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Purpose: To develop and validate the radiomics nomogram that combines clinical factors
and radiomics features to estimate overall survival (OS) in patients with clear cell renal cell
carcinoma (ccRCC), and assess the incremental value of radiomics for OS estimation.

Materials and Methods: One hundred ninety-four ccRCC cases were included in the
training cohort and 188 ccRCC patients from another hospital as the test cohort. Three-
dimensional region-of-interest segmentation was manually segmented on multiphasic
contrast-enhanced abdominal CT images. Radiomics score (Rad-score) was calculated
from a formula generated via least absolute shrinkage and selection operator (LASSO)
Cox regression, after which the association between the Rad-score and OS was
explored. The radiomics nomogram (clinical factors + Rad-score) was developed to
demonstrate the incremental value of the Rad-score to the clinical nomogram for
individualized OS estimation, which was then evaluated in relation to calibration and
discrimination.

Results: Rad-score, calculated using a linear combination of the 11 screened features
multiplied by their respective LASSO Cox coefficients, was significantly associated with
OS. Calibration curves showed good agreement between the OS predicted by the
nomograms and observed outcomes. The radiomics nomogram presented higher
discrimination capability compared to clinical nomogram in the training (C-index: 0.884;
95% CI: 0.808–0.940 vs. 0.803; 95% CI: 0.705–0.899, P < 0.05) and test cohorts (C-
index: 0.859; 95% CI: 0.800–0.921 vs. 0.846; 95% CI: 0.777–0.915, P < 0.05).

Conclusions: The radiomics nomogram may be used for predicting OS in patients with
ccRCC, and radiomics is useful to assist quantitative and personalized treatment.
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INTRODUCTION

Renal cell carcinoma (RCC) is one of the most common
urological malignancies that accounts for approximately 3.8%
of all human cancers (1). Approximately 300,000 patients are
diagnosed with RCC every year, resulting in 140,000 RCC-
related deaths (2). The overall 5-year survival rate for the
majority of patients (65%) diagnosed with localized RCC is
93%, whereas for those with lymph node metastasis or distant
metastasis is 66 and 12%, respectively (3).

Clear cell renal cell carcinoma (ccRCC) constitutes the
highest proportion (90%) of all diagnosed RCC and is the
subtype with the poorest prognosis. In addition, ccRCC is
associated with high metastatic potential (4). It is essential to
find accurate predictive information for valid prognosis
assessment, treatment planning, and implementation of
surveillance strategies. Due to the lack of reliable biomarkers,
prognostic prediction is primarily based on the combination of
stage, grade, and histology (5). The conventional prognostic
evaluation relies on the American Joint Committee on Cancers
(AJCC) tumor-node-metastasis (TNM) staging system (6).
However, the accuracy of the prognostic system for
individualized prediction is limited (7). The prognostic models
—Memorial Sloan Kettering Cancer Center [MSKCC]; Stage,
Size, Grade, and Necrosis [SSIGN]; and the University of
California at Los Angeles Integrated Staging System [UISS]—
which include more clinical and pathological factors, have been
proposed to guide the follow-up in RCC patients, including
ccRCC (8–10). However, a prospective study that evaluated 1,647
patients with RCC reported that the above models have a slightly
better prediction efficiency compared to the TNM staging system
(5). Furthermore, the predictive ability of these models was
instable after 2 years after diagnosis. Consequently, more
accurate prediction models are needed to achieve precise and
individualized prognostic evaluation.

Radiomics is a relatively new approach that extracts features
from multimodality medical images using data-characterization
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algorithms (11). Over the last decade, radiomics features have
been applied as imaging biomarkers for prognosis, staging, and
prediction of cancer (12). The radiomics approach has been
successfully applied to predict metastasis, recurrence, and other
clinical outcomes of lung cancer, breast cancer, and colorectal
cancer (13–15). To the best of our knowledge, the majority of
previous radiomics studies related to RCC focused on the
differentiation between malignant and benign renal lesions and
the prediction of nuclear grading (16, 17), while only a few
studies reported on radiomics-based research for prediction of
overall survival (OS) in ccRCC. In this study, we investigated
whether the radiomics features extracted from the enhanced CT
images could be used to quantitatively assess the OS in patients
with ccRCC.
MATERIALS AND METHODS

