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ABSTRACT

Clustering cells and depicting the lineage relation-
ship among cell subpopulations are fundamental
tasks in single-cell omics studies. However, exist-
ing analytical methods face challenges in stratify-
ing cells, tracking cellular trajectories, and identify-
ing critical points of cell transitions. To overcome
these, we proposed a novel Markov hierarchical clus-
tering algorithm (MarkovHC), a topological cluster-
ing method that leverages the metastability of ex-
ponentially perturbed Markov chains for systemati-
cally reconstructing the cellular landscape. Briefly,
MarkovHC starts with local connectivity and den-
sity derived from the input and outputs a hierarchi-
cal structure for the data. We firstly benchmarked
MarkovHC on five simulated datasets and ten pub-
lic single-cell datasets with known labels. Then, we
used MarkovHC to investigate the multi-level archi-
tectures and transition processes during human em-
bryo preimplantation development and gastric can-
cer procession. MarkovHC found heterogeneous cell
states and sub-cell types in lineage-specific progen-
itor cells and revealed the most possible transition
paths and critical points in the cellular processes.
These results demonstrated MarkovHC’s effective-

ness in facilitating the stratification of cells, identi-
fication of cell populations, and characterization of
cellular trajectories and critical points.

INTRODUCTION

High-throughput single-cell omics technologies, such
as single-cell RNA sequencing (scRNA-Seq), single-cell
ATAC sequencing (scATAC-Seq), and mass cytometry,
provide a tremendous amount of data resource that can be
used in studying functional cell subpopulations and their
lineage relationships. Currently, cell clustering, cellular
trajectory reconstruction, and critical point detection are
typically done through separate analyses. Modern cluster-
ing algorithms include Seurat (1), SC3 (2), SIMLR (3), etc.
(4–8) Classical ones include K-Means (9), hierarchical clus-
tering (10), density-based methods (11–13) spectral method
(14), and model-based method (15). After clustering, cellu-
lar trajectories analysis is performed to study relationships
among cell populations. These trajectories correspond to
biological processes such as lineage development and cell
differentiation. Among existing trajectory reconstruction
tools (16–22), monocle (16–18) is very popular. After this,
an important downstream analysis is to detect critical or
branching points on the cellular trajectory. Within the
tipping-point theory (23,24), the transitions among cellular
clusters occur when small perturbations at a cellular critical
point result in moving from one stable cluster to another.
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SGE (25) and scRCMF (26) are two useful tools for this
task. These separate tools may perform reasonably well
in their respective tasks, but we found it inconvenient to
combine these independent tools in a joint analysis.

An ideal approach to performing these three analyses
jointly could allow users to explore cell subpopulations and
their lineage relationships more efficiently and more effec-
tively with customized resolutions, this motivated us to de-
velop MarkovHC. As shown in Figure 1A, MarkovHC can
stratify common cell populations and their sub-populations
by a hierarchy, and simultaneously detect trajectories and
critical points among the cell populations on each resolu-
tion. The resolution of cell stratification unduly influences
cell population identification in single-cell data analyses.
For example, a resolution separating human ES cells from
neuronal progenitor cells may not readily subdivide sub-
types in neuronal progenitor cells. In the human cell atlas
(27), cell lineage means the developmental relationship of
cells; cell type implies a notion of homeostatic persistence;
cell state refers to more inducible or transient properties.
However, the boundaries among these concepts at the gene
transcriptional level can be fuzzy, partly due to the limit of
our knowledge and the understanding of cellular dynam-
ics. A bottom-up cellular hierarchy is intrinsic in single-cell
omics data (28). Recent works (4–8) have shown that hier-
archies of cell populations can be used to effectively interro-
gate the echelons of cells. The primary aim of our algorithm
is a hierarchical and interpretable clustering for systematic
and multiscale single-cell omics data analysis. Reconstruct-
ing differentiation paths and detecting critical points can
also be influenced by the clustering resolution. For instance,
to detect the lineage path and critical points from the 8-
cell embryo stage to the inner cell mass stage, an appropri-
ate clustering resolution should be chosen to discriminate
them. To this end, MarkovHC is designed to build a cel-
lular hierarchy and solve the two related problems on each
resolution simultaneously.

