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Abstract

This is a practical example of a powerful research strategy: putting together data from studies 

covering a diversity of conditions can yield a scientifically sound grasp of the phenomenon when 

the individual observations failed to provide definitive understanding. The rationale is that defining 

a realistic, quantitative, explanatory hypothesis for the whole set of studies, brings about a 

“consilience” of the often competing hypotheses considered for individual data sets. An internally 

consistent conjecture linking multiple data sets simultaneously provides stronger evidence on the 

characteristics of a system than does analysis of individual data sets limited to narrow ranges of 

conditions. Our example examines three very different data sets on the clearance of salicylic acid 

from humans: a high concentration set from aspirin overdoses; a set with medium concentrations 

from a research study on the influences of the route of administration and of sex on the clearance 

kinetics, and a set on low dose aspirin for cardiovascular health. Three models were tested: (1) a 

first order reaction, (2) a Michaelis-Menten (M-M) approach, and (3) an enzyme kinetic model 

with forward and backward reactions. The reaction rates found from model 1 were distinctly 

different for the three data sets, having no commonality. The M-M model 2 fitted each of the three 

data sets but gave a reliable estimates of the Michaelis constant only for the medium level data 

(Km = 24±5.4 mg/L); analyzing the three data sets together with model 2 gave Km = 18±2.6 mg/L. 

(Estimating parameters using larger numbers of data points in an optimization increases the 

degrees of freedom, constraining the range of the estimates). Using the enzyme kinetic model (3) 

increased the number of free parameters but nevertheless improved the goodness of fit to the 

combined data sets, giving tighter constraints, and a lower estimated Km = 14.6±2.9 mg/L, 

demonstrating that fitting diverse data sets with a single model improves confidence in the results. 

This modeling effort is also an example of reproducible science available at html://

www.physiome.org/jsim/models/webmodel/NSR/SalicylicAcidClearance
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1. INTRODUCTION

The purpose of this presentation is to demonstrate that useful information can be gleaned 

from the literature by putting together disparate data sets that can be integrated to yield a 

quantitative interpretation that could not be obtained from any of the individual data sets. We 

start with three clinical data sets on the clearance of aspirin from the blood. These were 

studies on humans, one in the range of normal therapy (10–70 mg/L, plasma levels; dose 

1000 mg), one in people poisoned by overdosing (> 250 mg/L, high doses), and one on the 

kinetics of disappearance of the 80 mg antiplatelet dose (< 6 mg/L). The principle on which 

this essay is based is that we can gain mechanistic insight by analyzing the three data sets 

together but not from any of the individual data sets. Further, despite the fact that we use 

only crude, accumulated average values from different populations of patients and 

experimental subjects, and use no information on actual biochemical kinetics, we can 

present an analysis of predictive value that may be used to understand the observations and 

to guide therapy.

In this study, we examine data on aspirin that were gathered in three unrelated clearance 

studies. Thinking pharmacokinetically, one wants to interpret data in parametric terms (rate 

constants, enzyme affinities, membrane permeabilities, etc.) that represent the processes and 

provide insight into mechanism. We take advantage of the wide ranges of concentrations 

observed, trying to identify rate constants and affinities that should be common to the three 

diverse data sets.

Aspirin, acetyl salicylic acid, is rapidly hydrolyzed to acetate and salicylate. Salicylate is the 

effective therapeutic agent at 30 to 80 mg/L. The drug's efficacy is limited by its 

degradation. Mitochondrial enzymes in liver and kidney degrade salicylate to an inert 

product, salicylurate, that is, like salicylate itself, excreted in the urine. Binding to plasma 

proteins retards renal clearance of salicylate, prolonging its retention, so that most of the 

renal excretion is as the salicylurate. Concentrations ten times therapeutic levels are toxic, 

causing acidosis, and sometimes death. The LD50 (lethal dose for 50% of subjects) is about 

200 mg/kg in rats and mice and probably higher in humans, i.e. of the order of more than 10 

grams for a 50 kg person. Historically, fevers, pains, and inflammation were treated with 

preparations from willow bark from Greek times. Salicylate was explicitly identified by 

Stone [1]. Aspirin, acetyl-salicylate, was synthesized and marketed by Bayer in 1897, and 

continues to be in wide use with few problems.

2. OVERVIEW OF THE KINETICS

The substrate to product reaction sequence, S--> P, is:
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The hydrolysis to salicylic acid is so fast that it can be considered instantaneous. The rate-

limiting step in degradation is the conversion of salicylic acid to salicyl-CoA catalyzed by 

medium chain acyl-Coenzyme A synthase, and the final step is the conversion of salicyl-

CoA to salicylurate, catalyzed by glycine-N-acyltransferase [2]. The conversion to 

salicylurate is a key step toward renal clearance, accounting for 50% [3,4] to 85% [5] of 

ingested salicylate. Only about 10% is urinary salicylate [6]. Presumably renal clearance by 

passive filtration across the glomerular membrane is zero for salicylate bound to plasma 

albumin, and may be slower for the ionized fraction of salicylate because of the charge. In 

any case the clearance basically follows the conversion to salicylurate.

