
Lack of cystic fibrosis transmembrane conductance regulator 
disrupts fetal airway development in pigs

David K. Meyerholz1,*, David A. Stoltz2,3,4,*, Nick D. Gansemer2, Sarah E. Ernst2,6, Daniel P. 
Cook2,3, Matthew D. Strub5, Erica N. LeClair5, Carrie K. Barker5, Ryan J. Adam2,4, Mariah R. 
Leidinger1, Katherine N. Gibson-Corley1, Philip H. Karp2,6, Michael J. Welsh2,3,6, and Paul 
B. McCray Jr5

1Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 
Iowa City, IA

2Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of 
Iowa, Iowa City, IA

3Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of 
Medicine, University of Iowa, Iowa City, IA

4Department of Biomedical Engineering, Roy J. and Lucille A. Carver College of Medicine, 
University of Iowa, Iowa City, IA

5Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 
Iowa City, IA

6Howard Hughes Medical Institute, Roy J. and Lucille A. Carver College of Medicine, University of 
Iowa, Iowa City, IA

Abstract

Loss of cystic fibrosis transmembrane conductance regulator (CFTR) function causes cystic 

fibrosis (CF), predisposing the lungs to chronic infection and inflammation. In young infants with 

CF, structural airway defects are increasingly recognized before the onset of significant lung 

disease, which suggests a developmental origin and a possible role in lung disease pathogenesis. 

The role(s) of CFTR in lung development is unclear and developmental studies in humans with CF 

are not feasible. Young CF pigs have structural airway changes and develop spontaneous postnatal 

lung disease similar to humans, therefore, we studied lung development in the pig model (non-CF 

and CF). CF trachea and proximal airways had structural lesions detectable as early as 

pseudoglandular development. At this early developmental stage, budding CF airways had smaller, 

hypo-distended lumens compared to non-CF airways. Non-CF lung explants exhibited airway 

lumen distension in response to forskolin/IBMX as well as to fibroblast growth factor (FGF)-10, 

consistent with CFTR-dependent anion transport/secretion, but this was lacking in CF airways. We 
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studied primary pig airway epithelial cell cultures and found that that FGF10 increased cellular 

proliferation (non-CF and CF) and CFTR expression/function (in non-CF only). In 

pseudoglandular stage lung tissue, CFTR protein was exclusively localized to the leading edges of 

budding airways in non-CF (but not CF) lungs. This discreet microanatomic localization of CFTR 

is consistent with the site, during branching morphogenesis, where airway epithelia are responsive 

to FGF10 regulation. In summary, our results suggest that the CF proximal airway defects 

originate during branching morphogenesis and that the lack of CFTR-dependent anion transport/

liquid secretion likely contributes to these hypo-distended airways.

INTRODUCTION

Cystic fibrosis (CF) is a life-limiting disease caused by mutations in the cystic fibrosis 
transmembrane conductance regulator (CFTR) gene. Lung disease, the leading cause of CF 

morbidity and mortality, is characterized by recurrent airway infection, inflammation and 

remodeling (e.g. bronchiectasis).(1–5) Airways are principal sites for CF lung disease and 

understanding its early pathogenesis could clarify disease mechanisms, offer new insights 

for treatment modalities, and identify optimal windows for effective therapies.(6)

Structural defects in the proximal airways are increasingly recognized in young infants with 

CF, many times before clinical disease is apparent and before sufficient postnatal time has 

elapsed for remodeling to occur. For example, a retrospective study of pediatric 

bronchoscopy cases found tracheomalacia in ~15% of CF individuals (median age with 

tracheomalacia ~ 14 months) and tracheomalacia was diagnosed as early as one month of 

age.(7) Likewise, a study of young infants with CF (median age, 3.6 months) found airway 

dilatation, airway wall thickening or air trapping in greater than 80% of the subjects by 

computed tomography, yet only ~16% of subjects had clinical respiratory disease.(8) In a 

review of published autopsy data from infants less than two weeks of age, the older and 

generally larger infants with CF had significantly smaller trachea caliber than the non-CF 

controls.(9, 10) Structural airway defects in young children with CF prior to the onset of 

significant clinical disease could suggest that these changes have fetal origins.

Studies on human fetal tissue are limited by ethical standards, tissue availability, and 

acceptable controls. An alternative approach to overcome these limitations is to study fetal 

development in an animal model. CF pigs spontaneously develop postnatal lung disease 

including lesions similar to humans with CF.(11–13) Additionally, newborn CF pigs, 

reminiscent of human infants with CF, exhibit a number of lung (e.g. air trapping) and 

proximal airway abnormalities including anterior cartilage defects, altered smooth muscle 

bundles, and hypoplastic submucosal glands.(9, 14) These congenital abnormalities point 

towards a fetal origin. We hypothesized that the absence of CFTR would cause 

morphological lesions during early fetal airway development. We studied non-CF and CF 

fetal tissues in parallel, so as to identify the time and onset of early lesions and to clarify the 

functional role(s) of CFTR in normal development.
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MATERIALS AND METHODS