We demonstrate the effectiveness of MarkovHC through
several benchmark analyses. Five simulated datasets and ten
publicly available datasets including scRNA-Seq, scATAC-
Seq, and mass cytometry datasets were used for compar-
ative tests. MarkovHC performed equal to or better than
the state-of-the-art methods in terms of clustering accuracy
when compared to known labels. Additionally, MarkovHC
correctly stratified mouse lineage-specific progenitor cells
and was able to reconstruct the path in ‘continuum’ data
and detect critical points between stages. We further used
MarkovHC to explore cell differentiation in human preim-
plantation embryo development and disease progression in
gastric cancer. MarkovHC reconstructed the correct lineage
tree from the 8-cell stage to sub-populations in trophecto-
derm and inner cell mass. MarkovHC also revealed two po-
tential ‘hidden’ trajectories from mesenchymal stem cells to
early gastric cancer cells.

MATERIAL AND METHODS

Overview

The basic idea behind MarkovHC is intuitive. Waddington’s
epigenetic landscape (29,30) is a classical and metaphysical
concept. For high-dimensional single-cell omics data that

can be embedded in low-dimensional manifolds (31), it is
feasible to explore the cellular landscape by utilizing these
data. In Figure 1B, four basins correspond to four cell pop-
ulations on the cellular landscape. Pouring water into this
landscape, these basins will merge gradually as the water
level increases from level1 (Lv.1) to level4 (Lv.4). The basins
on these four levels form a four-level hierarchy which is con-
sistent with the topology of the landscape deriving based on
the geodesic distance. On each level (resolution), the bottom
of the basin (cell cluster) is the attractor (cluster core), the
water-flowing path among basins is the most possible tran-
sition path (cellular trajectory), and the tipping (critical)
point is the critical point on the cellular trajectory. Mov-
ing cells across different basins will cost energy which we
call pseudo-energy in this work. Further, an explanation of
the basic idea from the perspective of the dynamics and in-
tuitive illustration of concepts including basins, attractors,
transition paths, and critical points are available in Supple-
mentary Text S1 and Supplementary Figure S1.

Technically, we employed a Markov chain with an ad-
justable coarse-graining scale (‘temperature’) parameter to
model the hypothetical random walk of a cell over possi-
ble gene expression states. The transition probability matrix
is defined using similarity and density. Similarity character-
izes the degree of flow conductance among cells and density
measures the degree of cell concentration. As shown in Fig-
ure 1C, MarkovHC algorithm consists of five steps which
are elaborated in the following section.

Model

1. The input data. A gene expression or other molecu-
lar quantities data matrix (A = {agc: g = 1,2,..,G;
c = 1,2,. . . ,C} is taken as a generic input (Figure 1C).
We can view each distinct cell as a unique state in the
G-dimensional ‘expression’ space.

2. Shared nearest neighbours and density scores. The simi-
larity between two states can be calculated using the cells
shared between nearest neighbour states (sNN and Jac-
card index (32)), and the density can be defined as the
node degree.
In a high-dimensional space, sNN can explore the nat-
ural geodesic distance on the underlying manifolds and
has been proved to be robust in recovering cell subpopu-
lations and reconstructing trajectories (33,34). We define
sNN similarity si,j between node i and node j as

si,j = #
{
neighbours ∈ KNNi ∩ KNNj

}
, (1)

where KNNi is the K nearest neighbours of node i.
For the robustness of our algorithm, the degree of each
node (density score) in the sNN network is used to mea-
sure the cell aggregation density

Di =
n∑

j=1

a (i, j), where a (i, j) =
{

0, edges(i, j) = ∅,
1, edges(i, j) �= ∅.

(2)

The density scores of the nodes are used together with
the similarity matrix to define the basic Markov transi-
tion probability.

