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Here, we present the algorithm and validation for OMEGA, a systematic, knowledge-based conformer
generator. The algorithm consists of three phases: assembly of an initial 3D structure from a library of
fragments; exhaustive enumeration of all rotatable torsions using values drawn from a knowledge-based list
of angles, thereby generating a large set of conformations; and sampling of this set by geometric and energy
criteria. Validation of conformer generators like OMEGA has often been undertaken by comparing computed
conformer sets to experimental molecular conformations from crystallography, usually from the Protein
Databank (PDB). Such an approach is fraught with difficulty due to the systematic problems with small
molecule structures in the PDB. Methods are presented to identify a diverse set of small molecule structures
from cocomplexes in the PDB that has maximal reliability. A challenging set of 197 high quality, carefully
selected ligand structures from well-solved models was obtained using these methods. This set will provide
a sound basis for comparison and validation of conformer generators in the future. Validation results from
this set are compared to the results using structures of a set of druglike molecules extracted from the Cambridge
Structural Database (CSD). OMEGA is found to perform very well in reproducing the crystallographic
conformations from both these data sets using two complementary metrics of success.

INTRODUCTION

Conformer generation has been a topic of considerable
interest to the modeling community for a number of years,
and a large number of methods for conformer generation
have been presented.1-8 These methods have utilized a wide
variety of approaches to the problem, including systematic
enumeration, knowledge-based rule sets, random coordinate
embedding, and energy-based or energy-biased sampling. All
these approaches attempt to generate a set of conformations
designated to be different from one another by some measure,
usually geometric, and thereby aim to sample some subset
of the conformational space available to a molecule. The
method used by OMEGA is based on random coordinate
embedding and refinement, followed by torsion driving using
a set of rules derived from experimental structures and energy
profile calculations, and then subsequent sampling of the
resulting conformer ensemble by geometric and energetic
criteria.

Publications that demonstrate the utility of conformer
generators have approached the problem of validation of such
tools in a number of different ways. Conformer generation
is not an end in itself but a means to obtain input for other
applications, most frequently shape comparison tools (or
other 3D ligand matching approaches) and docking engines.
Indeed conformer generation is often subsumed as a portion
of a docking algorithm, which prevents independent evalu-
ation of the conformer generation within such tools. One
approach to validation has, therefore, been to generate
conformer ensembles for use in a downstream tool (e.g.,

pharmacophore perception).9 The quality of the conformer
ensembles is then judged by the quality of the output from
the downstream tool. While it might be argued that the “real-
life” use of conformer generators is well reflected in this
approach, judging the quality of a conformer generator based
on the performance of a separate tool is fraught with
problems. If this tool has been optimized to use conformers
from a certain engine, then it would be expected to produce
“better” results from this engine over all others. Other
approaches to validating conformer generators have empha-
sized estimation of conformational coverage based on both
pharmacophoric and geometric measures.10 In studies of this
kind, coverage of conformational space is held to be an
absolute good and the tools under study are assessed based
on their ability to cover the greatest amount of conforma-
tional space. However, there are large areas of “accessible”
conformational space for a flexible molecule that are
populated by conformers very different in shape and
geometry from any experimentally determined conformer (be
it in the solid state, in solution, or in the gas phase). As such,
simply maximizing coverage of conformational space may
result in generation of a conformer set containing a high
proportion of conformers irrelevant to any measurable
experimental property of the molecule.

By far, the most common, though not always the most
well-executed, method for validation of conformer genera-
tors, and the method used in this paper, is the reproduction
of experimental crystal structures11 (often those retrieved
from the Protein Databank (PDB)12). The implicit argument
proffered for this approach is that coverage of conformational
space near an experimental conformation of a molecule is
more important than coverage in other regions of confor-
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mational space. Since experimental structures, while fre-
quently not at a local minimum for a force field,13 are
generally considered to exhibit low levels of strain,14 the
regions of conformational space near an experimental
structure can be considered as basins in the molecule’s energy
profile. Accordingly, assessing sampling in these regions of
the energy hypersurface can be a good guide to the
performance of a method in generating low-energy confor-
mations. To perform this sort of validation, a number of
protein-ligand cocomplexes are selected and the ligands are
extracted. The connection tables of these ligands are used
as input for the conformer generator to provide a set of
conformers for each ligand, unbiased by any structural
information of the original experimental conformation. A
metric of quality is then calculated that provides a measure
of the three-dimensional similarity between the experimental
conformation for the ligand and the conformers in the set.
There are, therefore, two critical choices to this method of
validation: selection of the appropriate metric of quality to
perform the comparison and selection of suitable cocrystal
structures to provide the ligands. While many metrics for
comparing computed and experimental conformations are
available, such as rms error in Cartesian space (rmsd), rms
error in torsion space (RMST), and relative displacement
error (RDE),15 choosing the metric of quality presents some
subtle problems. Atom-based metrics like rmsd, while very
popular, have significant problems in their interpretation and
necessarily have a dependence for their significance on the
experimental error/precision of the crystal structure (a
particularly difficult issue for PDB ligands). In addition, RDE
and rmsd have no easily calculable upper bound (unlike
RMST), and all these measures have a size dependence that
is not easily compensated for. In this paper, two different
metrics are used to compare computed and experimental
conformations of druglike molecules, one atom based (rmsd)
and one shape based (Tanimoto combo). The conformational
coverage close to the experimental conformation is also
assessed. In this way, it is hoped to provide a more complete
picture of the ability of OMEGA (or any other conformer
generator) to match experimental conformations. Identifying
suitable cocomplex structures from the PDB to provide the
experimental conformations of small molecules is a difficult
and complex process. Unfortunately, in most publications
in this area, insufficient care is taken in the selection of the
structures, resulting in unwarranted or questionable conclu-
sions being drawn based on unreliable data. Some of the
issues that should be considered in the selection of structures
from the PDB include the following:

Are the deposited models of good quality at both the global
and local levels? There is little sense in trying to reproduce
a deposited structure that is a poor model of the experimental
density or a model that is not completely defined by the
density.

Do the structures possess an appropriate degree of preci-
sion in their atomic coordinates? When using atom-based
metrics like rmsd, paying attention to the precision in the
atomic coordinates is critical: an rmsd or any measure of
conformer reproduction more precise than the inherent
inaccuracy/experimental error in the atomic coordinates is
meaningless. Do the structures show intra- or intermolecular
clashes? Significant atomic clashes, either between the ligand
and the protein or between atoms of the ligand, must be

artifacts of the process of fitting the ligand to the experi-
mental electron density and not an inherent property of the
structure. The binding energy available upon protein-ligand
complexation is unlikely to be sufficient to drive atoms into
close contact with one another. Are the ligands covering a
reasonable amount of structural or chemical space? A set of
ligands with a large degree of structural redundancy does
not provide as rigorous a test of conformer generators as a
structurally nonredundant set does. Also, in order for the
results of the validation to be useful in a predictive or
prospective manner, they should be readily generalizable to
any set of applicable molecules. This can only be done with
validation sets that cover chemical space in a reasonable way.