Tissues

All animal experiments were approved by the University of Iowa Institutional Animal Care 

and Use Committee (IACUC). Experimental methods were carried out in accordance with 

relevant federal guidelines including the Public Health Service policy on humane care and 

use of laboratory animals, and in accordance with the Animal Welfare Act. Null (CFTR−/−) 

and ΔF508 (CFTRΔF508/ΔF508) litters were produced from heterozygous matings(11, 13) and 

TgFABP-pCFTR pigs were produced by cloning as previously described(12). Date-mated 

sows (Exemplar Genetics, Sioux City, Iowa) were euthanized on days 36, 41, 54, 60, 69, and 

82 of gestation and fetal tissues were collected (Supplemental Table 1). When only a small 

number of time points were available for trachea and lung analyses, gestational time points 

were sometimes combined into one group as long as it did not change the context of the 

data. In these situations, the merged time points are labeled accordingly. Male and female 

pigs were used as available in litters, whereas the cloned pigs were males. To evaluate the 

differences in non-CF and CF phenotype, littermates (i.e. siblings) were used in the studies 

to compare CF and non-CF groups for all time points with the exception of the TgFABP-

pCFTR pigs (used only at d36) in which each litter were exclusively clones. Trachea and 

lungs from archival blocks at d90 gestation and newborn pigs were additionally used for 

CFTR immunohistochemistry.

Histopathology

At tissue collection, trachea and lung tissues were placed into 10% neutral buffered formalin 

(~ 3–5 days) and submitted to the Comparative Pathology Laboratory (University of Iowa, 

Iowa City, IA USA) for tissue processing, paraffin embedding, sectioning (~4 μm), and 

histochemical staining with hematoxylin and eosin (HE) stain and amylase-pretreated 

Periodic acid-Schiff (dPAS). Histopathological examination was performed by a veterinary 

pathologist experienced with the model. At early time points, some tissues were excluded 

from study due to insufficient tissue or irregular plane of sectioning (e.g. trachea). 

Morphometric (quantitative) analysis and histopathologic (semi-quantitative) scoring was 

done in a manner masked to group treatments so as to avoid bias.(15)

Immunohistochemistry

CFTR: CFTR immunohistochemistry was performed as previously described.(16) Briefly, 

paraffin embedded tissues were sectioned (~4 μm) and hydrated through a series of xylene 

and alcohol baths. Antigen retrieval (citrate buffer, pH 6.0, 110°C for 15 minutes) was 

performed using the NxGen Decloaking Chamber™ (Biocare Medical, Concord, CA USA). 

Endogenous peroxidase activity was quenched with hydrogen peroxide (3%, 8 min), 

endogenous avidin/biotin was blocked (Avidin/Biotin Blocking Kit, Vector Laboratories, 

Inc., Burlingame, CA USA), and nonspecific background blocked with equine serum (5% in 

1× Dako Buffer). Primary Ab was generously supplied by Dr. John Riordan, Ph.D., 

University of North Carolina –Chapel Hill and the Cystic Fibrosis Foundation Therapeutics. 

Primary Ab (1:1200 in Dako diluent, 60 minutes) was applied and followed by secondary 

(1:200, 30 minutes, Vector Biotinylated Anti-Mouse IgG) and then Vector ABC Reagent (30 

minutes, Standard VECTASTAIN® Elite® ABC Kit, Vector Laboratories, Inc., Burlingame, 
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CA USA). Next, chromogen (DAB Plus - 5 minutes and then DAB enhancer, 3 minutes, 

room temperature) was applied and then the tissues counterstained with Harris hematoxylin 

(1 min., Surgipath, Leica Microsystems, Inc., Buffalo Grove, IL USA). Slides were blue in 

Scott’s Tap water, dehydrated through a series off alcohols and xylene baths, then 

coverslipped.

FGF10: Paraffin embedded tissues were sectioned, hydrated, antigen retrieved and blocked 

with endogenous peroxidase, similar to the CFTR protocol above. General background was 

blocked with Background Buster (30 min., Innovex Biosciences, Inc., Richmond, CA USA). 

Primary antibody (rabbit polyclonal, 1:200 × 2hr, Santa Cruz #sc7917, Santa Cruz 

Biotechnology, Dallas, TX USA) was followed by washing, secondary antibody 

(biotinylated anti-rabbit 1:500 × 30 min.) and Vector ABC Reagent (30 minutes, Standard 

VECTASTAIN® Elite® ABC Kit, Vector Laboratories, Inc., Burlingame, CA USA). 

Application of chromogen, counterstain, and coverslipping was performed as stated above 

for CFTR.