3. Initial Markov transition matrix. Intuitively, the basic
idea of the transition probability is that the larger the
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Figure 1. Overview of MarkovHC. (A) MarkovHC simultaneously performs hierarchical clustering, transition path tracking, and critical points detecting.
(B) The intuitive idea behind MarkovHC. (C) The workflow of MarkovHC: (1) The original input data is the matrix of genes by cells. (2) We calculate
sNN (shared Nearest Neighbours) among cells to get the cell by cell similarity matrix. Then we construct a cellular network using the similarity matrix
and calculate each cell’s degree (D scores) in the network. (3) The Markov transition matrix is calculated using the similarity matrix and D scores. (4) The
pseudo-energy matrix is calculated based on the Markov transition matrix. (5) The hierarchical structure is constructed based on attractors, basins, and
critical points on each level.

similarity among nodes, the larger the probability of
transition. Besides, nodes with high-density transit to
nodes with low-density with low probabilities, vice versa.
The transition probability from node i to node j is de-
fined as

p (j |i ) = lim
β→∞

e
−β 1

s2
i,j

(
Di
Dj

)2

∑n
j=1 e

−β 1
s2

i,j

(
Di
Dj

)2 (3)

We denote the Markov transition matrix by P1.
4. Pseudo-energy matrix. Based on the metastability the-

ory developed by one of us (35), the pseudo-energy ma-
trix is all we need to build the hierarchical structure. The
pseudo-energy consumed by the direct transition from
node i to node j is defined as

ci,j = lim
β→∞

− 1
β

log pβ (j |i ) (4)

This formula transforms the transition probability ma-
trix P1 to the pseudo-energy matrix C1 representing
the pseudo-energy cost. We can calculate the multi-step
pseudo-energy cost between nodes by calculating the
length of the shortest path, which is equal to geodesics
on the surface of this ‘energy landscape’ (36) using the
Dijkstra algorithm (37). If node i cannot transit to node

j, the corresponding entry in matrix C1 is set to be infi-
nite.

5. Build the hierarchical structure. We term basins as clus-
ters and attractors as highest-density cores of these clus-
ters. Attractors are steady states in multi-stable systems
and basins consist of attractors and their subsidiary
points. These two notions have been widely used in pre-
vious works (38) modelling the nonlinear dynamics of
organisms and biological phenomena as dynamics sys-
tems.

The hierarchical structure is built in an iterative manner.
As shown in step 5 of Figure 1C, for any given pseudo-
energy threshold � > 0, nodes with ‘distances’ (i.e. the asym-
metric amount of pseudo-energy cost ci,j in step 4) smaller
than � are partitioned into one basin. From Lv.1 to Lv.3,
the basin merges as � increases from �1 to �3, and thus
forms a hierarchical structure. With a given �, points in the
core of each basin are attractors (red); points connecting at-
tractors are transition paths (black border); tipping points
on transition paths are critical points (purple). A more de-
tailed description of this step is available in Supplementary
Text S1. For easy level selection, we also provided an al-
gorithm reconciling four indexes to automatically choose
levels with probable and interpretable clusters from the hi-
erarchy in Supplementary Text S2. In addition, we put
the technical details of MarkovHC in Supplementary Text
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S3 and the mathematical details of the metastability of
exponentially perturbed Markov chains in Supplementary
Text S4.

RESULTS

MarkovHC stratifies cells in agreement with known identities

To assess the performance of MarkovHC in stratification,
we used it to stratify five simulation datasets and two
scRNA-Seq datasets with known identities. For the five
simulation datasets, four of these are 2 or 3-dimensional
datasets (Figure 2A, B and Supplementary Figure S2) and
the remaining one is a 1000 cells × 5000 genes dataset gen-
erated by splatter (39) (Figure 2C). MarkovHC was able to
cluster hetero-density basins (Figure 2A), non-convex (the
blue basin in Figure 2A and helixes in Supplementary Fig-
ure S2M), and continuum basins (Figure 2C), which cor-
respond to hetero-density cell populations, complex clus-
ter shapes, and differentiation states or lineages in single-
cell omics data. Meanwhile, the hierarchy in Figure 2B
is consistent with the distance among the basins in Fig-
ure 2A. Figure 2C shows the successfully detected trajec-
tory and critical points. Supplementary Figure S2N and O
show the differentially expressed genes (DEGs) along this
trajectory.