Patients
Ethical approval for this retrospective study was obtained by the
Ethics Committee of the Affiliated Hospital of Qingdao
University. A total of 382 patients with ccRCC were enrolled
in this two-center study. One hundred ninety-four patients from
the Affiliated Hospital of Qingdao University (from May 2011 to
December 2016) were collected as the training cohort, and 188
patients from Shandong Provincial Hospital (from June 2012 to
May 2017) were collected as the independent test cohort. The
detailed recruitment pathway for patients in this study is
presented in Figure 1.

Three hundred fifty-one patients with TNM group I, II, and
III were treated with radical or partial nephrectomy. Among 31
patients with TNM group IV, 29 patients underwent
cytoreductive nephrectomy or tumors resection, and two
patients with surgically unresectable tumors were treated with
tissue sampling. After diagnosis, 20 out of the 31 patients
received one or fewer systemic treatments (targeted therapy,
immunotherapy, or chemotherapy).
FIGURE 1 | The patient recruitment pathway with inclusion and exclusion details.
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The beginning of the follow-up was the date of diagnosis by
pathological examination. Patients were reviewed every 6 to 12
months for the first 2 years, then every year after that. The review
included clinical physical examination, chest X-ray, abdominal
ultrasound, abdominal CT, or MRI. All data were collected in
July 2019, and a follow-up phone call was conducted for patients
who were not able to visit the hospital. The endpoint of the study
was the time of death or the date of the last follow-up.

Baseline data consisted of age, sex, TNM group (I, II, III, or
IV), Fuhrman grade, presence of histologic necrosis, hemoglobin
(HB), neutrophil count (NE), lymphocyte count (LY), platelet
count (PLT), blood urea nitrogen (BUN), creatinine (CREA),
Eastern Cooperative Oncology Group Performance Status
(ECOG-PS), and calculated neutrophil-lymphocyte ratio (NLR).

CT Image Acquisition, Region-of-Interest
Segmentation, and Radiomics
Feature Extraction
CT scan protocols are explained in Supplementary Methods.
The unenhanced abdominal scan was performed first. The
enhanced scan was performed after injecting a 90–100 ml
iodinated contrast agent (Ultravist 370, Bayer, Germany) into
the antecubital vein at a flow rate of 2.5–3.0 ml/s. Images of
corticomedullary phase (CMP), nephrographic phase (NP), and
excretory phase (EP) were obtained at 30–35, 80–90, and 300–
350 s after contrast injection, respectively.

Pre-treatment contrast-enhanced abdominal CT was exported
in DICOM form from the picture archiving and communication
system (PACS) workstation. Three-dimensional (3-D) ROI
segmentation was manually performed using the ITK-SNAP
software (Version 3.8.0, www.itksnap.org). Before feature
extraction, image resampling and gray-level discretization were
applied for the standardization of three-phase CT images. A total
of 1,409 quantitative imaging features were extracted from each
phase of CT images with the Radcloud platform (Huiying Medical
Technology Co., Ltd). Radcloud platform was utilized to process the
imaging and clinical data, as well as the spectra of radiomics
analysis. The platform feature extraction is based on the
“pyradiomics” package in Python (version 2.2.0, https://
pyradiomics.readthedocs.io/). The features were grouped into
three groups: (1) first-order statistics features describe the
distribution of voxel intensities; (2) size- and shape-based features
that reflect the size and shape of the region; (3) texture features that
can quantify region heterogeneity differences. In addition, several
filters were used to calculate the intensity and texture features on
original images and derived images. The details of the radiomics
features are shown in Supplementary Methods.