We define a minimal model in which the whole body is considered as a mixing chamber into 

which the salicylate is absorbed, and within which an enzyme converts salicylate to 

salicylurate. Salicylurate is assumed to be the only product, and the only solute cleared by 

the kidney, ignoring the salicylate 10% mentioned just above. The converting enzymes are in 

mitochondria in the liver and kidney, not free in the circulation: the kinetic simplicity of the 

model makes sense only if the whole body mixing and the transport from blood to 

mitochondria are both fast compared to the conversion steps and the renal clearance.

Three models to describe and “explain” the clearance of the salicylate will be explored: (1) 

the first tests the concept that first order kinetics dominate the system, as if the clearance 

were controlled by a single exponential washout process, a totally inadequate model; (2) the 

second model asks if a Michaelis-Menten enzymatic reaction model can define the kinetics; 

(3) the third test is a more fully developed enzyme kinetic model with reversible reactions. 

Each model is tested against the three data sets individually and then together, asking 

whether or not the data from three different sets of subjects at three very different levels of 

dosage can be “explained” in terms of one structurally and parametrically self-consistent 

model describing the processes governing the clearance. We say “explain” in quotes since all 

models are incomplete and inexact.

3. THE DATA AND THE SOURCES

The data sets are group-averaged observations on plasma salicylate concentrations as a 

function of time over most of a day after ingestion of aspirin. The data were published in 

three unrelated studies, each of which covered a different range of concentrations (Fig. 1).

The data (Fig. 1 left) for low dose aspirin ingestion [7] are the averaged plasma 

concentrations from ten healthy male volunteers who ingested an 81 mg tablet of aspirin. 

The last seven points were digitized from the authors' figure (their Fig. 1, right panel, dose 

period 1, open squares). “All aspects of the study were conducted in accordance with 

regulations of the United States Food and Drug Administration (FDA), in particular those 

regarding informed consent and approval by a qualified Institutional Review Board”.
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The data (Fig. 1 middle) for mid dose aspirin ingestion [8] are the averaged plasma 

concentrations from 9 female and 9 male healthy volunteers, who ingested 1000 mg of 

lysine acetyl salicylate. The last eleven points were digitized from authors' Fig. 3, the solid 

triangles. “Each subject gave informed written consent to participate in the study and the 

study received the approval of an Ethics Committee”.

The data (Fig. 1, right) for the high dose aspirin ingestion [9] are the averaged plasma 

concentrations from 16 patients being treated for mild poisoning, salicylism, (plasma 

salicylate concentrations 250–400 mg/L). The last nine points were digitized from authors' 

figure (their Fig. 1, open circles). In these aspirin overdose cases, the authors were 

attempting to discern best treatment methods. The research was performed at the Regional 

Poisoning Treatment Centre and University Department of Therapeutics and Clinical 

Pharmacology, Royal Infirmary, Edinburgh EH3 9YW. “All patients were conscious and 

recovered uneventfully”.

4. METHODS OF ANALYSIS

We used a general-purpose simulation system, JSim [10], designed for data analysis, 

displaying results and storing them as Reproducible Exchange Packages (REP). JSim code 

for the three models is written in MML, Mathematical Modeling Language: the equations 

have the same form as one would write them on paper, with the exception that the derivative 

dS/dt is written S:t. Routines for solving ordinary differential equations (ODEs), partial 

differential equations (PDEs) and differential algebraic equations, are built into JSim and 

selected by the user. JSim provides 8 methods for solving ODEs, three for PDEs. Comparing 

different methods is a key step in code verification, a part of demonstrating its correctness. 

Eight optimizers are available for automated fitting of model solutions to data; switching 

from one method to another helps to determine the uniqueness of the fit. At the point of best 

fit both an analytical method (covariance matrix) and MonteCarlo (randomized) method are 

used for estimating confidence limits, and projecting uncertainty quantification. The REP 

provides storage of all data, figures and parameter files and retention of all the models 

developed for a project, in a form reproducible under Linux, MacOS X or Windows. Model 

code is in the APPENDICES. The models used in the analysis are installed at html://

www.physiome.org and can be run over the web. They are open source and open operation, 

and may be downloaded from there, as can JSim itself. All data files, models, initial 

conditions, parameters, and resulting figures for this report are completely described in the 

REP file at html://www.physiome.org/jsim/models/webmodel/NSR/SalicylicAcidClearance

4.1 Model 1: A Descriptive First-order Washout Model

The single exponential decay or first-order process is based on the expectation that there is a 

single means of clearance from the body and that it is passive, whereby a constant fraction 

of the concentration is removed per unit time, independent of the concentration. Assuming 

that mixing within the body is fast compared with the rate of removal, then, using S for 

salicylate concentration mg/L, and k as the fraction removed per minute, the removal flux is 

k times S. For a given initial concentration S(t=0) = S0, the governing ordinary differential 

equation (ODE) is
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(1)

The solution to this ODE is

(2)

A semilog plot would give a straight line, a constant fraction lost per unit time. When half of 

the substance is gone, the solution becomes

(3)

Defining the half-life as

(4)

allows one to rewrite Eq. 1 as

(5)

The descriptive parameters, k and S0, for the model were adjusted to fit the data by 

minimizing the weighted sums of square of the distances between the data points and the 

model solutions, the Sum of Squares of Weighted Residuals, SSWR. This can be done either 

manually or by automated optimization. The model code is in Appendix 1. The “import 

nsrunit; unit conversion on;” requests the parser (a precompiler phase) to check the 

equations, and any exponents or transcendental functions like sine, for unit balance [11]; the 

parser also inserts reconciling conversion factors, e.g. 60 sec/min, when analogous units 

have been used.