For the two scRNA-Seq datasets, we used MarkovHC to
interrogate the echelons of cells. From the bottom to the
top, cell types, cell states, and cell lineages were presented on
the cellular hierarchy. Chu et.al. (40) sorted and sequenced
1018 cells of six cell types including undifferentiated H1/H9
human ES cells, neuronal progenitor cells, definitive endo-
derm cells, endothelial cells, trophoblast-like cells, and hu-
man foreskin fibroblasts (Figure 2D). This dataset can be
considered as a ‘gold-standard’ for stratification. Lv.7 was
automatically chosen from the hierarchy (Figure 2F). There
are six basins (Figure 2E) that perfectly match the six known
cell types in Figure 2D. The H1/H9 ES basin and the neu-
ronal progenitor basin separate into two basins on Lv.6
and Lv.5 respectively (Figure 2E, F). The patterns of top
50 DEGs (Supplementary Figure S3A, left; Supplementary
Table S1) and 34 lineage-specific markers from Chu’s pa-
per (40) (Supplementary Figure S3A, right) suggested the
cells of each Lv.5-basin were homogeneous. In H1/H9 ES
cells, the up-regulated genes of the dark brown basin (Fig-
ure 2F) were enriched in cell division and cell cycle-related
terms (Supplementary Figure S3B), which suggested these
cells were in a more active division stage. In neuronal pro-
genitor cells, the up-regulated genes of the light blue basin
(Figure 2F) were enriched in cerebral cortex development-
related terms (Supplementary Figure S3C), while those of
the dark blue basin (Figure 2F) were enriched in forebrain
development and synapse organization-related terms (Sup-
plementary Figure S3D), which suggested that two sub-cell
types might be found in these neuronal progenitor cells. The
definitive endoderm cell and endothelial cell were two lin-
eages that were merged on Lv.8.

The classification and hierarchical structures of human
peripheral blood mononuclear cells (PBMCs) have been
well studied previously (41–43). The echelon of PBMCs also
can be considered as a ‘gold-standard’ for cellular stratifica-
tion. We used MarkovHC to stratify a scRNA-Seq dataset

of 33,000 PBMCs in Supplementary Figure S4A and Sup-
plementary Text S5. To automatically identify cell popula-
tion transition on the hierarchy with biological meaning, we
provided a strategy, BHI selection, based on the biological
homogeneity index (the details are available in Supplemen-
tary Text S6). Basins correspond to B cells, T cells, NK cells,
megakaryocyte, monocyte, pDC, and their sub-cell popu-
lations were identified by MarkovHC. Thus, these results
demonstrate that MarkovHC is able to automatically strat-
ify common cell populations and their sub-populations si-
multaneously.

Benchmark MarkovHC against current methods for cluster-
ing

To assess the performance of MarkovHC in clustering, we
benchmarked it against eight existing methods for cluster-
ing (Figure 2G): Seurat (1), SIMLR (3), SC3 (2), K-Means
(9), hierarchical clustering with average linkage (HC) (10),
Hdbscan (13), spectral clustering (Specc) (14) and model-
based clustering (Mclust) (15). We used one simulation
dataset (splatter) and seven previously analysed single-cell
datasets including five scRNA-Seq datasets (Kolod (44),
Pollen (45), Usoskin (46), Zeisel (8), and Celegans (47)),
one mass cytometry dataset (cytof (48)) and one scATAC-
Seq dataset (scATAC; detailed analyses of this dataset are
available in Supplementary FigureS4 and Supplementary
Text S7) from a variety of biological systems. For each of
these datasets, cell labels have been well identified. In or-
der to measure the agreement between known identities
and clustering labels, we used adjusted rand index (ARI)
(49) and normalized mutual information (NMI) (50) as test
statistics.