Consideration of these questions has allowed the develop-
ment of quantitative criteria for structural quality in the PDB.
These criteria were applied as successive filters to three
previously published large data sets of cocrystal structures,
PDBbind,16 the Sadowski set13 and the Kirchmair set,17 to
provide a high quality group of cocrystal structures to es-
tablish a gold standard for the validation of approaches to
conformer sampling. A set of small molecule structures from
the Cambridge Structural Database (CSD)18 was also col-
lected to provide complementary data to that obtained with
the ligands from the PDB. These two data sets are applied
to the evaluation of the OMEGA conformer generation
application using the metrics mentioned above.

METHODS

Here, the OMEGA algorithm is introduced in some detail;
the metrics for comparison of the generated conformers to
the experimental structures are outlined, and the criteria for
the identification of suitable protein-ligand cocomplexes and
small molecule structures with which to validate the algo-
rithm are discussed.

OMEGA Algorithm. The design goal for OMEGA is to
provide a thorough, though not exhaustive, sampling of
conformational space for druglike molecules at as high a
speed as possible (typically 2-2.5 s per molecule on a
workstation running SLED 10 with a 2.4 GHz processor and
4 GB of RAM). The process used by OMEGA for conformer
generation can be considered in several parts, two of which
are generic and are precalculated and the rest of which are
molecule specific and occur at run time. The first two steps
are construction of a database of fragments from which the
molecule will be assembled and derivation of a torsion
library; the remaining steps generate a large ensemble of
conformations and sample from this ensemble to deliver the
final set of conformers.

1. Fragment Database Preparation. The OMEGA frag-
ment database contains one or more 3D conformations for
every entry (flexible rings have multiple conformations, rigid
rings and acyclic groups have one conformation). The
database is generated by fragmenting a very large collection
of commercially available compounds into contiguous ring
systems and small linear linkers. One or more 3D conforma-
tions for each fragment are generated by the following
procedure: A distance bounds matrix is generated based on
the connection table of the fragment; the distance bounds
are augmented by volume constraints for chirality and
planarity; the coordinates of each atom are randomly
embedded in a Cartesian space and optimized to fulfill the
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bounds and constraints; the fragment is further refined against
a modified version of the Merck molecular force field
(MMFF94),19 in which the electrostatic and attractive van
der Waals’ terms are removed. The procedure is repeated
hundreds of times for each fragment, with cycles being
sampled more heavily than acyclics, and the lowest energy
conformers that are unique in rmsd space are retained.

2. Torsion Sampling Dictionary. A hierarchy of torsions
defined by SMARTS patterns is preorganized so that every
rotatable bond in a small molecule matches at least one
torsion rule. Every torsion definition is associated with a list
of angles at which the torsion should be sampled. Very
common or structurally unique torsions may be represented
by very specific rules, while unusual torsions are only
covered by generic torsion rules, often with relatively heavy
sampling. Specific rules are employed when the barrier to
rotation is high and the minima in the torsion profile are
well-known. The torsion angles specified by the torsion
library were derived by analysis of a set of experimental
crystal structures (mostly from the PDB) and from energy
scans of certain torsions against MMFF94.

3. 3D Structure Generation. OMEGA requires a com-
pletely connected molecular graph as input. Each graph is
fragmented in the same manner as the fragment database
and fragment conformations are drawn directly from the
fragment database described in step 1. If a molecular
fragment is not found in the fragment database, the procedure
described in step 1 is carried out on-the-fly to generate
coordinates for the missing fragment. The fragments are
assembled into the parent molecule by overlapping fragments
using geometric and chemical rules, thereby providing one
or a small number of initial conformations for the molecule.
This set of conformers includes all necessary ring conformer
sampling.

4. Torsion DriVing. Every rotatable bond in the conform-
ers generated in step 3 is compared to the torsion library
from step 2, and the appropriate torsion angles are noted. A
torsion buildup procedure is applied to all the torsions in
the molecule to generate a large ensemble of conformations
that does not contain severe internal clashes or duplicates
due to common symmetries.

5. Sampling. The design goal of OMEGA is to produce
up to a few hundred low energy, structurally diverse
conformers, and as such, the much larger collection of
conformers produced by step 4 must be sampled. This
process is begun by ordering the conformers using a simple
scoring function that eliminates conformers with internal
clashes. While many functions are suitable for this process,
OMEGA uses a modified form of MMFF94 (vide supra).
Next, beginning with the lowest scoring conformer, all higher
scoring conformers that are less than a user-defined rmsd
(including heavy atom automorphisms) to the lower scoring
conformer are eliminated (the default rmsd cutoff is 0.5 Å).
This process is continued with each successive conformer
in the ordered list until (a) all conformers have a score less
than 10 units higher than the lowest energy conformer
produced or (b) 200 mutually unique conformers are identi-
fied. At no stage in this process is minimization performed
because this tends to produce highly compact (folded)
conformations not reflective of the conformation(s) found
in solution or bound to a protein. This is mostly due to the
differences between the gas phase and the solution phase or

complexed potential energy surfaces for small molecules.
Extensive experimentation in-house has shown that mini-
mization of ensembles of conformers either before or after
deduplication improves neither solid-state structure reproduc-
tion nor virtual screening performance with tools like ROCS
or FRED.

Suitable Metrics for Comparing Conformers. Two
metrics for comparison of conformer ensembles to an
experimental conformation were chosen, rmsd and the
Tanimoto combo, calculated using the Shape Toolkit from
OpenEye Scientific Software. The Tanimoto combo (or TC)
score represents a combination of shape matching (shape
Tanimoto) and functional group matching (color Tanimoto).
TC offers a complementary approach to the atom-based rmsd
measure for a number of reasons treated at greater length in
the Discussion section. An important difference between TC
and rmsd is that TC is bounded (by 0 and 2). It should be
noted that the processes used to overlay and score conformers
using rmsd or TC are very different, and therefore, the
conformer giving the minimum rmsd to the experimental
structure will almost always be different than the conformer
giving the maximum TC to the experimental structure.

Identifying Suitable Small Molecule Structures. Two
sources of small molecule structures, the PDB and the CSD,
were utilized. To find small molecules from the PDB, first,
suitable cocrystal structures were identified from larger sets
using global criteria; then, the ligands were extracted and
inappropriate ligands were removed using local, ligand-
centric criteria. Small molecule structures from the CSD were
obtained from a previously published data set,18 which was
subjected to some of the ligand-centric criteria used to
identify suitable PDB ligands.