Morphometry

Tracheas were examined from fetuses for d54/60, 69 and 82 days gestational age. In earlier 

time points (d36 and d41), some tissues were not consistently available for examination and 

interpretation, so were excluded. Tracheas were histopathologically examined (typically 

mean of ~3 samples per animal) and morphometrically assessed in cross section similar to 

that described for neonatal CF pigs.(9) Briefly, high resolution digital images were collected 

on a BX51 microscope with DP73 digital camera (Olympus, Center Valley, PA USA) and 

analyzed with CellSens Software (Olympus, Center Valley, PA USA). Trachea tissues were 

examined in cross section. Tracheal size (i.e. caliber) was evaluated by lumen 

circumference. The growth of submucosal glands and trachealis smooth muscle tissues was 

assessed through tissue area normalized by lumen circumference (i.e. area/circumference) 

for each tissue section. For quantitative measurements, the mean value for each animal was 

used in the analysis. The detection of discontinuous cartilage and for smooth muscle bundles 

was scored in a binary manner (0 – absent, 1 present) for all tissues sections/animal and the 

median score used for analysis.

Lungs were evaluated at d36–60 gestational age for pseudoglandular development. The 

pseudoglandular stage represents the development of large airways.(17) The number of 

airways sampled per lung ranged between 150–300 structures (mean ~230) except when 

limited by tissue sample size (e.g. d36 samples) in which all available airways were 

sampled. To examine lumen diameters, the length of the minor diameter was consistently 

selected for each airway in cross sections. So as to be consistent for each sample, all 

primitive airways were measured including those in which the lumen was not observed and 

was given a value of zero. To evaluate the incidence of unexpanded primitive airways, the 

percentage of the total airways with a diameter value of <6 μm were determined. The 

basophilic histochemical staining qualities of luminal material (”staining scores”) was 

studied using histochemical (HE) stained samples and ordinally scored based on its 

appearance as: 0 – none, 1 – eosinophilic, 2 – mixture of eosinophilic and basophilic 

material, and 3 – basophilic material. Airway filling of luminal material (“filling scores”) 
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was ordinally scored by estimating the % of filling for each airway as: 0 – none, 1 – 1 to 

25%, 2 – 26 to 50%, 3 – 51 to 75% and 4 – 76% to complete obstruction.

Lung explant studies

After tissue collection, lungs were transported in DMEM/F12 with penicillin/streptomycin, 

gentamicin, and amphotericin B. Explants were placed on collagen coated Costar Transwells 

(Corning, Corning, NY USA) and cultured in Ham’s F12 with 10% FCS, 10mM HEPES, 

and penicillin/streptomycin.

Explants were treated with 10 μM Forskolin and 100 μM IBMX, and either 50ng/ml FGF10 

or DMSO control then imaged, depending on the study, every four hours for 24 hours, or 

daily for up to as much as 7 days. Images were taken on an Olympus IX-81 microscope, and 

lumen area was measured using ImageJ.(18)

Primary culture studies for FGF10 stimulation studies

Well-differentiated primary porcine cultured epithelia were grown on filters and incubated 

for 0, 24, or 72 hours with 100ng/mL of recombinant human FGF10 in growth media (cat # 

345-FG-025, R&D Systems, Minneapolis MN, USA). CFTR protein expression was 

examined by enumerating the number of positive immunostained cells (apical brown color) 

standardized per length of filter evaluated in sections. Differences in epithelial height were 

determined by evaluating the total area of the cultured epithelia divided by the length of 

filter evaluated in sections (area/length) to obtain a mean height (this approach avoided 

sampling bias).

Electrophysiology

Cultures were mounted in modified Ussing chambers (Physiologic Instruments, Inc., San 

Diego, CA USA). Cultured epithelia were bathed on both surfaces with solution containing 

(mM): 135 NaCl, 2.4 K2HPO4, 0.6 KH2PO4, 1.2 CaCl2, 1.2 MgCl2, 10 dextrose, 5 HEPES 

(pH = 7.4) at 37 °C and gassed with compressed air.

Vt was maintained at 0 mV to measure short-circuit current (Isc). Transepithelial electrical 

conductance was measured by intermittently clamping Vt to +5 and/or −5 mV.

Parameters were measured under basal condition and after the following interventions: 100 

μM apical amiloride (as previously performed in our lab),(12, 19, 20) 100 μM apical DIDS 

(4,4- diisothiocyano stilbene-2,2-disulfonic acid), 10μM forskolin and 100μM IBMX (3-

isobutyl-2-methylxanthine), and100μM apical GlyH-101.

RNA extraction and Reverse Transcription

RNA was extracted using QIAzol reagent from RNeasy Lipid Tissue Mini Kit (QIAGEN, 

Valencia, CA, USA) and contaminating DNA was removed using DNase according to the 

manufacturer’s instructions. 500 ng of total RNA was reverse transcribed using SuperScript 

VILO MasterMix (Life Technologies, Foster City, CA, USA) according to the 

manufacturers’ specifications.
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Real-time qPCR analysis and normalization

qPCR was performed using Takara Bio SYBR Green Master Mix with ROX (Clontech, 

Mountain View, CA, USA). Primer sequences were as follows CFTR forward: 5′-CTG 

GAG CCT TCA GAG GGT AAA AT -3′, CFTR reverse: 5′-AGT TGG CAC GCT TTG 

ATG ACA CTC C -3′; β-actin forward: 5′-CTG CGG CAT CCA CGA AAC T -3′, β-actin 

reverse: 5′-GTG ATC TCC TTC TGC ATC CTG TC -3′. The cDNA was amplified in the 

7900HT Fast Real-Time PCR System (Applied Biosystems, Foster City, CA, USA). Relative 

mRNA expression was calculated using the ΔΔCt method. Individual data were normalized 

against the housekeeping gene β-actin. Results were given as fold change in expression over 

the non-CF control (no treatment at 0 hr time point) for each time point and donor.