Cells were coloured by the cluster labels from the original
study and each clustering method in Supplementary Fig-
ureS5. Splatter is a ‘continuum’ dataset. Celegans have been
considered ‘gold-standard’ to test lineage clustering algo-
rithms as Packer et al. (47) carefully annotated these cells
and lineages. In tissue development and cell differentiation,
the single-cell data are in a ‘continuum’, which makes it
harder to cluster. As MarkovHC depends on topological
connectivity (51,52) and local density, it outperformed the
other methods in clustering these two datasets (‘splatter’
and ‘Celegans’ in Figure 2G and Supplementary Figure S5).
MarkovHC performed equal to or better than those meth-
ods in clustering scRNA-Seq datasets (Kolod (44), Pollen
(45), Usoskin (46), Zeisel (8), and Celegans (47) in Figure
2G). Since MarkovHC is free of data distribution assump-
tion, it can be applied to other omics data such as mass
cytometry data and scATAC-Seq data, too. MarkovHC,
Seurat, and Mclust performed better than the rest in clus-
tering the cytof (48) and scATAC datasets. In Supplemen-
tary Text S7, we applied MarkovHC on two scATAC-Seq
datasets with matching scRNA-Seq datasets. The results
showed its good scalability in clustering scATAC-Seq data.
We also noticed that using scRNA-Seq and scATAC-Seq
datasets together could improve clustering accuracy and
identify more and better sub-cell types. We also theoreti-
cally compared MarkovHC with eighteen popular cluster-
ing methods (1–7,10–14,53–62), topological data analysis
(51), and four representative trajectory construction meth-
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Figure 2. MarkovHC stratifies and clusters cells in agreement with known identities. (A) These 2-dimensional basins and attractors (red) found by
MarkovHC are consistent with the topology. (B) The hierarchy from Lv.24 to Lv.27 of basins in (A). The sizes of basins represent the number of samples
and the colors indicate different basins. (C) These 1000 cells × 5000 genes data were projected into 3-dimensional space by principal component analysis.
Three basins were clustered (brown, green, and blue; the purple points are critical points; the yellow arrow shows the path from basin1 to basin 3). (D)
scRNA-Seq data (40) of 1018 human ES cell-derived lineage-specific progenitors were projected into 2-dimensional space by phateR. (E) Basins from
Lv.5 to Lv.8 reveal known cell types and sub-basins in the neuronal progenitor cells and H1/H9 ES cells. (F) From the bottom to the top, levels of the
hierarchical structure correspond to cell types, cell states, and cell lineages. (G) ARI (Adjusted Rand Index) and NMI (Normalized Mutual Information)
show MarkovHC performed equal to or better than these methods in clustering.

ods (16–18,20–22) in Supplementary Text S8 and Supple-
mentary Table S2.

To sum up, overall, MarkovHC, Seurat, SIMLR, and
SC3 exhibited superior performance in clustering against
the others. As MarkovHC utilizes connectivity and den-
sity derived from data, it outperformed all other algorithms
in clustering ‘continuum’ datasets (‘splatter’ and ‘Celegans’
in Figure 2G and Supplementary Figure S5). Besides, as
MarkovHC is free of data distribution assumption, it can
be used to cluster other omics data as long as the ‘sim-
ilarity’ between cells can be reliably calculated using the
data.

MarkovHC revealed transition paths and critical points in hu-
man preimplantation embryo development