Identifying Suitable Cocomplexes from the PDB. There
are two kinds of criteria that must be considered here: global
criteria for the structure as a whole and local criteria
pertaining to the fit of the ligand to its local density and the
properties of the ligand itself. A number of possible criteria
of quality for crystal structures were enumerated in a paper
by Hartshorn et al. on the selection of a set of structures
suitable for validating docking programs for pose predic-
tion.20 The global criteria identified by Hartshorn et al. were
that all structures must have good nominal resolution and
have deposited structure factors, while the local criteria were
that the ligand must be well fit to its local density and cannot
be covalently bound to the protein. This list has been
extended in this work, both at the global level and the local
level. In addition to the Hartshorn criteria at the global level
(good nominal resolution, deposited structure factors in the
PDB), the model must have good overall metrics of model
quality and reasonable coordinate precision. At the local
level, it is demanded that a ligand be well fit (using different
criteria to Hartshorn et al., vide infra) and be noncovalent.
It is further required that the ligands show no intra- or
intermolecular clashes and that they be diverse at the graph
level.

Nominal resolution, while very commonly used as a
measure of structure quality, is in fact a measure of the
quantity of data gathered, not quality of the structure, and
as such can only be used as a very rough guide to selecting
a good structure.21 In many studies in this area, the nominal
resolution has been used as a surrogate for experimental
accuracy, which is inappropriate (see ref 22 and the Discus-
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sion). However, since nominal resolution indicates the
quantity of data gathered, at a resolution of 2.7 Å or better,
the ratio of experimental data points to parameters in the
model is greater than 1. As such, structures with a resolution
of 2.7 Å or better offer the possibility (but only the
possibility) of a well determined model. The quality of a
deposited model can be independently checked only if
structure factors (electron density maps) are available in the
PDB, so all structures must have deposited structure factors.
In order to ensure that the models used are globally well fit
to the data (and not overfit), we use the difference between
the R-factor and the Rfree, as introduced by Brunger.23 In this
work, we demand that a structure must have a Rfree within
0.05 of the R-factor.24 In comparing computed and experi-
mental poses for ligands, it is almost uniformly assumed that
the experimental pose is infinitely precise and without error,
which is untrue for any piece of experimental data. The
average positional errors for atoms in a crystal structure can
be assessed using the diffraction-component precision index
(DPI).25 We calculate DPI according to the approximation
published by Blow26 (using the Blow rearrangement allows
us to calculate an estimate for DPI based solely upon
information commonly contained in the header of a PDB
file). The comparison of a computed conformer to the
experimental conformer by rmsd obviously requires com-
parison of atom positions between the two conformers.
Accordingly, the positional uncertainty in the atoms in the
experimental structures should be less than the rmsd for the
comparison to be meaningful. In this work, we estimate
positional uncertainty in atomic positions as sqrt(2) × DPI,
following Goto et al.27 The maximum for the average
positional uncertainty in a structure was set at 0.6 Å, which
sets the maximum for the DPI to be 0.42 Å. In this way,
any rmsd result from this set greater than 0.6 Å is guaranteed
to be a prediction greater than the error in the experimental
data, and therefore, such a prediction will be significant.
Whatever the magnitude of the rmsd, a correction to it will
have to be made to account for positional uncertainty in the
ligand atoms (see the Results section). The assumption used
in this paper is that the ligand atoms have average positional
uncertainty. While the real uncertainty for the ligand atoms
may well be different, it is not reliably calculable at the
present time; therefore, we use DPI as our best estimate.

When considering whether or not a ligand is suitable for
conformer generation studies, the local quality of fit of the
ligand to its density, as well as global metrics of quality,
should be considered. In this study, three local metrics, the
real-space correlation coefficient (RSCC),28 the real-space
R-value (RSR),29 and the occupancy-weighted B-factor
(OWAB) were used to ensure that the ligand has been
sensibly fitted to the electron density. The use of the
occupancy weighted B-factor as a criterion was based not
on the idea that this number necessarily measures thermal
mobility in the ligand, as is often assumed. Rather, we used
the OWAB to indicate either structures where the ligand is
genuinely disordered in the active site, and therefore, the
idea of reproducing “the” bioactive conformation is question-
able or structures where there is some pathology of the model
that led, in the process of fitting the ligand to its density, to
very high or very low B-factors. These models are inherently
of dubious value and should not be included in the set. The
criteria used in this work were that RSCC > 0.9, RSR < 0.2,

and 1 < OWAB < 50. These data were obtained by download
from the electron density server (EDS).30

When applied sequentially, these global and local filters
should ensure that a ligand structure arises from a good
quality overall model and has been well fit to its local density.
The filters were applied to a large set of PDB structures (see
Results), and the cocomplexes that survived were then
processed to separate the ligand and the protein. These pairs
were checked to ensure that they do not show any intermo-
lecular clashes, and those ligands that showed no clashes
were designated as well-solved structures, to be used in the
final, ligand-based filters. In these final steps, we focus on
identifying suitable molecules using simple physicochemical
and graph-based properties.

Identifying Suitable Ligands from the PDB. In the last
filtering step, we removed ligands that are not representative
of the population of molecules for which this validation is
intended. As a first step, we removed all well-known
cofactors, as these were not as relevant to the goals of this
study (validation of OMEGA’s performance on druglike
molecules). As mentioned above, OMEGA depends upon
MMFF94 for its energy calculations, so molecules that
contain elements unknown to MMFF94 (such as boron) must
be removed. To ensure that we used a collection of ligands
that provides as broad a set of tests for the OMEGA
algorithm as possible, we attempted to select a structurally
diverse set of ligands. At the simplest level, the molecules
can be neither too rigid (so that the conformer sampling
problem is trivial) nor too flexible (so that a close reproduc-
tion of the experimental conformation is more a matter of
good luck than a good algorithm because of the high
dimensional nature of the search space) and neither too small
nor too large. We, therefore, applied the following criteria:
3 e maximum number of rotatable bonds e 16; 8 e heavy
atom count e 50.

Preliminary analysis revealed that molecules designed to
bind to thrombin were over-represented in the set of well-
solved ligands identified by the criteria used thus far. These
ligands tended to share a high degree of substructural
similarity, so a method to introduce some level of structural
diversity at the graph level was sought. We applied a simple
measure of molecular similarity using the LINGOS method;31

any pair of molecules that had a LINGOS Tanimoto >0.9
was flagged for removal, and the molecule with the better
set of local fitting metrics for the pair (RSCC, RSR and
OWAB) was retained. The use of graph-based metrics like
LINGOS for structural diversity is a surrogate for the more
relevant but more difficult to assess diversity in the torsions
and flexible rings present in the molecule.

To further reduce the influence of experimental error on
this data set, we demand that the ligand does not show any
nonbonded intramolecular atomic clashes, as these are a mark
of a poorly solved model. As further discussed in the Results
section, we turned to the CSD for precise distributions of
interatomic distances with which to identify clashing atoms.
A final visual check was performed to remove molecules
that are structurally analogous but were not identified as such
by the LINGOS comparison (those with large common
substructures and/or a large fraction of their functional groups
in common). This gave us 197 ligands whose conformations
we then attempted to reproduce using OMEGA. The attrition
rates for the different data sets and an analysis of OMEGA’s
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ability to reproduce these 197 surviving structures is given
in the Results section.

