial trials of nivolumab [1]. However,
the majority of this benefit is concentrated in a relatively
small subset of patients. In large randomized trials, ob-
jective response rates to PD-1 blocking antibodies such

as nivolumab and pembrolizumab have ranged from 28
to 40% [2–5]. Despite the efficacy of these agents, this
class has been infrequently associated with severe
immune-related toxicity, including pneumonitis,[6] acute
kidney injury,[7] and endocrinopathies.[8, 9] Further-
more, substantially increased toxicity is observed with
the combination of nivolumab and ipilimumab, which is
gaining traction as a standard of care in metastatic
melanoma though the mature overall survival data for
combination therapy are still pending [10, 11].
Given this risk-benefit profile, there is no broadly

accepted diagnostic assay to identify patients that are

* Correspondence: david.rimm@yale.edu
1Department of Pathology, BML116 Yale School of Medicine, 310 Cedar
Street, PO Box 20802306520 New Haven, CT, USA
2Section of Medical Oncology, Yale School of Medicine, New Haven, CT, USA

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Smithy et al. Journal for ImmunoTherapy of Cancer  (2017) 5:25 
DOI 10.1186/s40425-017-0229-2

http://crossmark.crossref.org/dialog/?doi=10.1186/s40425-017-0229-2&domain=pdf
mailto:david.rimm@yale.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


most likely to respond to PD-1 blockade. In melanoma
and other tumor types, clinical trials have focused on
immunohistochemical (IHC) staining of programmed
death ligand-1 (PD-L1) as a potential predictive
biomarker for response.[2] PD-L1 is one of several
ligands to PD-1, and can be expressed on either tumor
cells or stromal cells.[12] While PD-L1 expression in
pre-treatment tumors is generally associated with higher
response rates [13], the limited predictive power of this
biomarker has discouraged its development as a
companion diagnostic in melanoma. Specifically, it is
concerning that high false-negative rates for PD-L1 com-
panion diagnostics could exclude potential responders
from anti-PD-1 therapy in a population with very limited
treatment options. Dako’s 28-8 PD-L1 assay has been
approved as a “complementary” diagnostic in melanoma,
but PD-L1 IHC testing has not yet been incorporated
into routine clinical practice in melanoma.
One potential explanation for PD-L1 protein expres-

sion’s relatively poor performance as a predictive
biomarker is its markedly heterogeneous staining pattern
[14]. In multiple tumor types, PD-L1 is often focally
expressed in close proximity to lymphocytic infiltrates
near the tumor-stromal interface [15]. In melanoma,
PD-L1 expression correlates with higher CD8+ infiltrates
across multiple anatomic sites [16]. These observations
have been further developed into a model of adaptive
immune evasion, in which secretion of interferon
gamma (IFNγ) by infiltrating immune cells locally acti-
vates JAK/STAT signaling in tumor cells and induces
focal expression of PD-L1 [17–20]. In this context, it is
possible that spatial or temporal sampling error could
account for some of the yet-unexplained responses to
anti-PD-1 therapy in PD-L1 negative tumors.
Thus, we hypothesized that identifying a tumor’s cap-

ability to express PD-L1 under the appropriate condi-
tions might identify a broader range of cases that may
respond to anti-PD-1 agents than assessment of PD-L1
alone. Specifically, we considered the expression of the
PD-L1 transcription factor interferon regulatory factor-1
(IRF-1) as a possible marker for this capability. IRF-1 lies
immediately upstream of PD-L1 in the IFNγ-driven
JAK/STAT signaling cascade [17], and has been shown
to play a central role in regulating cancer cell’s response
to IFNγ [21]. Unlike other components of the JAK/STAT
pathway, IRF-1 is generated de novo in response to IFNγ
binding, making it uniquely amenable to IHC assays.
While it is possible that IRF-1 expression correlates with
that of PD-L1, detection of this transcription factor may
represent a method to determine a cell state that is
capable of expression of PD-L1, when facilitated by local
molecular microenvironment [22].
To evaluate IRF-1 as a predictive biomarker, we sought

to quantitatively compare PD-L1 expression with a

comparable IHC assay for IRF-1 in predicting response
to anti-PD-1 immunotherapy. We hypothesized that
high IRF-1 expression may reflect a tumor’s ability to
benefit from anti-PD-1 therapy independent of its
PD-L1 expression status.