FGF10 RNA isolation and sequencing

Total RNA was isolated from in vivo porcine fetal lungs on day 37 of gestation using the 

mirVanaTM miRNA isolation kit (Ambion, Grand Island, NY USA). Total RNA was tested 

on an Agilent Model 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA USA). 

Samples with an RNA integrity number (RIN) greater than 8.0 were selected for further 

processing.

Libraries were prepared using the TruSeq RNA Sample Prep (Illumina, San Diego, CA) and 

submitted to the University of Iowa DNA Facility for deep sequencing. 12 paired-end DNA 

libraries were sequenced to an average depth of 212 million read pairs (range of 179–241 

million) with 100 base reads. The sequences were aligned to the Sus scrofa genome (release 

10.2) using TopHat (v2.0.10) and known genes were annotated using Ensembl (release 74). 

Gene expression differences between CF (5 replicates) and non-CF (7 replicates) groups 

were analyzed using Cuffdiff (v2.1.1).(21)

Statistics

Comparison of morphometric and semi-quantitaive scoring data between non-CF and CF 

groups was performed with the nonparametric Mann Whitney or Bonferroni post-tests 

unless otherwise stated. Evaluation of anterior cartilage defects and smooth muscle bundles 

were statistically evaluated through a Chi-Square test. Statistical significance was placed at 

P<0.05.

RESULTS

CF tracheal abnormalities begin early in fetal development

We studied tissues from non-CF and CF fetal pigs (term = 114 days). Similar to newborn CF 

pigs,(9) fetal CF pigs had small caliber tracheas (Figure 1a, b) with cartilage (arrows, Figure 

1a; Supplemental Table 2) and smooth muscle defects (Figure 1c,d, Supplemental Table 3) 

that were detected as early as d54/60 of gestation. In contrast, submucosal glands were first 

observed at d82 gestation and consisted only of primitive ducts that lacked serous acini or 

mucinous tubules, but no group differences were seen in submucosal gland growth (Figure 

1e, f). The origin of submucosal glands after onset of other tracheal lesions indicates that 

submucosal glands were not causative in these developmental abnormalities.
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CF airways have abnormalities during pseudoglandular development

Fetal CF tracheas exhibited among other things small caliber, similar to the smaller caliber 

trachea and bronchi we previously detected in newborn and postnatal CF pigs.(9, 14, 22) 

These proximal airway defects suggested a common etiology, and so we examined lungs at 

the pseudoglandular stage, when the proximal conducting airways are formed by branching 

morphogenesis.(17)

During early pseudoglandular development (d36 and d41), CF pig airways had smaller 

lumens compared to non-CF airways, but by d54/60 (Figure 2a, b) no differences were 

detected. To evaluate the smaller CF airways from another perspective, we evaluated the 

percentage of “hypo-distended” airways (i.e. <6 μm diameter) in fetal lung. We chose <6 μm 

as a cutoff because the smallest non-CF airways in both d36 and d41 lungs represented a 

nominal portion (~15%) of the distribution. CF airways had a significantly higher percentage 

of hypo-distended airways compared to non-CF in early pseudoglandular lung growth 

(Figure 2c). In fetal airways, wispy to amorphous material was sometimes observed within 

fetal airway lumens of both groups (Figure 2d). The lumen material appeared to have more 

basophilic staining in some CF airways using routine hematoxylin and eosin (HE) stains. To 

test this observation, the extent of basophilia in the lumen material was scored using an 

ordinal system.(15) CF lumen material had higher scores indicative of more basophilic 

staining than non-CF (Figure 2e) and the basophilic luminal material was reminiscent of 

mucus staining that is sometimes basophilic; however, it was negative for dPAS (Figure 2f) 

suggesting that it was not mucus. While the specific cause of the increased basophilic 

staining was not identified, many factors (e.g. pH, fixative type, etc.) can influence 

histochemical stain qualities including the extent of eosinophilia and basophilia in a routine 

HE.(23–25) The histochemical staining of the CF airway lumen material most likely reflects 

changes in the local environment that have been described in CF airways such as anion 

secretion,(26) liquid volume,(27) or pH.(28, 29)

cAMP- and growth factor-mediated liquid secretion validates fetal human lung studies

Early gestation fetal lung explants from humans are reported to show cAMP-mediated liquid 

secretion (manifested as luminal distension of fetal airways) in normal, but not CF, lungs; 

however, interpretation of these studies was limited by the small number of CF cases 

evaluated (n=2).(27, 30) To replicate and extend these limited observations in human tissues 

and investigate the utility of the pig model for developmental studies, we studied fetal lung 

explants from non-CF and CF pigs. Over the course of seven days, fetal pig lung explants 

lacked differences between non-CF and CF groups under basal (unstimulated) conditions 

(Figure 3a). In contrast, forskolin/IBMX stimulation of non-CF, but not CF, fetal pig lungs 

produced marked airway lumen distension consistent with cAMP-mediated secretion (Figure 

3b, c).