A parallel analysis was performed on high quality small
molecule structures from the CSD, as outlined in the
following paragraphs.

Identifying Suitable Molecules from the CSD. An
important part of the selection criteria for structures from
the PDB focused on removing structures that were not
reliably and accurately fit to their density, and a large
majority of the candidate structures failed these criteria (see
the Results section). A further problem with molecules from
the PDB is the high level of inherent experimental uncertainty
in the atomic positions. Both of these problems can be
avoided entirely if small molecule structures from the
Cambridge Structural Database (CSD) are used. A high
quality set of 492 druglike structures has been extracted from
the CSD as part of a previously published study,18 and these
were used as the basis for generating a complementary set
of structures to those we obtained from the PDB. No filtering
of these structures based on model fit (global or local) was
necessary as all atoms are accurately located in these models.
Applying the same physicochemical and diversity criteria
as were used for the ligands from the PDB gave a set of
480 small molecule structures upon which we could perform
the same validation experiments. Comparison of these results
to those from the ligands from the PDB can be found in the
Results section.

All code was written in Python (version 2.4), and statistical
calculations were performed with Rpy version 1.03. Chem-
informatics functions (including rmsd and LINGOS calcula-
tions) were performed using OpenEye’s OEChem (version
1.6.1), and shape calculations were performed using the
OpenEye Shape toolkit (version 1.6). Protein-ligand coc-
rystal structures were downloaded from the PDB and filtered
according to the criteria laid out in the Methods section.
RSCC, RSR, and OWAB data for each PDB ligand were
obtained from the EDS. Molecules from the CSD were
obtained from one of the authors of the original study
(personal communication, K. Brameld).

Molecules were converted into isomeric SMILES format
using the OEChem toolkit before being used for conformer
generation. Conformer databases were generated using
OMEGA version 2.3, with an energy window for acceptable
conformers of 10 kcal/mol above the ground state using a
modified version of the MMFF94 force field, a maximum

number of conformations per molecule of 200, and an rmsd
cutoff of 0.5 Å (the default settings in OMEGA2.3).
Interatomic distance analysis of the CSD was carried out
with ConQuest v.1.6.32

RESULTS

Molecules from the PDB. In the Methods section, we
presented a set of criteria for selecting suitable protein-ligand
cocomplexes from the PDB and then identifying suitable
ligands from those complexes. We applied these criteria to
three large data sets (two of which have previously been
used in conformer validation studies) that together consist
of over 4500 cocrystal structures: 778 structures that Kirch-
mair et al. used in their comparison of Catalyst and
OMEGA,17 the set used by Sadowski and Bostrom in their
study on the OMEGA 1.8.1 torsion library13 (1267 structures)
and a subset of the PDBBind database16 (2516 structures).
The percentages of structures remaining after each filter was
applied are illustrated in Figure 1. In all three databases, we
found very large levels of loss when we applied our filtering
criteria (over 90% of the structures in every database were
removed). It can easily be seen from Figure 1 that there are
three criteria that, when applied in the given order, remove
the highest percentages of the structures: nominal resolution
greater than 2.7 Å (criterion A), poor fits of the ligand to its
density (criterion E), and inappropriate physicochemical
properties (criterion F).

The problem of identifying atom-atom clashes (filters E
and G) based on analysis of interatomic distances in
structures from the PDB is nontrivial, due to the inherent
uncertainty in those atom positions. Therefore, we chose to
perform an analysis of nonbonded contacts for commonly
occurring atoms (C, N, O, S, P, F, Cl) using high quality
structures (R-factor <0.05, no disorder) of organic molecules
from the CSD, where the atoms are located with very high
precision. The cutoffs identifying clashes were set at an
interatomic distance above which 95% of the distances for
that (nonbonded) atom pair in the CSD occurred. These
cutoffs are shown in Table 1 in the Supporting Information.

The only well fit ligands that can show intermolecular
clashes are those that are covalently bound to their target
protein, and these are explicitly excluded from this set.
Therefore, noncovalent ligands that have clashes, by these
criteria, with their cognate protein are incorrectly solved.

Figure 1. Attrition rates for three data sets of cocrystallized ligands. The filters used are (A) nominal resolution e2.7 Å; (B) structure
factors must be present; (C) R - Rfree must be <0.05; (D) DPI < 0.42 Å; (E) RSCC > 0.9, RSR < 0.2, OWAB < 50, no intermolecular
clashes; (F) physicochemical properties; (G) pairwise LINGOS similarity <0.9, no intramolecular clashes.
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None of the ligands that passed the previous filters (A to E
in Figure 1) showed any intermolecular clashes, indicating
that the criteria used in these filters (especially the RSR and
RSCC filters) can be useful in identifying misfitted ligands.
Similarly, no ligands were removed based on the intramo-
lecular clash filter, further reinforcing the idea that RSCC
and RSR can provide useful information on the quality of a
ligand’s fit to its density. However, it is noteworthy that
several structures from such well-known data sets as the
Perola and Charifson set33 show intramolecular clashes, as
these authors selected structures using only global criteria
of fit, omitting local measures. As such, these structures
should not be used in conformer generation studies, as has
been done by some authors,34 because the deposited coor-
dinates for the ligand are incorrect; atom-atom clashes
cannot be enforced by protein binding and simply reflect an
error in the solution of the structure.

After the filters had been applied, the surviving ligands
from each of these three sets were combined and dedupli-
cated and close analogues were removed as discussed in the
Methods section. This left 197 high-quality ligand structures
on which to perform the validation. The mean pairwise
similarity of these molecules using the LINGOS Tanimoto
measure is 0.18, so the structures are relatively diverse from
one another at a graph level. Conformers were generated
for these molecules using OMEGA with the default settings
(see the Methods section). The average CPU time per
molecule in this set was 2.05 s. In Figure 2, we show the
reproduction of the experimental conformation using the
lowest rmsd and highest Tanimoto combo metrics. Ap-
proximately 83% of the structures are reproduced within a

1 Å rmsd and 66% are reproduced with a Tanimoto combo
of 1.5 or better.

The relationship between best (lowest) rmsd and best
(highest) Tanimoto combo for this data set is shown in Figure
3, where the lowest rmsd for any conformer to the experi-
mental conformation in a set is plotted against the highest
Tanimoto combo for any conformer to the same experimental
conformation. As expected, the cases where the rmsd is low
(<0.25 Å) all show very high Tanimoto combos. As rmsd
increases, the relationship to Tanimoto combo becomes
increasingly less linear, in that there are several examples
where constant rmsd gives a widely varying Tanimoto combo
and vice versa. Quantitatively, we can assess the correlation
between the two measures using either the Spearman rank
correlation coefficient or the Kendall tau. For this data, the
Spearman coefficient is 0.925 and the Kendall tau is 0.775.
As such, the two measures of conformer reproduction are
correlated (as would be hoped for two measures attempting
to assess the same thing) but are by no means identical.