To obtain the inter-class correlation coefficient, ROIs of the
30 patients were segmented by two radiologists with 5 and 10
years of abdominal imaging experience, respectively. Then, the
first radiologist completed the segmentation of the 30 ROIs after
2 weeks to obtain an intra-class correlation coefficient. To
enhance the stability and reproducibility, radiomics features
derived from the ROIs with both inter- and intra-class >0.75
were retained in the analysis and used in the following study. The
first radiologist delineated the remaining ROIs.
Frontiers in Oncology | www.frontiersin.org 3
Feature Selection and Radiomics
Score Calculation
The least absolute shrinkage and selection operator (LASSO)
penalized Cox proportional hazards regression, which is
appropriate for reducing high-dimensional data, was applied to
select the optimal prognostic features in the training cohort. A
formula was generated via a linear combination of the screened
features multiplied by their respective LASSO Cox coefficients.
Then, the formula was used to calculate the Rad-score of each
individual. The median Rad-score was applied as a cutoff that
stratified patients into the high-risk group with short survival time
and the low-risk group with long survival time. The association of
Rad-score with OS was estimated using the Kaplan-Meier survival
analysis, and the difference in survival between the stratified
subgroups was determined using the log-rank test.

Rad-Score Assessment
Both 3-year and 5-year OS were described and analyzed in the
training and test cohorts. The distribution of Rad-score in the 3-
year survival group and the dead group was illustrated in a violin
plot (box plot in the middle and a density plot on the side);
Wilcoxon rank-sum test was used to analyze the significant
difference. In addition, the prognostic accuracy of the Rad-
score for the 3-year survival group and the dead group was
assessed through the time-dependent receiver operating
characteristic (ROC) analysis and the correlated area under the
ROC curve (AUC). Rad-score for the 5-year survival group and
the dead group was analyzed using the same processes.

Development of the Clinical and
Radiomics Nomograms
Clinical factors were assessed for their impact on OS by the
univariable and multivariable Cox regression analysis in the
training cohort. The clinical nomogram for probability prediction
of 3- and 5-year OS was developed based on the multivariable Cox
regression analysis. Independent prognostic clinical factors were
selected through the last step, and Rad-score was used to develop
the radiomics nomogram by the multivariable Cox regression
analysis. The variables were no longer excluded in this section.
The relative hazard ratio (HR) of each factor from the two
nomograms was obtained simultaneously. The severity of
multicollinearity among variables was detected using the Variance
inflation factor (VIF) before the nomograms development regarding
respective multivariable Cox regression. If VIF was <10, the
multicollinearity was low.

Performance of the Clinical and
Radiomics Nomograms
To assess the performance of the clinical and radiomics
nomograms, calibration and discrimination were performed in
the training cohort and then validated in the test cohort. The
calibration curve was used to indicate the agreement between the
OS predicted by the nomograms and the observed outcomes
after bias correction in 3- and 5-year OS. The Harrell
concordance index (C-index) was measured to quantify the
discrimination performance of the nomograms. To evaluate
June 2021 | Volume 11 | Article 671420
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the goodness-of-fit of the nomograms, the Akaike information
criterion (AIC) was generated. The discrimination capability of
the two nomograms was compared to assess the incremental
value of the Rad-score to the general clinical risk factors for an
individualized assessment of OS in patients with ccRCC.

Additionally, the risk group, which was predicted by the
nomogram with better discrimination capability, was used as a
prediction factor to generate the Kaplan-Meier survival curves. If
survival probability at 3 or 5 years predicted by the nomogram
was <0.5, the patient was stratified into the nomogram-predicted
(Nomo-predicted) high-risk group; if it was >0.5, the patient was
stratified into the Nomo-predicted low-risk group. The
difference between survival curves was assessed by using the
log-rank test. The Kaplan-Meier survival curves were depicted by
using actual survival status as prediction factor as well. The
workflow of the study is shown in Supplementary Figure 1.