Growth factors such as fibroblast growth factor (FGF)-10 have been reported to also 

stimulate liquid secretion in fetal lung explants from humans.(31) We evaluated fetal pig 

lung explants and found that FGF10 stimulated lumen expansion in non-CF, but not CF lung 

tissues (Figure 3d). While FGF10 significantly increased in lumen size in explants through 

CFTR-mediated secretion, this change was less robust than the forskolin/IBMX results. We 
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speculate that the relative influence of FGF10 stimulation on CFTR-mediated secretion over 

the course (i.e. weeks) of early pseudoglandular growth could correlate biologically to the 

reduction in size of CF airways (<28% reduced compared to non-CF) during branching 

morphogenesis (see Figure 2 a–c). We localized FGF10 expression by immunostaining in 

fetal pig lungs (Figure 3e), and similar to studies in other species,(32, 33) we observed 

scattered FGF10 positive cells in mesenchymal tissues adjacent to airways. FGF10 mRNA 

abundance (Figure 3f) was studied in fetal lung, but there were no group-specific 

differences. These results demonstrate that loss of CFTR function did not alter FGF10 

abundance and localization. Cumulatively, these data validate previous human fetal 

studies(27, 30, 31) and show that the fetal pig lung exhibits CFTR-mediated anion transport/

liquid secretion in response cAMP agonists and FGF10.

FGF10 influence on primary airway epithelial cultures

To further understand how FGF10 might influence CFTR expression or function, we studied 

its effects on primary airway epithelial cultures from newborn pigs. Culture in the presence 

of FGF10 was associated with increased CFTR mRNA expression (Figure 4a) and increased 

immunostaining for CFTR protein (Figure 4b, c) in non-CF cells. In addition for both non-

CF and CF cultures, FGF10 treated cells had increased epithelial height (Figure 4d) and 

Ki67 index (Figure 4e), both consistent with an increased cellular proliferation state. We 

also examined the effects of FGF10 on transepithelial short-circuit current. FGF10 increased 

cAMP-stimulated short-circuit current in non-CF cells (Figure 4f), but it did not affect 

conductance (Figure 4g) or amiloride-sensitive current (Supplemental Figure 1) in CF 

epithelia.

CFTR immunostaining is temporally and spatially regulated during development

CFTR mRNA and protein expression have been detected during fetal lung development in 

humans.(27, 34–37) In pseudoglandular lung, human CFTR protein has been localized 

immunohistochemically in the developing epithelium and adjacent mesenchyme; however, 

the extensive cellular immunostaining that has been historically reported does not clarify a 

role for CFTR in lung development.(34, 38) We localized CFTR protein in fetal tissues to 

better understand its normal developmental role and to study the potential consequences of 

its absence in CF. CFTR immunostaining was seen only in non-CF tracheas supporting the 

specificity of the immunohistochemical technique.

CFTR immunostaining was evaluated in trachea at d60 and d90 during fetal growth and 

these were compared to newborn trachea (Figure 5a–d). At d60, submucosal glands were not 

yet developed, but weak CFTR staining was detected in scattered cells of the airway surface 

epithelium (Figure 5a). By d90, CFTR had similar, but stronger immunostaining in scattered 

uncommon cells of the surface epithelium as well as serous cells of the submucosal glands 

(Figure 5b). Newborn trachea had more robust CFTR immunostaining than d90 in scattered 

cells of the surface epithelium and serous cells of submucosal glands (Figure 5c,d).

In contrast, newly-formed airways undergoing branching morphogenesis had robust 

immunostaining at d36 (Figure 5e), but CFTR intensity gradually declined through the 

pseudoglandular period and was absent in distal lung by d90 (Figure 5e). Importantly, during 
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branching morphogenesis CFTR protein was exclusively localized to the leading edge of 

budding airways (Figure 5e). This previously undocumented localization pattern is novel and 

consistent with the specific site of FGF10 responsive cells during early branching 

morphogenesis.(32, 39) These data suggest that CFTR expression has temporal and spatial 

changes during fetal airway development. CFTR expression is most robust in branching 

airways early in lung development, but later in gestation is robustly expressed in submucosal 

glands and scattered surface epithelial cells of trachea and bronchi.

DISCUSSION

From this current study, several conclusions emerged regarding CFTR during lung 

development.