Methods
IRF-1 and PD-L1 induction in cell lines
Melanoma cell lines were grown to 80% confluency,
serum-starved for 24 h and then treated with IFNγ or
control media for 24 h. Cells were then fixed directly
on chamber slides, lysed for Western blotting, or
fixed with formalin to generate paraffin-embedded
(FFPE) pellets. Cells grown on chamber slides were
washed twice in 1X phosphate-buffered saline (PBS)
and then fixed in 4% paraformaldehyde (PFA) with
88 mM sucrose. For FFPE cell pellets, five ten-
centimeter plates grown to confluency were first
rinsed with PBS, and fixed in a solution 4% PFA at 4°
Celsius overnight. Cells were then resuspended and
rinsed three times in PBS before being washed twice
in 80% ethanol (EtOH). Cell pellets were spun at
12,000 RPM and embedded in 2.2% melted agarose in
PBS. Agarose-embedded pellets were incubated in
70% EtOH overnight and then sequentially dehydrated
with one-hour incubations of 90% EtOH and 100%
EtOH, two one-hour xylene washes, and submerged
in molten paraffin for two hours before embedding.

Antibody validation
Antibodies for IRF-1 (CST D5E4; #8478) and PD-L1
(Spring Bioscience SP142; #M4420) were validated [23] by
migration on Western blot and subcellular localization
with progressive expression. Upon treatment with IFNγ,
melanoma cell lines upregulated IRF-1 and PD-L1 as de-
tected by Western Blot (Fig. 1a) and immunofluorescence
(Fig. 1b). Immunofluorescent staining for IRF-1 was lim-
ited to the nucleus, while PD-L1 expression was detected
in the membrane and cytoplasm. Progressively increased
expression of each marker seen with increased IFNγ
stimulation was used to confirm specificity.

Western blot
Cells were lysed in ice-cold M-PER mammalian Protein
Extraction Reagent (Thermo Scientific) supplemented
with protease inhibitors. To determine protein concen-
tration a Bradford assay was conducted using the Bio-
Rad protein assay reagent (Bio-Rad,). Proteins (30 μg)
were subjected to sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS-PAGE) and transferred to a
nitrocellulose membrane (GE Healthcare). The resulting
blots were blocked for 1 h at room temperature (RT) in
5% skimmed dry milk diluted in 1X Tris-buffered saline
supplemented with Tween-20 (TBST). Blots were
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incubated at 4 °C overnight in primary antibodies
specific for PDL-1 (Spring Bioscience Clone SP142;
diluted 1:500) or IRF-1 (Cell Signaling Technology Clone
D5E4; diluted 1:1000). Following incubation, blots were
washed with 5% milk/TBST before incubation with a
horseradish peroxidase, labeled goat anti-rabbit IgG
(Santa Cruz Biotechnology Inc.; diluted 1:5000) at RT
for 1 h. Blots were washed with 5% milk/TBST and
bands were visualized using electrochemiluminescence
detection reagents (Thermo Scientific).

Case identification
Medical records and tissue samples were identified for
melanoma patients with non-ocular primary tumors
treated with pembrolizumab or nivolumab within the
Yale-New Haven Health system before April 1, 2016
under a protocol approved by Yale Human Investigations
Committee. 51 cases with available pre-treatment tissue
specimens were identified and selected by a board-
certified pathologist. Of these, 47 had appropriate
imaging available (e.g., CT, PET, and/or MRI) to deter-
mine response and PFS by objective criteria. Of the 47
cases, 21 (45%) demonstrated a partial or complete
response, including one case of pseudo-progression.
Objective radiographic response (ORR) and PFS were
determined by review of available CT or MRI scans
using modified RECIST v1.1 criteria [24]. To account for
the possibility of pseudo-progression [25], progression at

first follow up scan needed to be confirmed with further
progression at a second follow up scan to be classified as
PD. Twenty-eight cases (60%) were treated with single-
agent pembrolizumab or nivolumab and 19 cases (40%)
were treated with combination ipilimumab and nivolu-
mab. Additional cohort characteristics are described in
Table 1. The frequency of responses in the monotherapy
and dual therapy subgroups were 46% and 42%, and the
median PFS were 5.9 and 6.1 months, respectively.