This is automatic, and is the first step in verifying that the model code is computing 

correctly, a part of JSim’s design to support the project from experiment through the steps of 

a VVUQ process, model development, Verification that the code computes correctly, 

Validation that the model can be fitted to experimental data, and Uncertainty Quantification 
in parameter identification, in estimation of confidence limits from the sensitivity functions 

or from Monte Carlo, and in making predictions.

The Model 1 parameters for initial concentrations (LS0, MS0, and HS0) and the respective 

rate constants, Lk, Mk, and Hk (or alternatively the half lives), may be manually adjusted to 

fit the data. The same process can be automated using the “Optimization” Graphical User 

Interface (GUI). The optimization GUI is used to automate the fitting to each data set 

individually to estimate the decay rate and the initial concentrations; these are reported in 

Table 1, along with the standard deviations estimated from the covariance matrix.
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As a test to see if clearance was by a single passive first order process we optimized the 

model solutions to use a single decay rate to best fit the three data sets simultaneously. This 

idea was disproved; a single decay slope could fit only one of them reasonably well at a 

time. Their initial values were strikingly different, so the only situation that would give 

similar decay rates for the three sets of data would be if their clearances mechanisms were 

the same, e.g. renal clearance by glomerular filtration. This was clearly not the case, so we 

rejected the hypothesis of a common factor being renal passive clearance.

What we learn from this model is that decay rates are slower at high concentrations (Table 

1). Raising the initial concentrations by two orders of magnitude increases the half-lives by 

over tenfold. The time courses of the high dose concentrations and the upper range of the 

mid dose concentrations are approximately linear, suggesting that a zero-order process (S is 

removed at a constant rate) might be a better model. The last points of the mid dose and all 

the low dose concentration-time curves are nevertheless close to an exponential decay. 

Putting these observations together suggests that another model, a saturable enzyme model 

might be better; more explicitly, a saturable enzyme model with a Km somewhere between 

the low dose concentrations and the medium dose concentrations would make sense.

4.2 Model 2: The Michaelis-Menten Model for Enzymatic Reaction

The reaction sequence S--> P for salicylurate formulation is

The Michaelis-Menten [12] model assumes that there is no reverse flux from salicylurate, 

the product P, back to substrate S. Most of the clearance of S follows conversion of S to the 

metabolite, P, which is cleared by the kidney.

Using a single mechanistic model to fit the three data sets simultaneously should be more 

powerful than obtaining three independent half-life estimates, because of increasing the 

degrees of freedom by virtue of the constraints: more data means larger n, and the fewer 

parameters, one Km and one Vmax instead of 3 decay rates, means a tighter focus, fewer 

parameters per data point. Using all the data simultaneously focuses the analysis on the 

characteristics of an explanatory mechanism, enzymatic degradation (Fig. 2).

S is the substrate, salicylic acid, E is the enzyme, medium chain acyl-Coenzyme A 

synthetase, and SE is the enzyme-substrate complex, and P is still the product, salicylurate. 

Our assumption in this formulation is that SE, the enzyme-substrate complex, and PE, the 
enzyme-product complex are instantaneously interconvertible and can be regarded as the 

same species. The four reactions are considered to be reversible. This results in a system of 

four ODEs with initial conditions (Eqs. 6, 7, 8, 9, and 10) using mass balance equations

(6)
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(7)

Conservation of enzyme mass allows an algebraic expression for E instead of an ODE:

(8)

Salicylurate, P, is formed in the reaction, but is also removed by other processes, potentially 

by the reverse reaction with rate kon2 for backward binding to the same enzyme, or by 

conversion to other substances, represented by the consumption reaction at rate G:

(9)

For the most part, we will set G to zero and ignore the effect of the removal of P. The initial 

conditions are given as

(10)

The Michaelis-Menten (M-M) equation is identical to the Briggs-Haldane (B-H) equation 

[13], but they are derived via different assumptions from Eqs 6 and 7. B-H is based on the 

intermediate complex, SE, being in quasi-steady state, specifically dSE/dt is small compared 

to the rate of change of S and P. M-M is based on the substrate, S, and the complex, SE, 

being in rapid equilibrium with high on- and off-rates so that the ratio E/ES is continuously 

defined in accord with the dissociation constant KS:

(11)

The parameter kon2 for the reversal of the product formation is assumed to be zero for the 

M-M model, but for the data shown is probably not true. The final equation in both cases, 

which we will call the Briggs-Haldane / Michaelis-Menten model (B-H/M-M), is

(12)

where S is the concentration or activity of the substrate, Vmax, the maximum velocity of the 

reaction is given by

(13)

Raymond and Bassingthwaighte Page 7

Br J Pharm Res. Author manuscript; available in PMC 2016 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The substrate concentration at which the reaction velocity is half of Vmax occurs when the 

enzyme is half occupied, i.e. [ES]/ [ETOT] = 0.5, and accounts for the conversion of ES 

forward to P and backward to S. This defines Km from Eq. 13 as

(14)

illustrating that when the forward, product-forming reaction is slow compare to the binding 

on- and off-rates that Km is only slightly greater than KS. When the concentration, S, is 

small compared to Km (as in the low dose case), the ODE for S approaches

(15)

which is a first order process with the solution defining that for this situation Vmax / Km 

equals the k of Model 1 for the first order reaction process. When the concentration S is 

large compared to Km, then S / (S + Km,) approaches 1, and the ODE for S, Eq. 16, 

approaches

(16)

This is a zero order process with solution S(t) = S0 − Vmax · t. Thus the B-H/M-M model can 

be zero-order at high concentrations and first order at low.