First, the absence of CFTR during fetal growth produces airway defects that are detectable 

early in the pseudoglandular stage of lung development. Lesions in CF fetal airways during 

early branching morphogenesis are consistent with the developmental origins of proximal 

airways, the same airways that have structural abnormalities in newborn CF pigs.(9, 14) In 

contrast, CF and non-CF airways lacked differences in lumen distention at later time points 

during branching morphogenesis, which corresponds developmentally with the origins of 

more distal airways that lack known structural differences in newborn CF and non-CF pigs. 

The lack of group differences in later pseudoglandular stages might reflect one or more 

changes: 1) transition of CFTR protein (i.e. secretion) from distal lung to large airway 

submucosal glands and surface epithelia (see Figure 5); 2) an anatomic “dilution” effect 

from significantly more, variably sized airways and airspaces being formed as the lungs start 

to transition from pseudoglandular to canalicular stage of development; and/or 3) increased 

diversity of microanatomic structure during the transition from pseudoglandular to 

canalicular stages makes “apples to apples” comparison more challenging.

Structural defects in the proximal airways have been reported shortly after birth in CF 

infants (7–9) and similarly in animal models such as CF mice,(40) CF pigs,(9, 13, 14, 22, 

41) and CF rats.(42) CFTR expression is reportedly higher during early fetal life compared 

to adult lung tissues in humans(27, 34, 36, 37) and many animal models(43–46). 

Cumulatively, these data corroborate the expected early fetal origin for proximal airway 

defects seen in newborn CF pigs.

Second, our data suggest that CFTR contributes to, but is not essential for, lung liquid 

secretion and airway distension during early fetal lung growth. In the developing fetal 

airways, liquid secretion is coupled to active Cl− transport(47) and cAMP-stimulated 

secretion contributes to this luminal volume.(27) In addition to these secretions, liquid 

volume in fetal lungs is maintained through the collective actions of low elastic recoil, 

diaphragmatic contractions (fetal breathing), and glottic closure.(48) The combined actions 

of secretion and maintenance of fetal lung liquid produces a slightly positive intra-luminal 

pressure to distend airways.(49) Some in the CF community had wondered why a lack of 

CFTR-dependent anion transport/secretion during early development of CF babies did not 

cause lung hypoplasia. Thus, questions concerning a role for CFTR during early fetal life 
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have persisted and not been possible to study, until the advent of newer animal models such 

as the CF pig.

During development, airway distension provides a mechanical “stretch” signal (i.e. 

mechanotransduction) necessary for proper lung development and CFTR has been linked 

with this signaling pathway.(27, 50) Our data suggest that in CF, deficient CFTR-mediated 

liquid secretion reduces, but does not eliminate, airway distension (Figure 6a). We speculate 

that this reduced airway distension improperly “imprints” downstream signaling pathways in 

the affected fetal airways resulting in morphological differences in the proximal (red, Figure 

6b,c), but not the distal (blue, Figure 6b,c) airways of the newborn non-CF and CF pigs.

Lastly, we were able to validate previous human studies(27, 30) regarding CFTR-dependent 

liquid secretion in fetal lung and demonstrate that the pig model is useful for the study of 

lung development. In fetal pig lung explants, CFTR transport/liquid secretion, stimulated by 

forskolin/IBMX or FGF10, distended airway lumens in nonCF lungs. This distension was 

absent in CF lungs. Lumen distension in explants may be useful to study CFTR function and 

therapies and parallels endpoints described for epithelium-derived organoids.(51–53) While 

organoids offer several opportunities for study of CF, fetal lung explants from models such 

as the pig have advantages in that these represent native tissue. Accordingly, fetal explants 

retain epithelial and mesenchymal tissues that are increasingly recognized to cross-talk in 

normal lung development.(54, 55) Our data suggest insufficient liquid secretion as a 

contributing mechanism for reduced lumen size in CF fetal airways, but we cannot 

completely exclude the contributions of other mechanisms (e.g. contracted airway smooth 

muscle)..(56) Additionally, our work does not exclude the participation of other factors that 

can influence liquid secretion including keratinocyte growth factor(31) or extracellular 

calcium-sensing receptors.(38)

We were also able to study FGF10 and its influence on fetal airway secretion and CFTR 

expression in lung epithelia. FGF10 is an essential signaling factor regulating early lung 

development(32, 55) and is secreted by lung mesenchymal cells to bind its receptor (FGFR2 

IIIb) on fetal airway endoderm. (32, 57–59) Previous studies have suggested that secretion 

of FGF10 by lung mesenchymal cells is a factor influencing branching morphogenesis of the 

nascent fetal airways. (32, 39) Interestingly, our data show that CFTR is localized to FGF10-

regulated regions undergoing branching morphogenesis. Previous work by Graeff et al. 

demonstrated that FGF10 could stimulate liquid secretion in non-CF fetal human lung 

explants; however, a relationship to CFTR expression or function was not evaluated.(31) 

Wong et al. reported that FGF10 could transform and differentiate human embryonic stem 

cells into airway epithelia that was identified, in part, by increased CFTR expression.(60) 