To reveal transition paths among lineage-related cell types
and detect critical points in human preimplantation em-
bryo development, we applied MarkovHC to analyse the
scRNA-Seq dataset (63) of 1529 single-cells collected from
88 human preimplantation embryos at seven stages (Fig-
ure 3A). Petropoulos et al. (63) identified eight groups in
these cells, including pre-lineages, trophectoderm (TE), in-
ner cell mass (ICM), epiblast (EPI), primitive endoderm
(PE), E5mid, mural, and polar in these data.
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Figure 3. MarkovHC revealed transition paths and critical points in human preimplantation embryo development. (A) The scRNA-Seq data (63) of 1529
human preimplantation embryos cells from the E3 stage to the E7 stage were projected into 3-dimensional space by phateR. E3–E7 indicates the embryonic
day. E4.late and E5.early indicate cells picked 4–6 hours later and earlier than that in the E4 stage and the E5 stage, respectively. (B) Ten basins on Lv.12
correspond to ten asynchronous development stages in human preimplantation embryos cells. (C) The cellular hierarchy from Lv.12 to Lv.20. (D) The
heatmap of the top 50 DEGs and enriched GO terms per basin. (E) Four main cell types with sub-populations which are 8-cell embryo, morula cell, ICM
(inner cell mass), and TE (trophectoderm) were identified according to marker genes expression. (F) The transition path (yellow arrow) from the 8-cell
embryo to ICM was tracked. The yellow points indicate cells along the path and the purple points indicate the critical points from morula cells to ICM. (G)
DEGs along the transition path in (F). (H, I) Important marker genes show increasing and decreasing ‘gene-flow’ trends along the path. Gene expression
varies dramatically around critical points (purple points). (J) The inferred development hierarchy is consistent with the ground truth of the development
hierarchy (in the lower right corner).
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The basins on Lv.12 (Figure 3B) were automatically cho-
sen from the cellular hierarchy (Figure 3C) by MarkovHC.
To reveal the biological processes in each basin, the top 50
DEGs of each basin (Supplementary Table S3) were en-
riched in GO terms related to the process of embryonic de-
velopment (Figure 3D; Supplementary Table S4). We used
canonical marker genes from the paper of Petropoulos et al.
(63) and LifeMap Discovery (https://discovery.lifemapsc.
com/in-vivo-development/) to identify the basins in Fig-
ure 3E: four main cell types were 8-cell embryo (GATA6-,
SOX7-, SOX17-), morula cell (GATA6+, SOX7-), ICM (in-
ner cell mass; SOX2+, PDGFRA+) and TE (trophecto-
derm; GATA2+, GATA3+); sub-groups (63) in ICM and
TE were polar cells (GCM1+, NRP1+, SLCO4A1+), mural
(WIPF3+, PLCE1+, PDCD4+, SLC15A2+), EPI (SOX2,
TDGF1, DPPA5, GDF3, PRDM14) and PE (PDGFRA,
FGFR2, LAMA4, HNF1B).

We also used MarkovHC to reconstruct the transition
path and detect the critical points from the 8-cell embryo
to ICM as shown in Figure 3F. In this figure, yellow points
indicate cells on the transition path and purple points indi-
cate critical points from morula cells to ICM. There were
2476 DEGs (Supplementary Table S5) along this path (Fig-
ure 3G). The expression of significant genes dramatically
changed around critical points (purple points in Figure 3H
and I) indicating that these points may play pivotal roles
in the developmental process. The development hierarchy
(Figure 3J) was also inferred according to the transition
probability matrix (Supplementary FigureS6A) and the tra-
jectories (Supplementary FigureS6B), which is consistent
with the ground truth hierarchy of human embryo devel-
opment (in the lower right corner of Figure 3J).

MarkovHC detected clinical related pathways from MSCs to
gastric cancer cells

The transition process from normal gastric cells to can-
cer cells is complex and not fully described. Many stud-
ies have been carried out to better understand carcino-
genesis (64–66). For example, Zhang et al. (67) conducted
a single-cell transcriptomic study on gastric antral biop-
sies and identified gastric cancer-related cell populations.
We used MarkovHC to analyse the scRNA-Seq data of
831 mesenchymal stem cells (MSCs) and 695 MSC-origin
early gastric cancer cells (EGCs) (Figure 4A) from their
study.

To identify the cell types, we used MarkovHC to auto-
matically choose two basins on Lv.21 (Figure 4B) and their
sub-basins on Lv.18 (Figure 4C, D). GO analysis of the top
50 DEGs of each basin on Lv.18 (Supplementary Table S6)
were related to gastric cancer progression (Supplementary
Table S7; Figure 4E). To reconstruct the trajectories from
MSCs to EGCs, we used MarkovHC to detect two transi-
tion paths with critical points from Basin 1 to Basin 4 (Fig-
ure 4C). MSC markers (OLFM4, EPHB2, SOX9) gradu-
ally decreased from MSCs to EGCs, while EGC markers
(KLK10, SLC11A2, SULT2B1, KLK7, ECM1, LMTK3)
gradually increased (Supplementary Figure S6C) (67). The
inferred transitions among these basins based on the tran-
sition probability matrix (Supplementary FigureS6D) were
shown in Figure 4D.