That these two measures are assessing conformer repro-
duction differently is to be expected, since they are generated
in rather different ways and, therefore, provide complemen-
tary means to compare conformations. A striking difference
in the two overlay methods is illustrated in Figure 4, where
two different overlays of conformers of the ligand from the
PDB structure 1 V2N are shown. The experimental confor-
mation is in green; the best overlay based on lowest rmsd is
in red, and the best overlay based on highest Tanimoto

Table 1. Reproduction of the Experimental Conformations for 197
Structures from the PDBa

Tanimoto combo
(mean/median)

rmsd (Å)
(mean/median)

rmsd-U (Å)
(mean/median)

max (rmsd,U) (Å)
(mean/median)

1.56/1.64 0.67/0.51 0.35/0.20 0.72/0.62

a Results are shown as mean/median for each column heading; U
) the coordinate uncertainty (sqrt(2) × DPI).

Figure 2. Distribution of rmsd and Tanimoto combo between the
closest conformer in a set and the experimental conformation for
197 ligands from the PDB.

Figure 3. Best rmsd v. best 3D shape and chemical similarity
(Tanimoto combo) for reproduction of 197 ligands from the PDB.

Figure 4. Comparison of the experimental conformation of the
ligand 1 V2N (green) with the best overlay as provided by rmsd
(red) and the best overlay as provided by Tanimoto combo (blue).
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combo is in blue. The best rmsd overlay here is 0.89 Å, while
the best Tanimoto combo is only 1.06 (Tanimoto combo’s
range is 0-2, see Methods section). The origin of this
difference in the assessment of the quality of reproduction
when using these two different metrics is most clearly seen
by inspecting the alignments of the benzamidine functional
groups.

As can easily be seen in Figure 4, the rmsd overlay in red
symmetrically, but poorly, matches both benzamidine func-
tional groups, while the Tanimoto combo overlay matches
one benzamidine group very well (the one on the left in
Figure 4) while the position of the other benzamidine group
is much less well reproduced, giving the surprisingly low
Tanimoto combo. This illustrates a consistent difference
between the two methods of comparison; rmsd tends to
produce overlays that are equally good (or bad) everywhere
across the molecule, while Tanimoto combo tends to produce
overlays that are very close in some portions but can be much
more divergent in others.

While all the structures in this validation set have high
coordinate precision, there is still some level of inherent
uncertainty in the atomic coordinates. Therefore, when
comparing a computed pose to an experimental pose using
atom-based metrics like rmsd, this experimental uncertainty,
U, in the atom positions must be taken into account. There
are two possible approaches to this, both of which are shown
in Table 1. The first is to use as the figure of merit the
maximum of the rmsd and the coordinate uncertainty, U
(max(rmsd,U) in Table 1), since the prediction cannot be
more accurate than the error in the experimental data (the
coordinate uncertainty). The second is to use the difference
between the rmsd and the coordinate uncertainty (rmsd-U
in Table 1), which reflects the additional error in the model
introduced by conformer generation. This number is set to
zero if rmsd < U.

As can be seen from column 3 (rmsd-U) in Table 1, the
average amount of “noise” introduced by OMEGA in
generating a conformer close to the experimental is small.
Also, due to carefully choosing structures that have low levels
of uncertainty, the mean and median for the maximum of
the rmsd and experimental uncertainty (column 4) are very
close to the mean and median for the “raw” rmsd (column
2). Therefore, the level of accuracy in our predictions is only
minimally affected by the experimental uncertainty in the
structures that make up the data set.

An issue that is most often ignored in studies of this kind
is the prospective utility of the performance metrics pre-
sented, or how robust are the performance metrics to changes
in the composition of the data set and, therefore, how
predictive are the results of future performance? This
question is addressed here by bootstrapping: we omit a
randomly selected 10% of the results (allowing duplicates),
recalculate the mean rmsd and repeat 10 000 times, and then
find the 5% and 95% quantiles. The 5% quantile is 0.647 Å,
and the 95% quantile is 0.688 Å, thereby giving us the 90%
confidence interval. Therefore, we can say that for a future
experiment on a set of molecules with similar properties to
those of this PDB-derived set 90% of the time the mean rmsd
will lie in the range 0.647-0.688 Å. This small interval
implies that, even though the data set is not as large as we
had hoped, the mean found here is a reliable indicator of
OMEGA’s average performance on as yet untested collec-

tions of ligands. The 90% confidence interval for the mean
Tanimoto combo can be calculated in the same fashion and
is 1.54 to 1.64. We may also use these confidence intervals
as a method of comparing two sets of results to determine if
they are significantly different from one another (see Discus-
sion).

So far, we have dealt with the properties of the single
conformer closest by a given metric to the experimental.
While this measure has significant utility, in another view
of the problem, the proportion of conformers within a certain
distance of the experimental structure is important. This
method of measuring success is very rarely used35 but
provides a useful complement to focusing solely on the
matching of only the best single conformer from a possibly
large set, as we have done to this point. A common upper
bound for successful reproduction of an experimental
structure in docking is an rmsd of 2 Å, this number being
thought of as providing a sufficiently close match of the
important interaction points on the ligand (hydrogen bond
partners, etc.). Accordingly, a “close” reproduction of an
experimental pose could be considered to have an rmsd of
less than 2 Å. In this work, since we calculate each metric
after aligning the conformers to the experimental structure,
a smaller cutoff is more relevant, so we have selected an
rmsd of 1.25 Å as our definition of “close”. Figure 5 shows
the cumulative frequency of cases where conformers are
close to the experimental.

It can be seen from the figure that, for around half of the
cases (47%), less than 25% of the conformers generated for
a given molecule are close to the experimental conformation,
while for around 8% of the cases 100% of the conformers
generated are close. In total, 19% of the conformers generated
for this set are within 1.25 Å rmsd of the protein-bound
conformation. Having a reasonable proportion of the con-
formers in the set close to the protein-bound structure is
helpful for downstream protein-based tasks such as docking.
However, as is seen in the next section, the same molecule
may have multiple solid-state structures and, therefore, have
too high a fraction of the conformational ensemble, for that
molecule close to only one of them would not be desirable.