Mouse models have helped elucidate the effects of dysregulated FGF10 in lung 

development. For example, mice that are homozygous null for FGF10 or its receptor FGFR2 

IIIb both have pulmonary agenesis.(58, 61) In contrast, hypomorphic mutants developed 

lungs with altered airway size and defective development of smooth muscle and cartilage,

(33, 62, 63) features that are similar in scope to that observed in newborn CF pigs.(9, 14) 

Salivary glands also undergo branching morphogenesis similar to lung during fetal 

development and recent work suggests cAMP-mediated CFTR secretion participates in 

lumen expansion in fetal salivary glands.(64) These data along with our other results suggest 
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a compelling and novel association between FGF10 and CFTR during early branching 

morphogenesis – the time when proximal airways develop.

This study has limitations. 1) We do not know with certainty that early fetal lung 

development is similar between pigs and humans. But the similarity of the porcine and 

human lung anatomy and physiology, morphologic stages of lung growth, and the 

phenotypes CF pigs and CF humans suggest they have significantly overlapping 

developmental patterns.(41, 65) 2) Our investigation did not focus on CFTR interaction(s) 

with cell signaling pathways (e.g. Wnt/beta-catenin)(66) that might influence specific 

signaling pathways in development. However, our demonstration of hypo-distension of the 

proximal CF airways provides compelling evidence for mechanotransduction pathways as 

the target of future studies. 3) Lastly, we did not evaluate the initial stage (e.g. embryonic 

stage) of fetal lung growth. However, the overlapping abnormalities in fetal and newborn CF 

airways and trachea (a structure formed during embryonic development) would predict that 

embryonic lung growth may have similar roles for CFTR function.

Our study also has several advantages. 1) Study of the fetal pig lung model allowed us to 

examine early developmental time points using age-matched controls (not possible in human 

studies). 2) Caesarian-section derived pigs (non-CF and CF) allowed us to collect “pristine” 

lung tissues (i.e. lacking autolytic or degenerative changes often present in fetal lungs from 

humans). While CFTR protein localization has been examined in adult and fetal lungs from 

humans,(34, 38, 67, 68) nonspecific background has been a concern for CFTR 

immunohistochemistry techniques. For example, harvest to fixation times in human tissues 

can varying depending on circumstances and the source (e.g. autopsy, biopsy etc.), thus 

influencing tissue autolysis.(16) 3) Fetal lung tissues from pig models are readily accessible. 

These features make the pig model attractive for translational studies that are largely 

impossible in humans.

In conclusion, our data suggest several novel and compelling findings. 1) Hypo-distension of 

CF airways is the principal lesion seen at the early stage of branching morphogenesis, a time 

point when the proximal airways (i.e. those prone to structural defects seen at birth) are 

formed. 2) Fetal lungs from non-CF, but not CF, pigs exhibit CFTR-dependent anion 

transport/liquid secretion, corroborating previous human studies and validating the fetal lung 

pig model. 3) FGF10 stimulates airway proliferation (non-CF and CF) and increased CFTR 

expression and secretion (non-CF only). 4) CFTR protein is exclusively localized in airway 

epithelial sites that are prone to FGF10 regulation during branching morphogenesis, a novel 

finding. Our data suggest that in normal lung development, CFTR-dependent anion 

transport/liquid secretion is associated with FGF10 regulation of branching morphogenesis 

and that in CF, hypo-distended airways may lead to “downstream” signaling changes during 

development resulting in airway defects.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Fetal trachea from non-CF and CF pigs at d54/60, d69 and d82 of gestation (term ~ 
114d)
a) In tissue sections, CF tracheas had smaller caliber with anterior cartilage defects (arrows). 

HE stain, bars = 420μm, 840μm, and 1mm, respectively. b) Tracheal caliber was reduced in 

CF pigs as early as d54/60, (*P<0.01, Mann Whitney test). c) The trachealis muscle of non-

CF and CF tracheas had similar amount of growth from d54 to d82, (NS, Mann Whitney 

test). d) The trachealis muscle (asterisks) had lesions, i.e. morphological evidence of smooth 

muscle bundles (arrows) in cross sections as early as d60 in CF pigs. HE stain, bars = 62 and 

20μm, respectively. e) Submucosal glands were first detected as early as d82 in tracheas and 

at this time were composed of budding ducts (arrows) in both groups, HE stain, bar = 40μm. 

f) Submucosal glands had similar early growth in CF and non-CF at d82 (P=0.173, Mann 