Quantitative immunofluorescence
FFPE whole-tissue sections, tissue microarrays (TMAs)
and cell pellets were processed and stained as previously
described[26]. Briefly, sections were baked for 30 min at
60 °C and underwent two 20-min washes in xylenes.
Slides were rehydrated in two 1-min washes in 100%
EtOH followed by one wash in 70% EtOH and finally
rinsed in streaming tap water for 5 min. Antigen
retrieval was performed in sodium citrate buffer, pH 6,
for 20 min at 97 °C in a PT module (LabVision).
Endogenous peroxidases were blocked by 30-min incu-
bation in 2.5% hydrogen peroxide in methanol. Subse-
quent steps were carried out on the LabVision 720
Autostainer (Thermo-Scientific). Nonspecific antigens
were blocked by a 30-min incubation in 0.3% bovine
serum albumin (BSA) in TBST. Slides were then incu-
bated with the target primary antibody, as well as a
cocktail of two mouse monoclonal antibodies against

B

A

Fig. 1 IRF-1 assay validation in cell lines and melanoma cases. a Induction of IRF-1 and PD-L1 with increasing concentrations of interferon gamma in
YUGEN and Mel624 melanoma cell lines by Western blot. b Induction of IRF-1 and PD-L1 in YUGEN melanoma cells by immunofluorescence. Green
(Cy3 channel) = HMB45/S100 tumor mask. Red (Cy5 channel) = target
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S100 (Clone 15E2E2, BioGenex) and HMB45 (Clone
HMB45, Biogenex) each diluted at 1:100 to define the
tumor compartment. IRF-1 was detected with rabbit
monoclonal antibody clone D5E4 (Cell Signaling Tech-
nologies) at 0.6 ug/mL and PD-L1 was detected with
rabbit monoclonal antibody SP-142 (Spring Biosciences)
at 0.08 ug/mL.
Primary antibodies were followed by incubation with

Alexa 546–conjugated goat anti-mouse secondary antibody
(Life Technologies) diluted 1:100 in rabbit EnVision reagent
(Dako) for 1 h. Signal was amplified with Cy5-Tyramide
(Perkin Elmer) for 10 min, and then nuclei were stained
with DAPI in BSA-tween for 10 min. Slides were mounted
with ProlongGold (Life Technologies). Two TBS-T washes
and one TBS wash were performed between each step
after the primary antibody.
For cells fixed on chamber slides, samples were

washed twice in PBS after fixation and permeabilized
with 0.25% Triton X-100 in PBS for 10 min. Cells were
washed twice in PBS and blocked with 1% BSA in PBS
for 1 h at room temperature. Block was decanted off
slides and the primary antibody cocktail as described
above was applied. Subsequent steps were identical to
the staining of FFPE tissue, except the DAPI stain was
substituted for mounting Prolong Gold with DAPI (Life

Technologies). One PBS-T and one PBS wash were per-
formed between each step after the primary antibody.
Immunofluorescence was quantified using automated

quantitative analysis (AQUA) on all fields of view con-
taining tumor on each slide. Briefly, fluorescent images
of DAPI, Cy3 (Alexa 546-S100/HMB45), and Cy5
(PD-L1 or IRF-1) for each field of view (FOV) were
collected. Image analysis was carried out using the
AQUAnalysis software (Genoptix), which generated an
AQUA score for each compartment by dividing the sum
of target pixel intensities by the area of the compartment
in which the target is measured [27]. PD-L1 was
measured in the S100/HMB45-positive tumor compart-
ment and IRF-1 was measured within the DAPI-positive
nuclear compartment within the tumor compartment. A
total AQUA score was determined for each case by
averaging scores from each 20X field of view.