The M-M code in MML is in Appendix 2. For starting values for data fitting, we estimated 

Vmax using the first and last points of the high dose curve [9] to approximate Eq. 17 as

(17)

This is about 2% per hour in these aspirin-poisoned patients. From the low dose data [7] we 

estimate a rate constant using

(18)

Vmax / Km = log ((2.483 mg/L)/(0.184 mg/L)) / ((12.032 hour)−1.888 hour)) = 0.257 hour−1, 

and using the estimated value for Vmax, we obtain a starting estimate for Km, namely, Km = 

Vmax/(0.257 hour−1) = (7.7 mg/(L hour)/(0.257 hour−1) = 30.0 mg/L. This is higher than the 

estimate of Km, 16.5 mg/L, from Ho et al. [14].

For automated optimization we set the point weights to 1. For fitting the three data curves 

simultaneously we assigned curve weights that were high for the low dose data, and low for 
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the high dose data, as stated above, so that they have similar total weight in the weighted 

sum of squares (Table 2, next to bottom row). The sum of squares of the differences between 

data and model solution for the individual data set are in the bottom row in Table 2. (A sum 

of the individual differences divided by the individual model point values, divided by 

Npoints for the individual data set, gives the fractional residual error; this is useful for 

comparisons amongst the individual data set fits.) The fit to the three data curves using 

single common values for Vmax and Km is shown in Fig. 3.

In Fig. 4 we plot the flux, the rate of disappearance of S (enzymatic degradation) or −dS/dt 

calculated from the model solutions versus the observed concentrations, the data. The 

intersection of this curve with Vmax /2 gives Km on the abscissa. Fluxes at the high 

concentrations are close to the upper limit at Vmax.

What did we learn from the irreversible M-M model? Firstly, the parameter values of this 

model were not well defined by fitting the individual data curves: at the low and the high 

concentrations the variances were worse than those for the first order washout model 1. 

However, when the three data sets were fitted with one set of parameters the estimates were 

well defined, with much smaller coefficients of variation, SD/Mean, for both the low and 

high concentration data. This makes for a good generality: in order to estimate Km the 

experiment must provide data over a wide range and the range must encompass the Km. On 

comparing the estimates for the mid range data alone with those from the values for the three 

sets together, they are not statistically significantly different. The fluxes are linearly related 

to S/(S+Km); their range is greatest for the mid level data, the triangles in Fig. 4, where the 

ratio of flux to concentration changes steeply in the neighborhood of the Km. At levels 

below Km /10 and above levels of 10 Km, the slopes of flux versus concentration are 

shallow, and therefore nearly impossible to use to estimate Km accurately. Even Vmax is 

poorly estimated from the high concentration data: when the enzyme is nearly saturated, 

with zero order kinetics, all one knows from the high dose data alone is that the 

concentrations are many times the Km.

4.3 Model 3: Enzyme Kinetic Model with Binding Rate Coefficients and Reversibility

The third model incorporates reactions implied in Fig. 2 and defined in Eqs 7 to 10. Since all 

chemical reactions are in principle reversible, the model has a reverse flux P → S, and thus 

allows comparing the results with those from the irreversible B-H/M-M formulation. A 

preliminary treatment was presented in [15]. We lack early samples that might have provided 

information on the rapidity of binding, so in accord with expected small solute binding to 

proteins we assume that kon1 is high, e.g. we use 3 L/(mg*sec), of the same order as fatty 

acids to albumin. The rate of product formation is governed by KS, koff2, and Km, the 

combination of the first two giving us Km (Eq.15). The maximum forward velocity of the 

reaction is Vmax, which is the product ETOTkoff2. From the experience with model 2 (M-M) 

we know that the strongest parameter estimation method is to use the three experimental 

data sets simultaneously, together they cover three orders of magnitude of concentrations. 

Not knowing the affinity KP for the product, but given that reactions are reversible, the long 

tail of concentrations for low dose data suggest that this reaction is demonstrating its 

reversibility. Since P was not measured one cannot hope to obtain a unique estimate of KP, 
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even though the reverse flux must occur at all three concentration levels. Analogous to KS in 

Eq. 12, the dissociation constant KP defines the equilibrium condition for P, E, and EP such 

that:

(19)

where EP is considered identical to ES through their instantaneous interconvertibility. The 

model 3 code to optimize to fit the three data sets simultaneously with one set of parameters 

as in Appendix 3.