Statistical Analysis
The statistical analysis was performed with SPSS version 24.0 and R
software (version 3.3.3 https://www.r-project.org). The Student’s t-
test, Chi-square test, or Non-parametricMann-Whitney U test were
applied to compare the differences in clinical factors between the
training and test cohorts using SPSS software. Analysis and figure
plots for the remaining data were performed using R software. A
two-sided P < 0.05 was considered to be statistically significant.
RESULTS

Clinical Factors and OS
By the time of the last follow-up, 60 patients (15.7%) died. The
mean OS was 56 months, and the median OS was 59.0 months
(interquartile range: 49.8–68.0 months) in the training cohort; the
mean and median OS for the test cohort was 46 months and 43.5
months (interquartile range: 32.3–60.0 months), respectively. A
significant difference in OS was observed between the two cohorts
(P < 0.05), which was calculated based on the differences at follow-
up time. No difference was found in sex, age, TNM group, presence
of histologic necrosis, ECOG-PS, HB, LY, and BUN between the
two cohorts (all P > 0.05), While differences in Fuhrman grade, NE,
NLR, PLT, and CREA distribution were statistically significant (P <
0.05) (Table 1).

Feature Extraction, Selection, and Rad-
score Calculation
After excluding the subjective difference in ROI segmentation by
observers, we only retained the repeatable and stable radiomics
features with the inter- and intra-class correlation coefficients
>0.75 and obtained 3,485 three-phase CT imaging features. After
that, 11 optimal prognostic features were screened out through
the LASSO Cox regression algorithm (Figure 2A), and the
radiomics signature was constructed. The signature calculation
equation is depicted in Supplementary Methods. The bar chart
below showed the contribution of selected features with their
LASSO Cox regression coefficients for the signature
construction (Figure 2B).
Frontiers in Oncology | www.frontiersin.org 4
The distribution of the Rad-score calculated by the equation for
each patient is shown in Supplementary Methods. A distribution
difference was observed in Rad-score between the training and test
cohorts (P > 0.05). The cut-off value of the Rad-score was −0.04481.
Consequently, patients were stratified into high-risk group (Rad-
score ≥ −0.04481) and low-risk group (Rad-score < −0.04481). The
Kaplan-Meier survival analysis showed a correlation between Rad-
score andOS in the training cohort (Figure 3A). The low-risk group
has a longer OS compared to a high-risk group (P < 0.001, log-rank
test). The same finding was demonstrated in the test cohort
(Figure 3B; P < 0.001, log-rank test).

Rad-Score Assessment
Violin plots showed that the median Rad-score in 3- or 5-year
dead groups were higher than that in 3- or 5-year survival groups
in the training and test cohorts (Figures 4A, B, D, E), and the
distribution of Rad-score was significantly different (all P <
0.001). In addition, the AUC of the time-dependent ROC
curves (Figure 4C) for 3-year OS in the training and test
cohorts was 0.902 (95% CI: 0.851–0.940) and 0.857 (95% CI:
0.798–0.903), respectively. Satisfactory prognostic accuracy was
achieved for the 5-year OS. AUC of the time-dependent ROC
curves (Figure 4F) for 5-year OS in the training and test cohorts
was 0.904 (95% CI: 0.854–0.942) and 0.850 (95% CI: 0.791–
TABLE 1 | Baseline clinical date of the training and test cohorts.

Characteristic Training cohort
(n = 194)

Test cohort
(n = 188)

P value

Sex 0.901a

Male 133 130
Female 61 58

Age (years) 55.94 ± 11.59 56.08 ± 10.96 0.906b

TNM group 0.597a

I 138 129
II 29 29
III 10 16
IV 17 14

Fuhrman grade 0.004a

I 11 16
II 124 143
III 50 27
IV 9 2

Necrosis 0.721a

Present 84 78
Absent 110 110

ECOG-PS 0.282a

0 105 112
≥1 89 76

Hemoglobin (g/L) 136.57 ± 19.797 138.70 ± 20.989 0.309b

Neutrophil count (109/L) 3.746 ± 1.702 4.125 ± 1.751 0.032b

Lymphocyte count (109/L) 1.972 ± 0.658 1.880 ± 0.660 0.171b

Neutrophil-lymphocyte ratio 2.200 ± 1.861 2.783 ± 3.183 0.029b

Platelet count (109/L) 232.78 ± 65.225 248.09 ± 81.951 0.044b

Creatinine (umol/L) 88.626 ± 20.399 69.449 ± 18.189 <0.001b

Blood urea nitrogen (mmol/L) 6.268 ± 7.200 5.496 ± 1.829 0.154b

Overall Survival (month) <0.001c

Median 59.0 (49.8–68.0) 43.5 (32.3–60.0)
Mean 56.4 ± 17.3 46.0 ± 18.4
June 2021 |
 Volume 11 | Article
ECOG-PS, Eastern Cooperative Oncology Group Performance Status.
aChi-square test.
bStudent’s t-test.
cMann-Whitney U test.
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0.898), respectively. This data proved the discrimination
accuracy of OS was reliable and robust when using Rad-score.