In Figure 4F, G, and Supplementary Table S8, the de-
creased genes of Path1 and Path2 were enriched in pro-
tein targeting, protein stabilization, and cell cycle arrest-
related terms. The increased genes of Path1 were enriched
in neutrophil-mediated immunity and alcohol metabolic
process-related terms, suggesting that the potential disease
progress might be driven by alcohol stimulus (68). Inter-
estingly, this was partially supported by the fact that this
patient (p8 in Zhang et al.’s paper (67)) had a chronic alco-
hol consumption history. In Path2, the increased genes were
enriched in neutrophil-mediated immunity and response
to metal ion-related terms suggesting this path could be
driven by metal pollution stimulus (69). As shown in Fig-
ure 4H, we observed OLFM4, a marker for stem cells in the
human intestine, decreased along Path1 (70), while CEA-
CAM6, which plays important role in invasion and metas-
tasis in Gastric Cancer, increased (71). In Figure 4I, SOX4
decreased along Path2, which was consistent with the re-
sults that MiR-596 down-regulates SOX4 expression and
was a potential novel biomarker for gastric cancer (72),
while NEAT1, a long non-coding RNA promoting viability
and migration of gastric cancer cells through up-regulation
of microRNA-17, increased (73). Furthermore, expression
values of these genes dramatically changed around the crit-
ical points (purple points in Figure 4H, I), which suggested
these were unstable cells in the trajectories. Thus, these two
paths might be two potential routes from MSCs to EGCs
for this patient, which could be valuable in revealing the un-
derlying mechanisms of the disease progression.

DISCUSSION

In this paper, we developed MarkovHC based on the
metastability of exponentially perturbed Markov chain to
jointly perform hierarchical clustering, trajectory recon-
struction, and critical point detection. We also developed a
user-friendly R package, ‘MarkovHC’ (https://github.com/
ZhenyiWangTHU/MarkovHC). For ease of use, we pro-
vided algorithms to automatically choose the number of
PCs (Supplementary Text S3 and Supplementary Figure
S7), to recommend levels with the reasonable number of
clusters, and to identify levels with biologically meaning-
ful basin transitions. The results showed that MarkovHC
could accurately cluster cells into populations at differ-
ent resolutions, in terms of the established knowledge. Be-
sides, MarkovHC performed equal to or better than the
state-of-the-art algorithms in clustering specific tasks. Since
MarkovHC is free of data distribution assumption, it can
be applied to other omics data such as mass cytometry data
and scATAC-Seq data. Furthermore, the transition paths
and the critical points among cell populations detected by
MarkovHC could reveal certain developmental processes
well, such as human embryonic development or cancer pro-
gression from MSCs to EGCs.

Besides the analyses described above, there could be some
other analyses where MarkovHC is helpful. Firstly, one
could calculate pseudo-time (16–19) on a customized res-
olution (the details are available in Supplementary Text
S3 and Supplementary Figure S8). Secondly, one could
start out from a given relevant biological level, e.g. based
on prior knowledge or other clustering methods, and use

https://discovery.lifemapsc.com/in-vivo-development/
https://github.com/ZhenyiWangTHU/MarkovHC
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Figure 4. MarkovHC detected critical points from MSCs to gastric cancer cells. (A) 831 mesenchymal stem cells (MSCs) and 695 MSC-origin early gastric
cancer cells (EGCs) (67) were projected into 2-dimensional space by UMAP. (B) MarkovHC found two basins on Lv.21. (C) Five basins were clustered
and two transition paths from MSCs to EGCs were inferred by MarkovHC. Purple points indicate critical points on the transition paths. (D) The inferred
transitions among basins in (C). (E) The heatmap and enriched GO terms of the top 50 DEGs per basin in (C). (F, G) DEGs along Path1 and Path2 in (C).
(H-I) OLFM4 and CEACAM6 showed opposite ‘gene-flow’ trends along Path1 (H). SOX4 and NEAT1 showed opposite ‘gene-flow’ trends along Path2
(I). The expression values of these genes dramatically changed around the critical points.

MarkovHC to explore the next level up or down in the
hierarchy. Thirdly, the hierarchical structure obtained by
MarkovHC could be used to jointly analyse multi-omics
data, e.g. by using UnionCom (74) recently developed by
Cao et al. for the unsupervised topological alignment of
single-cell multi-omics data. In addition, we put the de-
tailed time complexity analysis of MarkovHC in Supple-
mentary Text S8 and Supplementary Table S9. Although
our method costs more time than Seurat, it can get more
information from data including a cluster hierarchy, tran-
sition paths, and critical points among clusters. Compared
with all the other methods, MarkovHC has a better compu-
tational complexity.