Chromogenic staining
FFPE cases were stained for IRF-1 as described above
through the secondary antibody incubation. Then, slides
were incubated with 3,3'-diaminobenzidine peroxidase
substrate (Vector Laboratories) for 8 min and counter-
stained with Tacha’s Auto Hematoxylin (Biocare Medical).
Slides were then dehydrated in washes of 70% EtOH,
100% EtOH, and xylenes before mounting. Chromogenic
staining for PD-L1 was performed using the FDA-
approved 22C3 assay on the DAKO Link 48 automated
staining platform.

Statistics
AQUA scores between responders (PR/CR) and non-
responders (SD/PD) were compared using an unpaired t
test; PFS and OS between groups were compared using
the log-rank test. A Cox proportional hazards model
was constructed with age, sex, race, mutational status,
prior checkpoint blockade, and IRF-1 status. All univari-
ate statistical analyses was performed using GraphPad
Prism 7 (GraphPad Software), and multivariate analysis
was performed with JMP 11 (SAS Institute). All p values
reported for subset analyses are descriptive and were not
adjusted for multiple comparisons. For each biomarker,
the sample size of 47 patients was sufficient to detect an
83% standard-deviation difference in AQUA scores between
responders (CR/PR) and non-responders (PD/SD) with
80% power at p = 0.05.

Results
To identify IRF-1 expression patterns in melanoma
tissue, two TMAs of unselected melanoma cases (YTMA
98 and YTMA 59) were stained for IRF-1 (Fig. 2a). Of
115 tumor cases on YTMA 59, 28 exhibited identifiable
nuclear staining in the tumor; average AQUA scores for
these positive cases ranged from 204 to 723 (Fig. 2b).

Table 1 Clinical and pathologic characteristics of the study cohort

All patients IRF-1 High IRF-1 Low

N 47 31 16

Median age
at diagnosis

62 63 60

Sex Male 24 14 10

Female 23 17 6

Race White 44 30 14

Black 2 0 2

Hispanic 1 1 0

Treatment Pembrolizumab 18 12 6

Nivolumab 10 4 6

Ipilimumab +
nivolumab

19 15 4

Prior checkpoint
blockade

Yes 16 11 5

No 31 20 11

Mutation status BRAF 16 11 5

NRAS 6 5 1

CKIT 2 2 0

None detected 23 13 10

Stage at
diagnosis

I 5 3 2

II 8 5 3

III 17 11 6

IV 11 8 3

Unknown 6 4 2
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Nuclear IRF-1 staining was also observed in stromal
cells in close proximity IRF-1-positive tumor cells, but
this expression was not quantified in the current assay.
We then sought to assess whether IRF-1 is a prognostic
factor in melanoma irrespective of treatment. Cases
from YTMA 59 were stratified into IRF-1-high and IRF-
1-low cohorts using an AQUA cutpoint of 204 based on
the threshold for visual positivity. In this cohort, IRF-1
did not predict overall survival (OS) (Fig. 2c) or disease-
specific survival (Fig. 2d).
To assess IRF-1 as a predictive marker for response to

PD-1 blockade, serial whole-tissue sections from 47
melanoma patients treated with anti-PD-1 immunother-
apy were then stained for IRF-1 and PD-L1 in three
batches. Batch-to-batch assay reproducibility was
assessed by correlating scores from an index tissue
microarray run with each batch (Additional file 1: Figure
S1). The median number of 20X fields of view per
case was 64 for IRF-1 (range: 4 - 667), and 64 for
PD-L1 (range: 7 - 764). There were trends toward higher
expression of both markers in metastases compared to
primary tumors, and in patients treated with prior
checkpoint blockade compared to patients without prior
treatment, though these differences did not reach statis-
tical significance (Additional file 1: Figure S2).
When classified by best ORR, AQUA scores for

nuclear IRF-1 expression was higher in patients with
PR/CR than in patients with SD/PD (p = 0.044, Fig. 3a).
There was a trend toward higher PD-L1 expression in
patients with PR/CR (p = 0.085, Fig. 3b), though this did
not reach statistical significance. We then compared PFS
from the start of therapy by IRF-1 expression level. PFS