Eqs. 7 to 10 concern the conversion of salicylic acid to salicylurate. We guesstimate ETOT, 

the concentration of medium chain acyl-CoA synthetase, to be 1.5e-4 mg/L, taken from the 

geometric mean of estimates for the human acylcoenzyme A synthetase ACSM2B, 

mitochondrial (ACSM2B) ELISA Kit (http://www.mybiosource.com/datasheet.php?

products_id=911502). We set kon1 to be ~3/sec or ~10800 / hour, then optimized to estimate 

the remaining parameters in three different situations: (A) fitting the individual data sets, (B) 

fitting the three data sets simultaneously to estimate for KS, KP, and koff2 and the three 

“initial” concentrations, and (C) fixing the three initial concentrations to the values found in 

B and optimizing only the kinetic parameters, KS, KP, and koff2. From the optimized 

parameters we calculated the effective Michaelis-Menten parameters, Km and Vmax, 

reported in Table 3 in the fourth and third rows from the bottom. The estimate of Km is 

slightly lower than those reported by Levy [4]. The derived estimates for koff1, the rate of 

complex dissociation to produce free substrate S from the ES complex, and kon2, the rate of 

binding of product P to form EP (regarded as equilibrated with the ES form), are reported in 

the bottom two rows of Table 3. To obtain the estimates of the SD's for the free parameters, 

1000 Monte Carlo cases were run for each combination of parameters. To do this we added 

1% proportional uniform noise to each data point. Monte Carlo results were rejected when 

values for KS, KP, and koff2 were over 1000. The fits of the model solutions to the data are in 

Fig. 5. The low dose data are now better fitted to the tail of the curve, a result of the reverse 

reaction and the concentrations approaching an equilibrium level between S and P.

The decay curve for the low dose (Fig. 5) is no longer a single exponential decay, but is 

deviating from it by prolonging the tail: small reverse flux from P to S keeps the 

concentration of S above zero, so this result is substantially different from that in Fig. 3, left. 

The influence of the concentration of the product P is small because the enzyme E has a 

relatively low affinity for P, as indicated by the high value for KP (Table 3).

With the high dose (Fig. 5, right) the decay is almost linear, showing that the enzyme is 

nearly saturated and that product is being formed at a rate near Vmax, a zero order process. 

This is much slower than the rate of decay proportional to concentration observed at low 

concentrations. The estimated Vmax of 8.0 mg/(L•hr) is almost identical with the crude 

estimate from the slope in Eq 18.

With the middle dose the fraction of enzyme bound with S is almost constant until the 

concentration of S is less than approximately 40 mg/L. There is a gradual transition from 
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nearly-saturated conversion initially to closer to first order clearance after 5 hours. The 

initial rates of removal of S at high and mid-level concentrations, operating close to Vmax, 

are described as well by the B-H/M-M model as by this model.

For these fits ETOT is not optimized since its value is more or less nominal. Its value appears 

in the calculations always as a part of the product, ETOT times koff2. Thus ETOT and koff2 

vary inversely with one another if both are free parameters, and in the correlation matrix 

would inevitably be highly correlated, in this case around r ~ 0.8. When covariances are high 

between pairs of parameters, the estimated standard deviations (SD) will be large. Without 

data on the concentrations of P, KP is almost unconstrained. In accord with the M-M concept 

of rapid equilibration between E, ES and S, kon1 was fixed to a moderately high value of 3/

sec, which then reduced the SDs of the parameter estimates to about 34% for KS and 75% 

for K. This illustrates that constraining the degrees of freedom narrows the parameter 

confidence ranges for the remaining free parameters. When only KS, KP, and koff2 were 

freely adjustable, the SD on koff2 shrunk to ~3%.

Fig. 6 (top panels) shows the fitting of the concentration-time curves on a semilog plot. On 

this scale it becomes obvious how much slower is the decay rate for the high concentrations. 

With the Low dose, the decay is initially almost exponential but the tail begins to level off 

after 8 hours: the reverse reaction, P --> S, provides an explanation for this. The middle dose 

data are those that give the most definitive information on KS: the concentrations pass from 

above to below KS, thus it makes sense that the estimates of KS and koff2 from the middle 

dose data alone (column 3 of Table 3) have much narrower confidence limits than those 

estimated individually from the low and high doses (columns 2 and 4), and provides an 

estimate that is not very different from the best estimate provided by analyzing all the data 

simultaneously.

5. ENZYME SATURATION

While it is true that the fastest absolute flux, Vmax, occurs when the enzyme is completely 

saturated and all of the enzyme molecules are working, ES = Etot, the fastest flux per unit 
substrate concentration occurs when the substrate has greatest access to the enzyme, namely 

at low substrate concentrations, when occupancy is lowest. The idea is illustrated in Fig. 6.