Finally, as our method is based on a general mathemat-
ics theory (Supplementary Text S4 and Supplementary Fig-
ure S9), it is robust as long as the input matrix reliably
measures the ‘similarity’ among samples (Supplementary
Text S7, Supplementary Text S8, and Supplementary Fig-
ure S10). It is possible to further apply the metastability
of exponentially perturbed Markov chain to develop algo-
rithms for spatial transcriptomic data analysis.

DATA AVAILABILITY

R package ‘MarkovHC’ is an open source available in the
GitHub repository (https://github.com/ZhenyiWangTHU/
MarkovHC).

The scRNA-Seq dataset used in Figure 2D was down-
loaded from GEO under accession number GSE75748. In
these data, the labeled cell types include neuronal progen-
itor cells (NPCs, ectoderm derivatives, n = 173), DE cells
(endoderm derivatives, n = 138), endothelial cells (ECs,
mesoderm derivatives, n = 105), trophoblast-like cells (TBs,
extraembryonic derivatives, n = 69), undifferentiated H1 (n
= 212) and H9 (n = 162) human ES cells, and human fore-
skin fibroblasts (HFFs, n = 159).

The scRNA-Seq datasets and labels in Figure 2G
(‘Kolod’, ‘Pollen’, ‘Usoskin’, ‘Zeisel’) were down-
loaded from ‘SIMLR’ repository (https://github.com/
BatzoglouLabSU/SIMLR).

The scRNA-Seq dataset and lineage labels of C. elegans
embryogenesis in Figure 2G (‘Celegans’) were downloaded
from GEO under accession number GSE126954.

The mass cytometry dataset of PBMC in Figure 2G
(‘cytof’) was downloaded from the Supplementary ma-
terials of Anchang’s paper (48) (https://www.nature.com/
articles/nprot.2016.066).

The scRNA-Seq dataset of 33k PBMCs in Supple-
mentary Figure S4A was downloaded from 10X ge-
nomics support (https://support.10xgenomics.com/single-
cell-gene-expression/datasets/1.1.0/pbmc33k).

The scRNA-Seq and scATAC-seq datasets in Supple-
mentary Figure S4B, C and D were downloaded from GEO
under accession numbers GSE115968 and GSE107651.

https://github.com/ZhenyiWangTHU/MarkovHC
https://github.com/BatzoglouLabSU/SIMLR
https://www.nature.com/articles/nprot.2016.066
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/pbmc33k
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The single-cell datasets in Supplementary Figure S4E,
F, and G measuring both DNA accessibility and gene
expression in the same cells were downloaded from 10x
genomics support (Count matrix: https://cf.10xgenomics.
com/samples/cell-arc/1.0.0/pbmc granulocyte sorted 10k/
pbmc granulocyte sorted 10k filtered feature bc matrix.
h5; ATAC fragment file: https://cf.10xgenomics.com/
samples/cell-arc/1.0.0/pbmc granulocyte sorted 10k/
pbmc granulocyte sorted 10k atac fragments.tsv.gz;
ATAC fragment file index: https://cf.10xgenomics.com/
samples/cell-arc/1.0.0/pbmc granulocyte sorted 10k/
pbmc granulocyte sorted 10k atac fragments.tsv.gz.tbi)

The scRNA-Seq dataset of 1529 single-cells in Figure 3
was downloaded from EMBL-EBI under accession num-
ber E-MTAB-3929 (https://www.ebi.ac.uk/arrayexpress/
experiments/E-MTAB-3929/).

The scRNA-Seq dataset of 831 mesenchymal stem cells
(MSCs) and 695 MSC-origin early gastric cancer cells
(EGCs) was downloaded from GEO under accession num-
ber GSE134520.

The scRNA-Seq dataset of 242,533 single-cells from
mouse cell atlas (MCA) was downloaded from https://www.
dropbox.com/s/8d8t4od38oojs6i/MCA.zip?dl=1

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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