Development of the Clinical and
Radiomics Nomograms
Clinical factors were selected by the univariable and
multivariable Cox regression analysis (Table 2). The
multivariable Cox regression showed that the TNM group and
CREA were independent factors closely correlated with OS. So
the clinical nomogram incorporating these two factors was
developed (Figure 5A). Both of these factors were negatively
related to OS for patients (HR for TNM group: 2.912, 95% CI,
2.188–3.875; HR for CREA: 1.020, 95% CI, 1.004–1.036). The
radiomics nomogram was developed with Rad-score, TNM
group, and CREA by the multivariate Cox regression analysis
(Figure 5B). All three predictors were negatively correlated to
OS (HR for Rad-score: 277.920, 95% CI, 26.039–2,966.297; HR
for TNM group: 1.713, 95% CI, 1.149–2.552; HR for CREA:
1.014, 95% CI, 0.998–1.031).

Performance of the Clinical and
Radiomics Nomograms
The calibration curves depicted survival probability at 3 and 5
years after diagnosis, showing good agreement between survival
probability predicted by the nomograms and observed outcomes
Frontiers in Oncology | www.frontiersin.org 5
in the training and test cohorts (Figures 6A–D). Integrating
clinical factors and Rad-score, the radiomics nomogram
obtained good discrimination performance with a C-index of
0.884 (95% CI: 0.808, 0.940), as well as higher discrimination
capability compared with the clinical nomogram (P < 0.05)
(Supplementary Methods). The favorable result was confirmed
in the test cohort, which implied the incremental value of the
Rad-score for individual OS estimation. AIC and C-index
estimates for the two nomograms are listed in Table 3.

The Kaplan-Meier survival curves were generated using a risk
group based on survival probability at 3 or 5 years predicted by the
radiomics nomogram as a prediction factor. A significant difference
was confirmed between the stratified Nomo-predicted high-risk and
low-risk groups in both the training and test cohorts (Figures 7B,
D, F, H; P < 0.001, log-rank test). These results were consistent with
the Kaplan-Meier survival analysis in the actual survival and dead
groups (Figures 7A, C, E, G; P < 0.001, log-rank test).
DISCUSSION

ccRCC is the predominant pathological subtype of renal
malignancy associated with aggressive behavior (high invasion
and metastasis) and chemoresistance. Patients with ccRCC have
the worse OS compared to those with other subtypes (18, 19).
A B

FIGURE 2 | Radiomics feature selection and presentation. Radiomics feature selection using the LASSO Cox regression algorithm. LASSO regression coefficient
profiles of survival-associated radiomics features (A). A bar chart shows the contribution of selected features for radiomics signature construction (B). The y-axis
represents features that contribute to the signature. The x-axis represents corresponding coefficients in the LASSO Cox analysis. LASSO, least absolute shrinkage
and selection operator; CMP, corticomedullary phase; NP, nephrographic phase; EP, excretory phase.
A B

FIGURE 3 | The Kaplan-Meier curves for patients in low-risk and high-risk groups in the training (A) and test (B) cohorts. The median Rad-score was −0.04481,
which was applied as a cutoff that stratified patients into the high-risk group (Rad-score ≥ −0.04481) and the low-risk group (Rad-score < −0.04481).
June 2021 | Volume 11 | Article 671420
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Hence it is essential to find an accurate prediction approach to
improve prognosis and treatment in patient with ccRCC. In this
study, we developed a radiomics nomogram by combining
clinical factors and Rad-score for the prediction of OS in
patients with ccRCC.