With the low dose (left panel) the fraction of enzyme bound, SE/ETOT, was only 0.3, 30% 

saturated, at the beginning and fell rapidly to less than 10%. By definition, when the enzyme 

is unsaturated, the fraction of enzyme molecules available to bind substrate is maximal, 

resulting in rapid conversion of S to its metabolite, P. The fraction of free enzyme E/ETOT 

(dotted line) rose toward close to 100% as the reaction depleted S. The mid dose panel 

shows that the bound fraction, the substrate-enzyme complex, SE/ETOT (solid line), was 

initially high, over 80%, and nearly constant (quasi-steady state): the rate of change of SE/

ETOT was small until the concentration of S was less than approximately 40 mg/L, after 

which it diminished increasingly rapidly. In contrast, with the high dose (right panel) the 

fractional occupancy, SE/ETOT is over 90 %, almost fully saturated, throughout the 

observation period. In this situation the fraction of the toxic substrate removed per unit time 

is small, about 2% per hour, and interventional therapy is desired.
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6. DISCUSSION

The three models used to explain the disappearance of S, salicylate, from plasma, where the 

data came from three separate studies and spanned three orders of magnitude, were: (1) a 

descriptive first order decay model, chosen since it is the commonest and simplest model 

used in pharmacokinetic analysis, (2) a Briggs-Haldane/ Michaelis-Menten model, an 

approximation for an enzymatic reaction, the commonest and most frequently used model in 

biochemical reactions, though it is thermodynamically undefined. and (3) a 

thermodynamically based enzyme kinetic model with reversibility, thus fulfilling minimal 

thermodynamic expectations.

Model 1, first order, could only fit one data set at a time, meaning that the different data sets 

had unrelated clearance rates. Simultaneous optimization had no role to play since there 

were no parameters in common. The good individual fits with model 1 cannot be interpreted 

in terms of one mechanism.

The B-H / M-M formalism, model 2, fitted suitably at all doses, but only for the mid dose 

data did the fractional enzyme saturation, SE/Etot shift through 50% and give a measure of 

the dissociation constant, KS. This marks a transition point between a zero order process at 

the earlier time to a first order process at the later time. For the low dose observations the 

concentrations were always less than the optimized value for Km, but contributed to defining 

it. But even though the concentrations were low, the decay did not have exactly the expected 

single exponential form, and instead exhibited a second slower component extending the tail 

of the curve, a clear deviation. The Briggs-Haldane / Michaelis-Menten model was therefore 

inadequate even in this region.

The “full” enzyme kinetic model, model 3, even though it does not distinguish SE from PE, 

and assumes that the reversibility in the pocket of the enzyme binding site occurs more or 

less instantaneously in either direction, properly accounts for the degree of saturation of the 

enzyme, so the ratio SE/Etot is correct whether it forms from S or P. We could have used 

Hofmeyr's variant of the M-M model including the reversibility [16]. In a steady state they 

give the net forward flux, Vfnet, as the difference between the unidirectional forward and the 

unidirectional backward fluxes:

(20)

where the denominator accounts for the enzyme occupancy by both S and P. The number of 

free parameters, four, is the same, given that we fixed kon1. In the high dose case particularly 

the denominator of Eq. 20 is large, as reflected in the slow degradation rate. This model 

assumes, as do the B-H/M-M models, that ETOT is small compared to S and P. In the 

particular cases we model, this is also true, but that restriction is not necessarily valid: in any 

progress curve experiment, as in the low dose case in this study, if product P were removed 

continuously the concentration of S would decrease to zero, violating the assumption that 

ETOT /S is small. If P is not removed, then the system would settle at equilibrium with dS/dt 
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= 0, and the numerator of Eq 20 would go to (Vfmax · S / Ks = Vrmax · P / Kp), and leads to 

the equilibrium ratio S/P at

(21)

Because we have no information on concentrations of P, we have no real information on KP 

or kon2, but is useful to contemplate what other circumstantial evidence might constrain the 

estimates. By definition, at equilibrium kon2 · Kp = koff2, so given the estimated values from 

Table 3 with koff2 = 14.4/sec and KP = 260 mg/L, then if we think the low dose data might 

be reaching a constant S/P equilibrium by 15 hours one could calculate rough estimates of 

kon2 and conceivably revise the estimates of KP from knowledge of the relative renal 

clearances of P and S.

A reason for emphasizing using the differential equations rather than the algebraic 

expression in Eq. 21 is that the incorporation of salicylic acid into the salicylate-CoA form is 

a slow reaction, violating the M-M assumption of fast binding and unbinding. Using the full 

equations allows this, and the present study shows that the forward reaction is partially 

limited by both kon1 and koff2, latter being only 5 times the former. This is important in 

accounting accurately for rapid changes in concentrations, obviously important in the first 

moments after injecting or ingesting an actively metabolized substance.

Even while arguing for the “full” model, we recognize many shortcomings our modeling, 

and in the data. The most obvious and worrisome is the simplification that pretends that the 

enzyme and the measured concentrations are in the same mixing tank, the circulating blood: 

the actuality is that the enzyme is really two enzymes [2] and they are not in the blood but in 

mitochondria of the liver and kidney. The intracellular localization means that a slow kon1 

becomes understandable in the light of the time required for convection-permeation-

diffusion processes to enter the cells and to permeate the mitochondrial membrane, and for 

the time to take the same route in reverse for the reaction product, salicylurate to enter the 

blood and to be cleared into the urine by glomerular filtration. Bloch et al. [17] also model 

aspirin clearance, reporting similar results with a different modeling system. To assuage our 

guilt feelings for not accounting for these retarding processes, we developed a crude but 

more general model that does that. This more complex model (SalicylateBodyMIto #377 at 

www.physiome.org) considers the reactants S and P and the enzyme E to be in the 

mitochondrial space, so S and P need to permeate the cell and mitochondrial membranes to 

exchange with a whole-body-blood-equivalent mixing chamber, in which S and P are 

measured, and from which both may be removed by renal clearance. Assuming fairly high 

permeabilities for S and P, and analyzing the data as described above, we obtained 

essentially similar values for KS, KP, and koff2 to those reported in Table 3. The conclusion 

is that accounting for the expected complicating and retarding influences had little effect on 

the identification of the key kinetics of the enzymatic process.

