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Self-assembly of dynamic orthoester cryptates
René-Chris Brachvogel1, Frank Hampel1 & Max von Delius1

The discovery of coronands and cryptands, organic compounds that can accommodate

metal ions in a preorganized two- or three-dimensional environment, was a milestone in

supramolecular chemistry, leading to countless applications from organic synthesis to

metallurgy and medicine. These compounds are typically prepared via multistep organic

synthesis and one of their characteristic features is the high stability of their covalent

framework. Here we report the use of a dynamic covalent exchange reaction for the

one-pot template synthesis of a new class of coronates and cryptates, in which acid-labile

O,O,O-orthoesters serve as bridgeheads. In contrast to their classic analogues, the

compounds described herein are constitutionally dynamic in the presence of acid and can

be induced to release their guest via irreversible deconstruction of the cage. These properties

open up a wide range of application opportunities, from systems chemistry to molecular

sensing and drug delivery.
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P
ast progress in supramolecular chemistry has been driven
chiefly by the development of new macrocyclic molecules1.
Pedersen’s crown ethers (also called coronands)2

and Lehn’s cryptands3,4 (Fig. 1) are excellent examples of
compounds that initially served as platforms for studying non-
covalent interactions, but have ultimately found widespread
application in industry and medicine5.

In the last decade, rationally designed three-dimensional cage
compounds6–8 have become larger and larger9–13, enabling in one
extreme case even the accommodation of a small protein14. To
achieve the self-assembly of such large structures, the method of
choice is dynamic constitutional/covalent chemistry (DCC)15–17,
which offers the essential feature of error correction that is needed
to avoid significant side-product formation. Besides providing
high-yielding syntheses, DCC generally gives rise to target
structures that are dynamic and responsive to external stimuli
under the conditions of their preparation. In the context of the
emerging field of systems chemistry18,19, dynamic macrocycles
and cages have served as a valuable testing ground for
the investigation and manipulation of complex molecular
networks20–25. Constitutionally dynamic cryptates26,27 would
represent the smallest and simplest conceivable three-
dimensional platform for studying molecular complexity;
however, to the best of our knowledge, there are no reports of
monometallic cryptates yet, which can be prepared and
manipulated based on a dynamic covalent exchange reaction28–31.

Here we describe how orthoester exchange, a previously
ignored dynamic covalent reaction32, can be used for the one-
pot synthesis of monometallic cryptates (for example, see Fig. 1)
from strikingly simple starting materials. We provide
comprehensive characterization data (including an X-ray
structure) for this new class of compounds and report on their
dynamic properties, as well as on the formation of orthoester
crown ethers as reaction intermediates and the unexpected
finding that 4 Å molecular sieves (MS) can act as a source of
sodium guest.

Results
Template synthesis of a dynamic orthoester cryptate. Inspired
by reports on dynamic ‘scaffolding ligands’ (O,N,P-ortho-
esters)33,34, we have recently investigated the exchange reaction of
carboxylic O,O,O-orthoesters with simple alcohols from a DCC
perspective32. We realized during the course of these studies that
the tripodal architecture and dynamic chemistry of orthoesters35

could be well suited for establishing two bridgeheads in
macrobicyclic compounds (Fig. 1). The synthesis of such
orthoester cryptands could be carried out in one step and
under thermodynamic control, while a suitable metal ion could
serve as a template.

To test these hypotheses, we treated a chloroform solution of
two bulk chemicals, trimethyl orthoacetate (1) and diethylene
glycol (2), with catalyst trifluoroacetic acid (TFA) and a
stoichiometric metal template (Fig. 2). Analysis of these initial
experiments by 1H nuclear magnetic resonance (NMR) spectro-
scopy and electrospray ionization mass spectrometry revealed
that complex mixtures, containing the desired cryptate among
other exchange products, had formed. Careful optimization of the
reaction conditions (use of MS as a thermodynamic sink for water
and methanol; use of the ‘non-coordinating’ counteranion
tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (BArF� ))36–40

eventually led to the formation of cryptate [NaþCo-Me2-1.1.1]
BArF� (named in loose analogy to Lehn’s classic cryptates; ‘o’
stands for orthoester) as the predominant reaction product
(isolated yields typically 60%–70%).

As shown in the 1H NMR spectra presented in Fig. 2, the
reversible reaction between 1 and 2 initially generates a
remarkable diversity of different exchange products (various
degrees of replacement of MeOH by 2, as well as formation of
macrocyclic and oligomeric products (Fig. 2b)) and it is only on
slow removal of MeOH by MS (4 Å) that the system converges to
the final reaction product (Fig. 2c).

It should be noted that during the exchange process, water has
to be excluded from the reaction mixture, which is not
trivial to achieve, because even rigorously dried MS tend to
slowly release residual water. As a consequence, hydrolysis
of 1 can lead to the slow formation of methyl acetate (MeOAc)
as a side product (Fig. 2c). From a preparative standpoint,
the formation of MeOAc is not a problem, because it can
easily be removed under reduced pressure (Fig. 2d). In addition,
its formation as the sole side product provides two valuable
pieces of information regarding the dynamic system under
study. First, it is remarkable that we find the cryptate as the
exclusive reaction product, even though the partial decomposi-
tion of orthoester 1 leads to a non-ideal ratio of orthoester to
diol (ideal value 2:3). This result indicates that there is a
thermodynamic bias for the formation of the final cryptate in
the presence of sodium template. Second, the fact that we
observe only one type of ester (MeOAc) suggests that exchange
products incorporating one or more diethylene glycol chains
(generated much more rapidly than MeOAc) are kinetically
stabilized against hydrolysis, presumably due to (chelate)
binding of sodium.