was related to ORR, but there was wide variability in
PFS in the PR/CR and SD groups (Additional file 1:
Figure S3). Treated cases were then stratified into IRF-1-
high and IRF-1-low cohorts using the lowest tertile as
the IRF-1-low cohort (AQUA cutpoint = 194). PFS from
the start of therapy was significantly higher in the IRF-1-
high group than the IRF-1-low group (p = 0.017, Fig. 3c).
There was a trend toward higher OS in the IRF-1 high
group, though this did not reach statistical significance
(p = 0.060). To determine if there was biologic signifi-
cance to this cutpoint, we determined the limit of
detection for IRF-1 by staining five serum-starved
melanoma cell lines for IRF-1 and identifying the lowest
AQUA score a FOV with positive nuclear staining. Of
five cell lines, only YUSOC had positive IRF-1 staining
in the absence of IFNγ; the lowest FOV AQUA score
was for YUSOC was 171 (Additional file 1: Figure S4)
When the cohort was stratified by this cutpoint, PFS
was still higher in the IRF-1-high than the IRF-1-low
group (p = 0.0386, data not shown). Similarly, cases
were stratified into PD-L1-high and PD-L1-low cohorts
using a visual cutoff of 120. There was no difference in
PFS (p = 0.83, Fig. 3d) or OS (p = 0.98) between these
two cohorts.
PD-L1 expression correlated with IRF-1 expression

with a Pearson’s correlation coefficient of 0.52 (Fig. 4a,
p = 0.0002). However, within the PD-L1-low cohort, four
cases were classified as IRF-1-high. An example of one
of these cases with high IRF-1 and low PD-L1 is shown
in 4B and C. Despite this small sample size, there was a
trend toward better PFS in those patients compared to
those classified as IRF-1-low, PD-L1-low (p = 0.083).

Fig. 2 Characterization of IRF-1 in human melanoma samples. a Representative IRF-1-positive and IRF-1-negative melanoma cases from Yale tissue
microarray (YTMA) 98. Green (Cy3 channel) = HMB45/S100 tumor mask. Red (Cy5 channel) = target. b Average AQUA scores for nuclear IRF-1 for
115 melanoma cases on YTMA 59. Blue bars = visible nuclear staining. Gray bars = no nuclear staining. c Overall survival in 115 melanoma cases
unselected for treatment on YTMA 59 using visual threshold cutpoint. d Disease-specific survival for cases on YTMA 59 using visual cutpoint
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When patients were grouped by therapy (PD-1 inhibi-
tors alone versus the combination with CTLA-4 inhibi-
tors), IRF-1 predicted longer PFS in the combination
ipilimumab/nivolumab group (p = 0.0051), but this
difference did not reach statistical significance in pa-
tients treated with single-agent nivolumab or pembroli-
zumab (p = 0.22, Additional file 1: Figure S5). Average
IRF-1 AQUA scores were not significantly different for
cases treated with combination and single-agent therapy
(639 v. 418, p = 0.20).

In a Cox proportional hazards model for PFS, IRF-1-
low status conferred a hazard ratio of 7.13 (95% Confi-
dence Interval: 1.98–29.55, p = 0.0023) when adjusted
for age at diagnosis, race, sex, stage group at diagnosis,
mutational status, and prior checkpoint blockade.

Discussion
Biomarkers for predicting response to anti-PD-1 im-
munotherapy have been identified as a critical unmet
need in the treatment of metastatic melanoma [28].