The assertion, “All models are wrong but some are useful,” attributed to George E. P. Box 

[18] is appropriate for the models and analyses presented here. There are several different 
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paths for the metabolism of salicylates [19] with different intermediate enzymes with 

different Vmax's and Km's [20]. If that weren't bad enough, taking plasma concentrations 

from multiple subjects and averaging them seems also somewhat dubious. Although we have 

been successful in fitting population averages from three different studies and demonstrating 

that using all the data markedly improves the apparent resolution in the parameter estimates, 

the results remains questionable. However, the critical message from this paper is that one 

cannot estimate the effective Km from either the low dose or the high dose data alone. One 

gets an approximate estimate from mid dose data. Then by using simultaneously the high 

mid and low dose data one gets not only confirmation of the approximation provided by the 

mid dose data, but increased accuracy for that estimate, presuming of course, that these 

different groups of humans are essentially similar. The variance of the parameter estimates 

are actually small compared to getting Km's from general sources like KEGG, and do 

represent human in vivo conditions, so making the values particularly relevant to popular 

usage. Much narrower confidence ranges can be determined using isolated enzymes in test-

tube experiments, e.g. as for xanthine oxidase [21] or for glycolysis [22] but the conditions 

are rather different from in vivo. There is no doubt that greater precision would be gained if 

we could fit detailed data from individual subjects, and account for individual characteristics 

such as dose per kilogram of body weight, sex of subject, age of subject, etc.; this would 

allow us to assess population variances meaningfully.

The analyses using B-H/M-M and the differential equations for the enzyme model both 

provided comparisons of the results of individual versus simultaneous analysis of the three 

data sets, (Tables 2 and 4) giving evidence that better estimates of parameters are obtained 

when the analysis is required to include all the data at once. This is virtually always the case, 

and is the reason for undertaking large scale, multiscale modeling of biological systems, 

namely to enable the systematic, simultaneous analysis of multiple data sets simultaneously 

on multiple components of the system. Experiments designed to provide many measures of 

concentrations, fluxes, conditions, temperatures, and variant perturbations of the system are 

important for serious modeling analyses to assess working hypotheses on a biological 

system.

Are the a priori conditions for considering the three sets of data together valid? A difficult 

question gives rise to an insecure answer: the groups were assayed by three different 

investigative teams at quite different times. But the measurement of plasma salicylate 

concentrations was pretty standardized by that time and reasonably accurate, well within the 

range of variation of the different people in each group. Probably sex differences should 

have been accounted for. But all were adult humans, making it reasonable to expect the 

variation in Km’s to be small compared to the huge range among species found for most 

enzymes in the KEGG repository. None of even the high dose group critically ill, so that 

their general conditions were close to normal. Our presumption that the groups were similar 

cannot be proven, but it would be as difficult to prove that they were not. Doubt lingers, but 

our judgment is that combining data sets in the analysis is more useful than not.

Extending the analysis of multiple data sets to experiments where the relationships on the 

data are purely statistical, and are so inaccurate that only log2-fold comparisons are near the 

threshold for statistical evaluation, as in mRNA array data, is not compatible with our 
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approach. “The invalid assumption that correlation implies cause is probably among the two 

or three most serious and common errors of human reasoning.”. Stephen Jay Gould [23]. 

Array analyses, mRNA and protein, reveal statistical associations, not relationships, 

mechanisms or causation. The a priori condition for biophysically and biochemically-based 

physiological modeling analysis is that one must have firm knowledge of system 

connectivity and stoichiometry, which is to say cause and effect relationships amongst 

elements of the modeled system (the “hypothesis”). One cannot conceive, even from 

replicated experiments done under the same conditions providing large amounts of noisy 

array data, of gaining much confidence concerning the nature of associations among 

chemical constituents, and even less in the parameter values.

The models described here are available on the Physiome Model Repository as Model 369 at 

www.physiome.org. They and model 377 can be run over the web or downloaded and run on 

one’s own computer under the modeling system JSim. JSim can also be downloaded from 

the same site.

7. CONCLUSIONS

The modeling analysis of data, whether it is to provide descriptors or to determine 

mechanisms by which a system functions, gains accuracy by fitting several sets of data 

simultaneously with a common set of parameters. The greater the variety of good 

information represented by a single model the better the estimates of model parameters and 

the more secure the position of the model as a reasonable working hypothesis. What one 

seeks in biological modeling is a combination of goals: a secure description from which to 

make classifications; a comprehensive understanding of a self consistent system; a 

physicochemical system consistent with the laws of nature; an evaluation of confidence 

ranges for parameters and for the behavior of the system’s variables. In this study we use 

literature data covering a wide range of salicylate concentrations to estimate the parameters 

governing the clearance from the body, particularly on its enzymatic degradation. The range 

of the data, covering three-hundred fold in concentrations in three diverse groups, 

constrained the parameter estimates so that their coefficients of variation were less than 5%, 

a result not often achievable in clinical studies even with good experiment design, and 

emphasizing the power of integrating data from different sources.
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APPENDIX