A number of previous studies have focused on identifying renal
tumors and predicting nuclear grade by radiomics analysis,
obtaining desirable results (20–22). Yet, so far, only a few studies
have reported on prognostic prediction of RCC. Goh et al. assessed
the texture parameters of 87 metastases in 39 RCC patients who
received tyrosine kinase inhibitors (TKI) treatment and found that
uniformity of texture was an independent predictive factor of time
Frontiers in Oncology | www.frontiersin.org 6
to progression (23). Another study showed that texture features
consisting of the SD of pixel distribution histogram, entropy, and
mean of positive pixels may be used to the prediction of OS for the
patients with large RCCs (>7 cm; mean size, 9.9 cm) (24). These two
studies indicated that texture analysis has the potential to predict the
prognosis of RCC. More recently, Zeng et al. used integrative
radiogenomics analysis (by analyzing contrast-enhanced CT
images) for predicting molecular features and survival in ccRCC
and found that these features could predict molecular subtypes,
mutations, and prognosis of ccRCC patients (25). Moreover, Huang
et al. suggested a radiomics model for predicting OS (5-year AUC =
0.775) in patients with the ccRCC model (26).
TABLE 2 | Uni- and multivariable COX regression analysis of predictors of OS.

Variable Univariable Cox regression Multivariable Cox regression

HR (95% CI) P value HR (95% CI) P value

Sex 2.448 (0.940–6.377) 0.066 NA
Age 1.044 (1.009–1.079) 0.012 1.026 (0.992–1.061) 0.141
TNM stage 2.908 (2.195–3.851) <0.001 2.431 (1.709–3.459) <0.001
Fuhrman grade 3.283 (2.037–5.291) <0.001 1.188 (0.577–2.446) 0.640
Necrosis 2.513 (1.204–5.247) 0.014 1.595 (0.722–3.523) 0.248
ECOG-PS 2.371 (1.191–4.721) 0.014 1.235 (0.610–2.500) 0.557
Hemoglobin 0.964 (0.950–0.987) <0.001 0.995 (0.974–1.016) 0.633
Neutrophil count 1.190 (1.040–1.361) 0.011 1.311 (0.84–2.044) 0.233
Lymphocyte count 0.358 (0.199–0.644) 0.001 0.395 (0.145–1.072) 0.068
Neutrophil-lymphocyte ratio 1.145 (1.055–1.243) 0.001 0.818 (0.55–1.217) 0.322
Platelet count 1.007 (1.002–1.012) 0.006 1.003 (0.998–1.007) 0.253
Creatinine 1.019 (1.006–1.033) 0.004 1.019 (1.003–1.036) 0.024
Blood urea nitrogen 1.001 (0.956–1.048) 0.954 NA
June 2021 | Volume 11 | Articl
NA, not available.
A B

D E F

C

FIGURE 4 | Violin plots and ROC curves of Rad-score in 3- and 5-year survival and dead groups. Violin plots show the distribution of Rad-score in 3-year survival and
dead groups in the training (A) and test (B) cohorts. The median (central white dot), interquartile range (black box), and 95% confidence interval (vertical line) are shown in
the middle. The color area represents a density plot on the side. ROC curves (C) for 3-year survival were determined to assess prognostic accuracy in the two cohorts.
Violin plots (D, E) and ROC curves (F) in 5-year survival and dead groups. ROC, receiver operator characteristic. AUC, area under the curve. *P < 0.001.
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In this study, we discovered that the combination of
radiomics and clinical data showed a higher predictive value
than the clinical nomogram alone, thus suggesting it might be
used to predict OS in patients with ccRCC. This study took
valuable clinical factors into account. The TNM staging system is
an internationally accepted system used to determine the disease
stage, including RCC (27). Tumor grade is one of the strongest
elements incorporated into prognostic models for patients with
ccRCC (4). Histologic necrosis and ECOG-PS have shown to be
independent risk factors for ccRCC patients in the SSIGN and
UISS scoring systems, respectively (28). The value of laboratory
Frontiers in Oncology | www.frontiersin.org 7
examination and NLR was evaluated in the prognosis of
malignant tumors such as kidney cancer (29, 30). In this study,
TNM group and CREA were selected as the independent
prognostic factors for survival. As for prognostic scoring
systems, the MSKCC system was developed to define risk
groups of patients by coalescing independent factors for
survival prediction of metastatic RCC, while the UISS is an
evidence-based system for predicting recurrence or metastases
after surgical treatment in patients with localized or locally
advanced RCC (31). The radiomics nomogram developed in
this study was applied to both metastatic and locally ccRCC.
A B