Molecules from the CSD. As mentioned previously, 492
molecules from the CSD were obtained from a previous
publication, of which 480 survived the ligand filtering process
(physicochemical and graph diversity filters). The mean
pairwise similarity of this set using the LINGOS Tanimoto
is 0.14, again indicating that the molecules are diverse at a
graph level. It was hoped that these molecules from the CSD

Figure 5. Distribution of percentages of conformers that are close
(rmsd < 1.25 Å) to the experimental conformation of 197 structures
from the PDB.
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would represent a different set of challenges in conformer
generation; the PDB structures are obtained in an aqueous
environment, and the majority of CSD structures are obtained
in nonpolar environments. Accordingly, using sets of high-
quality structures from both sources will further challenge
OMEGA’s abilities to reproduce solid-state structures. While
there are large numbers of small molecule structures in the
PDB and the CSD, the two databases show only a low level
of overlap; a comparison of over 4000 druglike ligands from
the PDB with over 57 000 druglike molecules in the CSD
finds only 224 molecules in common (see Supporting
Information for PDB and CSD codes). Of these 224
molecules, only 32 meet the quality criteria for PDB
structures laid out previously (see Methods). The differences
in the conformations of these 32 molecules (as measured by
rmsd) found both in the PDB and the CSD sets are shown
in Figure 6. The mean rmsd for this set is 1.02 Å, a figure
close to that found in similar analyses.17,36

Clearly, the same molecule in the CSD and the PDB can
sometimes adopt rather different conformations (over 7%
have rmsd > 2 Å), while other protein-bound and uncom-
plexed conformations can be quite similar (16% have rmsd
e0.5 Å). It is likely that at least some of these differences
in conformation are due to the crystal packing forces often
found in CSD structures. These can have a profound effect
on the conformation of a molecule, sometimes enforcing a
conformation not found in protein-bound structures.14,32 The
larger differences in conformation for the same molecule
indicate that there could be several basins in a molecule’s
energy hyper-surface in which solid-state structures are
found, so sampling across a range of the hyper-surface could
be useful.

While the molecules from the CSD were selected to be
druglike, they have somewhat different physicochemical
properties than those from the PDB. Table 2 illustrates the
differences between the CSD molecules and the PDB
molecules for two simple properties, heavy atom count and
rotatable bond count, and Figure 7 compares the distributions
for these two properties. It can easily be seen that for both
properties the molecules from the CSD occupy a smaller
range than those from the PDB. Most importantly for this

study, while the molecules from both sets are approximately
equal in size (as judged by their heavy atom counts), the
CSD-derived molecules are somewhat less flexible than the
PDB derived set, having, on average, one fewer rotatable
bond. Therefore, the CSD derived set is expected to be an
easier test of conformer sampling and reproduction than the
PDB set.

Given the difference in rotatable bond count, the numbers
of conformers produced by OMEGA2 for this set and for
the PDB set are rather different; the median number of
confomers per molecule was 47 for the CSD set and 123
for the PDB set.

In Figure 8 is shown OMEGA’s performance in reproduc-
ing these structures, as judged by rmsd and Tanimoto combo.

Figure 6. rmsd distribution for the same molecule found in both
the CSD and the PDB (n ) 32).

Table 2. Property Distributions for Molecules from the CSD and
the PDBa

rotor count (mean/median) heavy atom count (mean/median)

PDB 6.3/5 24.4/23
CSD 4.7/4 23.1/22

a Given as mean/median.

Figure 7. Property distributions for molecules from the CSD and
the PDB.

Figure 8. Distribution of rmsds and Tanimoto combos between
the closest conformer in a set and the experimental conformation
for 480 molecules from the CSD.
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As can be seen in Figure 8, 441/480 (84.5%) of the CSD
structures are reproduced within 1 Å rmsd, while 400/480
(83.3%) are reproduced within 1.5 Tanimoto Combo. Table
3 shows the mean and median for the Tanimoto combo and
rmsd metrics. Note that in the case of these structures from
the CSD the positional uncertainty for the atoms is suf-
ficiently small to be disregarded when calculating rmsds. The
Spearman rank correlation for the two metrics in Table 3 is
0.89, and the Kendall tau is 0.72, in both cases slightly
smaller than those found for the PDB set, again indicating
that these two measures are assessing different aspects of
OMEGA’s ability to reproduce the experimental conforma-
tion. The bootstrapping results on the CSD set are also shown
in Table 3. As with the results from the PDB ligands, these
small intervals imply that our results are not strongly
dependent upon the exact composition of this data set and
as such are reliable indicators of future performance on data
sets of similar property distributions to the one used in this
study. It can also be said with greater than 90% confidence
that the CSD results, either for rmsd or for TC, are better
than the PDB results since the 90% confidence intervals for
either metric do not overlap.

The results for “close” reproduction (rmsd < 1.25 Å) of
the experimental conformations are much better than for the
PDB; overall, 39% of the conformations generated for the
CSD set are close to the experimental conformation. This is
entirely consistent with the results from the CSD set relative
to the PDB set for best pose reproduction (as judged by either
Tanimoto combo or rmsd).

It is possible that the superior performance of OMEGA
on the CSD set is not due to the lower average flexibility of
the molecules but due to some consistent and unexpected
difference in the nature of the molecules between the two
sets. Therefore, a subset of the PDB ligands was derived to
closely match relevant physical properties of the CSD set
(heavy atom count and rotor count). The aggregate perfor-
mance metrics on this subset are much closer, though not
identical, to those seen from the CSD set, see Table 4.

The performance of OMEGA on these three different sets
is shown in Figure 9.

The 90% confidence intervals of the entire PDB set and
the CSD-matched subset of the PDB set do not quite overlap,
though they are very close (the difference could be entirely
due to the physical property distributions of the two sets not
being perfectly matched). Therefore, we cannot with com-
plete assurance attribute the entire change in OMEGA’s
performance to differences in the rotatable bond count

between the two sets. However, we conclude that the superior
performance of OMEGA on the CSD set derives to some
large degree from the lower average flexibility of the CSD
set compared to the PDB set and not from bias in the
OMEGA knowledge base.

Effect of the Torsion Library. We used both the PDB-
and CSD-derived test sets to investigate another possible
source of bias in the results; the torsion library, which was
assembled mostly by examination of ligand structures from
the PDB. If there is significant overlap between the molecules
used to arrive at specific angles in the torsion library and
the molecules in the test sets used in this study, then the
results will be artificially good (or artificially better for one
test set over another). We investigated possible training set
bias by eliminating all training set knowledge from the
torsion library. In these experiments, the simplest possible
torsion settings were used: every rotatable bond was sampled
at 30 degree increments, and new conformer sets were
produced using defaults for all other settings. Interestingly,
OMEGA’s ability to reproduce the solid-state structures from
the PDB or the CSD sets was not significantly changed
(whether measured by rmsd or Tanimoto combo) when using
this “naive” torsion library. Results for the PDB set using
rmsd are shown in Table 5, where it can be seen that the
90% confidence intervals overlap substantially. Therefore,
with 90% confidence, we can assert that OMEGA’s accuracy
is not affected by the use of the knowledge-based torsion
library. However, some other effects on performance were
noted. For the PDB set, when the naive torsion library was
used, the average number of conformations produced per
molecule increased by almost 15% over using the default
library (from 123.3 to 139.6 conformers/molecule), while
the total run time increased by nearly 40%. It was also seen
that the worst failures (highest rmsd, lowest TC) were less
poor when the default, knowledge-based, torsion library was
used than when the 30 degree library was used. Qualitatively
similar results were obtained for the CSD data set (data not
shown).