Appendix 1. A: First order decay model

Appendix 2. Model II: B-H/M-M model
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Appendix 3. Model III: Enzyme model
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Fig. 1. Salicylate decay curves for low, medium and high doses from three separate studies
Each is a group-averaged set of data from humans; Left panel: Benedek95; middle panel: 

Aarons89; right panel: Prescott82. Each data set is fitted with Model 1, single exponential 

functions with the half-life and an initial value of concentration for each dose group as the 

sole parameters. Parameter values and standard deviations for the model solutions to Eq 2 

are given in Table 1
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Fig. 2. Reversible enzymatic reaction
Substrate salicylate, S, combining with free enzyme, E, to form complex, SE, reacts to form 

product, P, and release free enzyme, E, to react with another substrate molecule
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Fig. 3. Fitting the Briggs-Haldane / Michaelis-Menten model (solid lines) to the three data sets 
simultaneously
The five parameters are in Table 2, right column. For comparison, the dashed curve for the 

low dose panel represents the first order solution to the BH-MM equation, the rate constant 

at low concentrations being Vmax /Km. The dashed line in the high dose panel is the zero 

order solution to the BH-MM equation, at the rate Vmax. The estimate of the Km, 18.2 mg/L, 

is more than any of the concentrations of the low dose data but less than any of those of the 

high dose data, meaning that its strongest influence comes from the mid dose data
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Fig. 4. Clearance of S, dS/dt, versus S, the traditional Michaelis -Menten plot, describes the best 
fit of the model solution to all three data sets
At Vmax /2 the concentration S = Km. The intersection is at Km = 18.2 mg/L, Vmax /2 = 3.9 

mg/(L*hour). The abscissa indicates the low dose data (diamonds), mid dose (triangles), and 

high dose (circles) mapping to the fluxes on the ordinate, just as the Km maps to Vmax /2
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Fig. 5. Fitting of the enzyme model solution for S(t) (heavy line in each plot) using simultaneous 
optimization to fit all three data sets
The fitting parameters are given in Table 3, right 3 columns. The parameter values do not 

differ significantly between using 3 free parameters (Ks, KP, and koff2) and using 6 free 

(those + the 3 initial concentrations), but the estimated confidence ranges do differ, the 

degrees of freedom being reduced by fixing the values of the three initial concentrations, 

removing them from the estimation procedure
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Fig. 6. Model fitting to the three data sets simultaneously: (Parameters are in Table 3 right 
column)
Top Panels: Data and model fits on a semilog plot, fitting S and predicting P. Lower panels: 

The fractional enzyme occupancy, SE/Etot and free unbound enzyme E versus time, for the 

same three data sets as shown in the top panels. For the low dose data the enzyme is mostly 

free, i.e. SE/Etot is low; for the high dose data, there is very little free
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Table 1
Exponential decay model: Optimized parameters

Parameter value
±1 SD*

Initial concn
S0, mg/L

Decay rate constant,
fraction/hr k, hr−1

Half-life, min RMS/S0

Low concn 4.61±0.74 0.332±0.016 126±7 0.015

Middle concn 71.8±1.75 0.156±0.008 267±14 0.026

High concn 337.5±10.3 0.026±0.002 1600±100 0.015

Optimized values for initial concentrations and rates of decay using the first order clearance model. The standard deviations of the estimates came 
from optimizing the group data sets individually
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Table 2
Model 2: B-H/M-M: Parameters from optimizations

Values from optimizing Briggs-Haldane/Michaelis-Menten model.

Parameter
±1 SD

Low dose
individual optim

Mid dose
individual optim

High dose
individual optim

Simultaneous
optimization

Km mg/L Fixed at 24.1 24.1±5.4 Fixed at 24.1 18.2±2.6

Vmax mg/(L*hr) 8.4±0.49 9.2±0.89 7.7±0.56 7.85±0.38

Vmax / Km 1/hr 0.35±0.021 0.40±0.12 0.36±0.011 0.44±0.07

LS0 mg/L 5.07±0.23 - - 5.07±0.48

MS0 mg/L - 65.99±0.57 - 64.59±0.99

HS0 mg/L - - 333.1±1.6 335.0±2.5

Wgt in Simult
Optimization

1.6435 0.0211 0.0034 Curve Wgts at left

Σ|S'i−Si|/S'i/Np 0.170 0.014 0.017 0.096

The shaded regions mark estimates of parameters with such low sensitivities that the results had no meaning until we decided to use the estimate of 
Km from the mid dose data as fixed values of Km and optimized on that basis. If the calculations for the shaded boxes were chosen in accord with 

the Km from the simultaneous fit (right column) the Vmax would change in proportion and Vmax / Km would not change. The SD for Vmax / 

Km for simultaneous optimization was calculated by a Monte Carlo iterative optimization using the MML function for setting the five parameters 

(Vmax, Km, and the three S0's) defined by their individual Gaussian probability density functions, doing 104 optimizations. The SD for Vmax/Km 
for the mid dose data was found by using Caladis (www.Caladis.org/compute/), also a Monte Carlo method. Error assessments are provided in the 
bottom row, the fractional error per point, ΣS'i−Si|/S'i/Np
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