FIGURE 5 | The nomogram for survival estimation. The clinical nomogram (A), combing TNM group and creatinine. The radiomics nomogram (B), combing
Rad-score, TNM group, and creatinine.
A B DC

FIGURE 6 | Calibration curves for the nomograms. Calibration curves for the clinical nomogram in the training (A) and test (B) cohorts. The y-axis indicates the
actual probability of survival; the x-axis indicates the predicted probability of survival. The 45-degree gray line represents the ideal prediction; blue and red lines
represent the performance of the clinical nomogram to predict 3- and 5-year survival, respectively. Calibration curves for the radiomics nomogram in the training
(C) and test (D) cohorts. Nomo-predicted, nomogram-predicted.
TABLE 3 | Performance of the nomograms.

Training cohort Test cohort

C-index (95% CI) AIC C-index (95% CI) AIC

Clinical nomogram 0.803 (0.705–0.899) 263.26 0.846 (0.777–0.915) 233.65
Radiomics nomogram 0.884 (0.808–0.940) 243.35 0.859 (0.800–0.921) 234.25
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The evaluation of markers should depend on their ability to
improve an already superior prediction model instead of on their
P-value in multivariable analysis (32). Our results showed the
radiomics nomogram performed better than the clinical
nomogram, thus suggesting the incremental value of radiomics
to OS prediction, and demonstrating that this new model is a
useful method for outcome prognostication and treatment
planning. In 2018, Meng et al. suggested that radiomics model
combined with a clinicopathologic Cox model has a prognostic
value for locally advanced rectal cancer (33). Another study
extracted maximum and mean standard uptake values (SUVmax
and SUVmean), total lesion glycolysis (TLG), metabolic tumoral
volume (MTV), and texture features into Cox regression analysis
in order to obtain prognostic model for identifying patients with
more aggressive treatment (34). The importance of establishing
comprehensive models was also reflected in the prognostic
analysis of brain tumors, head-and-neck cancer, lung cancer,
breast cancer, prostate cancer, liver cancer, and gastric
cancer (12).

Ideally, an independent external validation dataset should be
collected to test the results as with any biomarker analysis (35).
Furthermore, developed models subsequently validated on an
entirely new validation dataset from different centers can bolster
its generalizability. Nonetheless, up to now, most of the external
test dataset and the training dataset enrolled in studies were
derived from the same center. Fortunately, an independent
external test cohort from another hospital was assessed in this
study to interpret the generalizability of the reported findings
and correctly estimate the empirical error. As for the disparity of
CT scanners arising from two institutes, image resampling, and
gray-level discretization were implemented to standardize three-
phase CT images, minimizing the impact of different
scanning machines.

This study has a few limitations. First, this was a retrospective
study, and the sample size was relatively small. Second, the
clinical efficacy of our nomograms needs to be validated with
the multicenter data. Last, patients with ccRCC were not
classified into localized ccRCC, locally advanced ccRCC, and
metastatic ccRCC groups according to the guidelines for
stratified analysis. In this study, we did not compare the
predictive ability between the radiomics nomogram and
prognostic scoring system such as SSIGN, MSKCC. Thus, a
large-scale prospective multicenter investigation is needed to
further verify reported findings.
Frontiers in Oncology | www.frontiersin.org 9
CONCLUSIONS

In conclusion, we developed and validated a non-invasive
predictive method for predicting the survival of ccRCC and
identified radiomics as a useful biomarker for prognostic
prediction. The radiomics analysis may facilitate quantitative
and personalized treatment for ccRCC patients, although it still
needs to be further validated before being widely applied in
clinical practice.
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