Table 3. Reproduction of 480 Experimental Conformations from
the CSD

TC
(mean/median)

rmsd (Å)
(mean/median)

TC
(5%/95%)

rmsd (Å)
(5%/95%)

1.72/1.75 0.508/0.44 1.711/1.726 0.501/0.517

Table 4. Reproduction of the Experimental Poses for a Subset of
the PDB Ligands with Physical Properties Matching Those of the
CSD Set

TC
(mean/median)

rmsd (Å)
(mean/median)

TC
(5%/95%)

rmsd (Å)
(5%/95%)

1.637/1.680 0.54/0.47 1.628/1.646 0.526/0.551

Figure 9. Reproduction of three data sets by OMEGA, using both
Tanimoto Combo (TC) and rmsd.

Table 5. Reproduction of 197 Structures from the PDB Using Two
Torsion Libraries

mean rmsd (Å) 5% quantile 95% quantile

Default 0.668 0.647 0.688
Torlib30 0.685 0.663 0.704
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DISCUSSION

The object of this study was 2-fold: to arrive at reliable
and challenging sets of solid-state structures to validate
OMEGA and to examine its default parameters for their
effectiveness on these well chosen solid-state structures (not
to exhaustively evaluate a large number of combinations of
parameters in OMEGA for their efficacy). The OMEGA
algorithm presented here combines knowledge-based and first
principles approaches to conformer generation, so it can be
described as systematic and rule based. The knowledge-based
part is the torsion library, while the fragment library,
ensemble buildup, and sampling are all performed on a first
principles basis.

We have developed a gold standard set of PDB ligand
structures by paying particular attention to identifying
structures that are good models for their electron density,
an approach rarely taken in the literature. Many of the
properties of a model that are used here are ignored or
misinterpreted in other publications in this area. For example,
based on the published literature, it is commonly believed
that selecting a cocrystal structure with a resolution below
some cutoff value (for example 2 Å) ensures a good quality
ligand structure. That this is clearly mistaken can easily be
seen by inspecting the ligand models for two structures, both
of 2 Å resolution, 1NHU and 1IY7 (see Figure 10).

The 1IY7 ligand model is clearly a good model of
complete density, while the 1NHU model is an interpretation
of partial density that is obviously poor (the deposited ligand
coordinates show severe atomic clashes). In two other cases
at 2 Å resolution or better, 1ATL and 1ETA, there is no
significant density for the ligand at all (even when viewed
at 1σ) making the deposited coordinates at best highly
speculative educated guesses. Therefore, resolution of the
parent structure alone is no guide to the quality of a ligand’s
conformation but should only be used as one criterion among
many. Cases like 1NHU, 1ATL, and 1ETA also caution
against using B-factors as a representation of thermal
mobility in a structure. If there is no density for a set of
atoms, what physical meaning is there in the B-factors for
those atoms?

Models built from data collected to at least 2.7 Å resolution
have a parameter to data point ratio of at least 1, allowing
the model to be well constructed. The confidence in the fit
of a model at the global level is increased if the difference
in R and Rfree is low (<0.05 herein), as a large difference in
R and Rfree is indicative of an overfit, though not necessarily
poor, model. A low level of difference also means that the
local measures of fit, RSCC and RSR, are meaningful, which
is not the case for overfit models (good values of RSCC and
RSR can be obtained for poor fits when R - Rfree is large).
By ensuring that the structures in the set all have low
experimental error in their atomic coordinates (DPI), we can
use atom-based metrics like rmsd, take appropriate account
of this experimental error, and still generate meaningful
measures of performance. The RSCC and RSR metrics often
delineate ligands that show good fits to their local density
from those that do not, and we thereby avoid many of the
problems with structures from other publications. Cases like
1NHU and 1ATL are easily identified by these fit criteria as
unsuitable for inclusion in conformation generator validation
sets (or any other kind of validation set), as the coordinates
are not supported by the experimental data. For example in
1NHU, the RSCCs for the two versions of the ligand in the
unit cell are 0.768 and 0.744, and the RSRs are 0.27 and
0.25; while in 1ATL, the ligand RSCCs are 0.709 and 0.722,
and the RSRs are 0.35 and 0.35, greatly exceeding the cutoffs
used in this work. Unfortunately there are a number of poorly
fit molecules like 1NHU in previously published data sets,33

and their presence in these sets only weakens the conclusions
that can be drawn therefrom. Any ligand conformation from
the PBD that shows intramolecular atomic clashes is an error
on the part of the crystallographer, and such structures are
easily avoided by the use of the RSCC, RSR, and OWAB
criteria used here. Further, by paying attention to the
physicochemical properties and graph diversity of the ligands,
we ensure a reasonable level of independence among the
molecules in our data set. That this is a factor often ignored
is easily seen by the example of the Kirchmair set,17 which
contains no less than 50 duplicate molecules. Such a level
of duplication is likely to bias the results obtained from that
data set.

While individually all the criteria we deploy seem reason-
able and even relatively benign, when combined, they present
a significant hurdle for a structure to surmount. Even though
we began to assemble our validation set using three large
data sets, two of which had already been selected for
validation of conformer generators, we found it impossible
to assemble a substantial set of well-solved structures. By
applying relatively loose criteria for the quality of the
crystallographic models at a global level, we removed around
75% of the starting structures. Overall, more than 90% of
all the input structures failed our filtering criteria, a surpris-
ingly high level. Figure 1 illustrates the attrition rates for
each of the three databases used and shows that they are
quite similar, which was unexpected. Given that the Kirch-
mair and Sadowski sets were selected with the explicit goal
of testing conformer generators, we expected lower attrition
rates for these two sets than for PDBBind, which is simply
a collation of cocrystal structures for which there exists a
published binding affinity. However, the percentages of
surviving structures are quite similar: 5.3% for the Kirchmair
set, 6.4% for PDBbind, and 8.1% for the Sadowski set. These

Figure 10. Electron density for two ligands both solved at 2 Å
resolution; 1NHU on the left, 1IY7 on the right.
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very low levels of survival emphasize that the number of
structures suitable for this sort of study in the PDB as a whole
is very small, as has been seen in a study using PDB
structures for docking validation.37 However, given that
recently the PDB has made deposition of structure factors
along with coordinates a requirement, we hope that that this
situation will improve quickly in the future.