Whitney test). Graph lines = mean.
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Figure 2. Histopathology and morphometry of pseudoglandular fetal lung (d36–60)
a) Tissue sections of fetal lung from CF and non-CF pigs at d36, d41, and d54/60, HE stain, 

bars = 161 and 27μm, respectively. b,c) CF airways had reduced lumen size (b) with 

increased percentage of hypo-expanded airways (c) compared to non-CF lungs at d36 and 

d41 in early pseudoglandular growth. d,e) Airways in both groups had similar filling scores 

for luminal material (d), but CF airways had increased basophilic staining scores noted at 

d41 (e). f) The altered composition of luminal material by HE stain (top, arrow) was 

negative for dPAS+ mucus (bottom, arrow) on serial sections. Bar = 54μm. Graph lines = 

mean.
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Figure 3. Influence of cAMP and FGF10 on fetal pig lung epithelia
a) Fetal lung explants (d36) did not show differences in basal (unstimulated, media) lumen 

size between non-CF and CF groups. b) Fetal lung explants (d36) following forskolin/IBMX 

(FI) stimulation showed lumen expansion in non-CF airway lumens compared to CF airways 

(**P<0.01, nonCF-F/I vs CF-F/I groups at 24 hours) and unstimulated (media) controls. c) 
Morphology of non-CF and CF fetal lung explants using FI stimulation or media controls 

over 24 hours. Note the arrows (top and bottom) following airway lumen changes in 

forskolin/IBMX (F/I tx), but not in CF airways or unstimulated (media) controls. d) FGF10 

stimulation of fetal lung explants (d36) caused expansion of airway lumens in non-CF (“WT 

+ FGF10”, *P=0.013, linear regression), but not in CF airways or unstimulated (media) 

controls. e) FGF10 immunostaining of fixed fetal lung (d36) showing FGF10+ cells (arrows) 

similarly located in the mesenchymal tissues adjacent to the budding fetal airways, bar = 
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27μm. f) FGF10 mRNA abundance was similar in both non-CF and CF groups at d37 

gestation (P=0.629, Cuffdiff test statistic, graph bars = mean +/− SEM).
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Figure 4. FGF10 affects CFTR-mediated secretion and growth of porcine epithelia
a–c) In primary pig epithelia cultures, FGF10 increased CFTR mRNA (a) and 

immunostaining (b,c, bar = 3μm) in non-CF cells (n=3/group) (Control versus combined 

FGF10 treated groups [24 hr + 72 hr], *P<0.05, Mann Whitney test). Note the example of 

staining for both groups in (b). d,e) In non-CF and CF primary pig epithelia cultures, FGF10 

increased cell height (d) and increased Ki67 index (e) consistent with cellular proliferation 

(*P<0.05 and **P<0.01, Bonferroni post-test). f,g) Electrophysiology of non-CF and CF 

(n=3 & 4/group, respectively) primary pig epithelia cultured with FGF10. FGF10 treatment 

increased forskolin/IBMX (F&I) stimulated short-circuit current (f, 24 and 72 hrs, *P<0.001 

and **P<0.01 versus control, Bonferroni post-test). FGF10 treatment did not significantly 

affect conductance (g, NS, Bonferroni post-test). Graph bars = mean +/− SEM.
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Figure 5. Localization of immunostaining in fetal and newborn (NB) non-CF pigs. CF tissues 
consistently lacked CFTR immunostaining
a) Fetal non-CF pig trachea (d60) with weak apical CFTR immunostaining (arrows, insets) 

of nonciliated epithelial cells, bar = 11 and 3μm, respectively. b) Fetal non-CF pig trachea 

(d90) with apical CFTR immunostaining (arrows) on solitary surface epithelial (SE) cells 

and serous cells of the submucosal glands (SMG), bar = 10 and 5 μm, respectively. c,d) 
Newborn non-CF trachea with apical CFTR immunostaining (arrows) in solitary cells of the 

SE (c, bar = 15 and 7μm, respectively) and in most serous cells of the SMG (d, bar = 22 and 

5μm, respectively). e) CFTR immunostaining in non-CF pseudoglandular lung (d36–60) was 

typically located on the apical cell surface along leading edge of budding airways (arrows 

and top left inset panel), bar = 29 and 10μm, respectively. CFTR immunostaining intensity 

decreased with age and was absent in distal airspaces at d90 (canalicular lung).
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Figure 6. A proposed model for CFTR in early lung development
a) During early branching morphogenesis, CFTR transport/liquid secretion contributes to, 

but is not essential for, distension of fetal airways (a). Fetal airway “stretch” (i.e. mechanical 

distension) directs signaling pathways needed for normal airway development. In CF, we 

speculate that diminished airway distension dysregulates downstream stretch-mediated 

signaling pathways resulting in proximal airway lesions at birth. b,c) Newborn CF pig 

airways have structural differences compared to non-CF airways. This difference is 

preferentially seen in the proximal airways (red, b,c) with a transition zone (lilac, b,c) to 

similar sized distal airways (blue, b,c). Proximal airways originate during early 

pseudoglandular growth and this time period corresponds to when differences in fetal 

airways were observed (see Figure 2a–c). c) A computed tomography reconstruction of the 

newborn pig airway tree shows the location where size differences are noted between non-

CF and CF in the proximal airways (red line) with a transition zone (lilac line) to the distal 

airways (blue line), which are similar in size. b and c adapted from Adam et al.(14)
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