Fig. 3 IRF-1 as a predictive marker for anti-PD-1 therapy. a IRF-1 expression by best objective radiographic response (ORR) (Mean +/- Std Dev) b)
PD-L1 by ORR (Mean +/- SD). c Progression-free survival from the start of therapy stratified by IRF-1 expression level) d) Progression-free survival
from the start of therapy stratified by PD-L1 expression level

Fig. 4 Relationship between PD-L1 and IRF-1 expression. a Correlation of IRF-1 with PD-L1 (p = 0.002). Dashed lines represent cutoffs between
high and low expression cohorts for PD-L1 and IRF-1 b), c) Serial whole-tissue sections showing chromogenic IRF-1 and PD-L1 IHC staining in a
patient in the IRF-1-high, PD-L1-low cohort. Scale bar = 50 uM
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PD-L1 has been shown to be promising in some studies
[29] but not others. Here we show pilot data to suggest
that capability to express PD-L1 may be more valuable
as a predictive marker than PD-L1 itself.
While IRF-1’s role in regulating an inflamed melanoma

phenotype has been previously characterized, [21] this is
the first report of IRF-1 as a predictive tissue biomarker
to anti-PD-1 immunotherapy in melanoma. While the
improved clinical responses for tumors with higher IRF-
1 expression could reflect these tumors’ ability to
express PD-L1, this finding is also consistent with recent
studies that have linked IFNγ signaling with response to
PD-1[30–33] blockade. Given the role of IRF-1 as a
mediator of IFNγ, it is also possible that IRF-1 captures
a broader set of tumors suppressing immune effector
cells through mechanisms other than PD-L1.
There are a number of limitations to consider for this

pilot study. Perhaps the most significant is the small
samples size and the fact that the study is a single insti-
tutional, retrospective analysis.
Another potential issue is the selection of a cutpoint

to distinguish high from low expressers for an assay that
results in a continuous data set. Here, we sought to
bolster the lowest-tertile cutpoint by also using the
limit of detection in unstimulated melanoma cell
lines. Using this alternate cutpoint, only three cases
were re-classified from the low-IRF-1 to the high-IRF-
1 group, and the difference in PFS between IRF-1-high
and IRF-1-low patients remained significant. Further de-
velopment of IRF-1 as a predictive biomarker will require
validation of an optimal, reproducibly defined, cutpoint on
additional cohorts, as well as inclusion in prospective
studies. Also, as the study cohort included patients treated
with both single-agent PD-1 and combination PD-1/
CTLA-4 blockade, future studies should likely be limited
to a more uniform treatment strategy.
In the future development of this assay, stromal

expression of IRF-1 should also be considered. While
this assay did not include the appropriate markers to
accurately quantify IRF-1 in immune cell populations
(e.g., CD3), marked differences in stromal cell expression
of IRF-1 were noted across cases. Also, it is possible that
combination of IRF-1 and PD-L1 or other contributory
transcription factors could increase the predictive power
of this assay—a multiplex assay including both markers
would be most appropriate for testing this hypothesis. In
doing so, alternative antibodies for PD-L1 could be
considered, as the SP142 clone used in this study has
recently been shown to equivalent to other antibodies,
including those used in current companion diagnostic
tests [34]. However, the SP142 Ventana assay has to
be less sensitive than other FDA-approved assays [35].
Here we used the SP142 antibody, but not the
Ventana assay.

While the underlying mechanisms remain unclear,
there are a number of biological explanations that could
explain the association between IRF-1 expression and
response to anti-PD-1 immunotherapy. With further
validation, it is possible that an IHC-based assay for IRF-
1 could be readily transferred to the clinical setting. The
concept of a companion diagnostic tested based on
capability to express the target of PD-1 axis therapy may
address some of the current assays deficiencies related
to heterogeneity or other less well defined variables.

Conclusions
This study is this first report of IRF-1 as a tissue-based
biomarker to predict response to anti-PD-1 immunother-
apy in melanoma. Compared to PD-L1 status, nuclear
IRF-1 staining better predicted objective radiographic
response and progression-free survival in a retrospective
cohort of 47 melanoma patients. Furthermore, this effect
was greatest in patients treated with combination ipilimu-
mab and nivolumab, which is rapidly being adopted as a
standard of care. Given the limited utility of PD-L1 as a
predictive biomarker in this disease, assays for IRF-1
warrant further investigation in randomized controlled
trials to determine if they could serve as clinically useful
alternatives to guide treatment decisions.

Additional file

Additional file 1: Figures S1 through S5. (PPTX 184 kb)
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