The most commonly used metrics in conformer generation
studies are based on comparing each conformer in the set to
the experimental conformation, using some atom-based
geometric measure such as rmsd. Metrics like rmsd are used
almost without exception in conformer reproduction studies,
probably because they are relatively easy to understand and
require no specialized applications to calculate. There are,
however, a number of objections to the use of rmsd as a
metric of quality; it has no upper bound, it scales with
molecular size (so that an rmsd of 2 Å for a molecule of 6
heavy atoms is much different than an rmsd of 2 Å for a
molecule with 60 heavy atoms), and it can give an inaccurate
picture of the overall quality of a prediction.38 The most
serious of the problems with rmsd may be that it does not
directly compare a prediction with an experimental value
but rather compares a prediction or model (the conformer
set) with another model (the atomic positions in the crystal
structure). This problem has been eloquently discussed in a
paper by Yusuf et al.39 in which the authors advocate
comparison between the experimental data (electron density)
with calculated density derived from a docking pose (or
computed conformation) using the RSR metric (which is
bounded by 0 and 1). These objections notwithstanding the
large amount of published literature using rmsd militates
against not using it as one metric of quality in a validation
study, but it should not be the only one. A complementary
approach, pace Yusuf et al., is to use a bounded metric that
is not derived directly from the atom positions in the two
conformers being compared. One recent approach in this vein
has been the comparison of the overall shape of the
experimental conformation to the shape of a docking pose
using the shape Tanimoto metric employed by Warren et
al.40 We have extended their shape-based comparison to
include an additional term (the color Tanimoto) that com-
pares the alignment of functional groups between the
conformers. The score representing this combination of shape
matching (shape Tanimoto) and functional group matching
(color Tanimoto) is known as the Tanimoto combo (TC).
Since it represents the match of both shape and functional
groups in space, TC allows for a greater discrimination
between poses than using shape alone. Use of a metric like
TC avoids some major problems with rmsd: while rmsd has
no defined range, the range of TC is, by definition, 0-2;
since TC is bounded by 0 and 2 comparisons using TC is
independent of molecular size; large rmsds can arise from
differences in the conformations of only small parts of the
molecule, while TC is not as sensitive to these divergences;
TC provides an extra weight for matching chemical func-
tionality (the color Tanimoto term represents the matching
of the chemical features only) while rmsd weights the
matching of all atoms equally; the Gaussian representations
of molecular properties used in the calculation of TC are
“soft” so that the significance of results are not as affected
by experimental uncertainties in atomic positions (though it
is more difficult to quantitatively correct for their effect on

TC). While any use of a cutoff value for good reproduction
is difficult, we find that if TC is below 1.0 the reproduction
of the experimental pose is always bad and if TC is above
1.5 the reproduction is almost always satiusfactory.

Another major issue with the common use of atom-based
measures like rmsd, RDE, etc. is that no account is taken of
experimental coordinate error in the structures being repro-
duced. To our knowledge, this is the first work in which
reported rmsds are corrected for the atomic coordinate
precision of the structure being reproduced. We have chosen
to allow for coordinate error or uncertainty by the use of, as
a metric of quality, either the maximum of the rmsd and the
uncertainty or the difference between them. The second of
these can be considered as an estimate of the level of
computational noise introduced by the conformer generation
process atop the existing experimental noise. While careful
selection of our data set resulted in the corrected and
uncorrected results not being significantly different, the
correction of rmsds by coordinate uncertainty as outlined
herein allows the future use of interesting structures with
poorer coordinate precision than used in this study. There
are clearly more sophisticated approaches that can be taken
to this problem of experimental noise in PDB ligand
structures, among which is to calculate a set of conformers
that all fit the electron density equally well within some limit
and compare these with the set computed by OMEGA. This
more realistically reflects the fact that a crystal structure is
an average over time and space, and so, a small molecule is
likely to be found in a number of slightly different
conformations in a solid-state structure.

The PDB-derived data set used here, while of good quality,
is relatively small (197 structures), and so, a possible concern
is that the results generated are not robust indicators of future
performance. We have addressed this issue by performing
bootstrapping on our two metrics. We find that in both cases
the 5% and 95% quantiles are close and that the standard
deviations of the bootstrap means are small. We infer that
our results are quite stable to changes in the composition of
the data sets used and, therefore, can be considered reliable
indicators of future performance on molecule sets of similar
physicochemical properties. The confidence interval has
another, related, application in comparison between perfor-
mance. The usual practice in this area has been to compare
an aggregate statistic such as mean or median results, from
a number of different tools or parameter sets and to declare
one superior, without any account of the errors in these terms.
However, by the use of confidence intervals, we can
quantitatively assign a probability that one tool or parameter
set actually is superior; for example based on data in this
paper, it is over 90% likely that OMEGA with default
parameters is better at reproducing small molecule structures
from the CSD than from the PDB.

The torsion library in OMEGA is based upon analysis of
a number of crystal structures from the PDB, coupled with
analysis of energy profiles for certain torsions in the
MMFF94 force field. Therefore, the problem of overtraining
the torsion library arises if many of the structures used to
derive the torsion library entries are also in the test sets used
in this study. This problem was addressed by the use of a
naive torsion library containing no torsion specific informa-
tion at all. Comparison of the results from this naive library
with the default one showed that the main impact of the
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torsion library is not to improve OMEGA’s ability to closely
reproduce experimental structures but rather to reduce the
size of the conformer ensemble required for good reproduc-
tion and the run time required. This result reduces any
possible concern about the effect of “over-training” the
torsion library so that it contains matches for many known
structures. As above, the use of bootstrapping is key in
interpreting the results; it is over 90% certain that the use of
the default torsion library produces no improvement in
reproduction of the PDB structures compared to the use of
a naive torsion library.

While the purpose of this study was not to extensively
compare parameter sets and versions of OMEGA, a com-
parison of previous versions of OMEGA with the current
version (on the PDB ligand set) is provided in the Supporting
Information.

CONCLUSION

We have presented OMEGA, an algorithm for rapid
generation of conformers using a prebuilt library of fragments
and a knowledge base of torsion angles and test sets of solid-
state structures for its evaluation. The test sets of structures
were obtained from both the PDB and the CSD. Identifying
a set of small molecules from the PDB suitable for validation
proved difficult, with the vast majority of ligand structures
used in some previous validation sets for conformer genera-
tors proving unsuitable for this purpose. However, by
applying a set of sequential quality filters to over 4500
structures from the PDB, a set of 197 ligands was found
that were accurate and well fit to their electron density. Most
of the structures failed due to insufficient nominal resolution,
poor fits of the ligand to its density, and inappropriate
physicochemical properties. It is hoped that the PDB data
set used herein will be of general use to the community since
it contains only highly reliable structures with well fit ligands,
so conclusions based on this data set will be highly reliable.
A set of 492 druglike molecules from the CSD was also
subjected to a subset of these filters, and the surviving 480
molecules were tested against OMEGA. In contrast to most
studies in this area, we have used two different metrics for
success in reproducing these experimental structures, rmsd
and the Tanimoto combo (which estimates overall similarity
in three dimensions), as well as a metric of conformational
coverage close to the experimental structure. We, thereby,
obtained complementary information on OMEGA’s ability
to satisfactorily sample the conformational space of mol-
ecules around their solid-state structures. OMEGA’s perfor-
mance on both of the data sets was good when judged by
any of the metrics used (performance was particularly good
against the CSD structures, due to their lower flexibility).
The use of bootstrapping has allowed us to determine
confidence intervals for our results and to make quantitative
discrimination between the performance of OMEGA on
different data sets and with different amounts of information.
In sum, we found that OMEGA was able to satisfactorily
sample the conformational space around solid-state structures
of druglike molecules, which is OMEGA’s design goal.
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