This kinetic stabilization due to metal binding41 is most
pronounced in pristine cryptate [NaþCo-Me2-1.1.1]BArF� .
For example, when we mixed [NaþCo-Me2-1.1.1]BArF�

with trimethyl orthoacetate (1) in water-saturated chloroform,
only the simple orthoester 1 was found to hydrolyse,
whereas cryptate [NaþCo-Me2-1.1.1]BArF� remained
stable for 7 days (Supplementary Fig. 2). In the absence of acid,
the cage is in fact stable in dimethyl sulfoxide/water mixtures
and can be purified by silica gel chromatography (Fig. 2e).
These observations are highly unusual for O,O,O-orthoesters
that are not stabilized by the presence of five- or six-membered
rings (as in Corey’s OBO protecting group)42. These
properties imply that orthoester-based hosts could have a
unique advantage over existing coronands and cryptands:
charged guests could be transported across lipophilic
membranes43 and subsequent hydrolysis would trigger the
release of the guest ([NaþCo-Me2-1.1.1]BArF� hydrolyses
readily in the presence of excess water and acid; Supplementary
Fig. 3). The high potential for such a supramolecular
approach for drug formulation and delivery is underscored
by a recent patent publication, which describes related
hydrolysis-prone crown ether compounds (scheduled for phase
1 clinical trials in 2015)44.
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Figure 1 | Coronates and cryptates. Comparison of a classic coronate and

cryptate with one of the orthoester-based, constitutionally dynamic

cryptates described in this work.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms8129

2 NATURE COMMUNICATIONS | 6:7129 | DOI: 10.1038/ncomms8129 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


Solid-state structure. Following the comprehensive character-
ization of [NaþCo-Me2-1.1.1]BArF� by NMR spectroscopy
and mass spectrometry (Supplementary Figs 4–13), we turned our
attention towards obtaining further structural and dynamic
insights on this compound. To our delight, single crystals of
[NaþCo-Me2-1.1.1]BArF� suitable for X-ray crystallography
could be obtained by slow diffusion of cyclopentane into dilute
solutions in chloroform or dichloromethane. The solid-state
structure (Fig. 3a, Supplementary Fig. 14, Supplementary Tables 1
and 2, and Supplementary Data 1) shows that the sodium ion is
bound to all nine surrounding oxygen atoms with a mean Na–O
bond length of 2.56 Å, which is very close to the mean Na–O
distance of 2.57 Å found in the solid-state structure of Lehn’s
classic cryptate [NaþC2.2.2]I� (ref. 45). An interesting
question arises from the relatively small distances between the
three diethylene glycol chains (O–O distance between two chains:
4.5 Å; see space-filling model in Fig. 3a) and the relatively
rigid architecture of the cage (in contrast to classic cryptates, no
inversion is possible at the terminus of the cage): can the metal
ion exit from the o-Me2-1.1.1 cage under ambient conditions? Or
in other words, is [NaþCo-Me2-1.1.1]BArF� in fact a carce-
plex, not a cryptate?

Thermodynamics and kinetics of guest exchange. To answer
this question, we carried out competition experiments in which
complexation agents such as Lehn’s cryptate 2.2.1 (Naþ binding
constant KA¼ 1013 M� 1 in D2O-saturated CDCl3)46 were titrated
to a freshly deacidified solution of [NaþCo-Me2-1.1.1]BArF�

in chloroform. As shown in Fig. 3b (top), addition of classic
cryptand 2.2.1 to our orthoester cryptate led to quantitative
formation of cryptate [NaþC2.2.1]BArF� and orthoester

cryptand o-Me2-1.1.1, indicating that 2.2.1 has a significantly
higher binding constant under these conditions. The reaction
outcome also confirms that sodium can exit from the orthoester
cage and the observed 1H NMR spectra demonstrate that in this
experiment sodium ion exchange is slow between the two
competing cryptands. Following such a titration, we treated a
1:1 mixture of [NaþC2.2.1]BArF� and o-Me2-1.1.1 with
catalytic TFA, resulting in the complete conversion of
o-Me2-1.1.1 into orthoester products featuring eight-membered
rings (Supplementary Fig. 19). This experiment demonstrates that
o-Me2-1.1.1, unlike [NaþCo-Me2-1.1.1]BArF� , does not
represent a thermodynamic minimum and thus cannot be
prepared without template from compounds 1 and 2 via
reversible orthoester exchange.

In a second competition experiment, we titrated weaker
complexation agent 15-crown-5 (Naþ binding constant KA¼ 105

M� 1 in acetonitrile)46 to cryptate [NaþCo-Me2-1.1.1]BArF� .
As evident from the series of 1H NMR spectra (Fig. 3b, bottom),
at equimolar addition of 15-crown-5 the equilibrium lies
on the side of the orthoester cryptate, although broadening of
the peaks indicates that exchange of sodium is fast in this case.
Titration with up to 20 equivalents of 15-crown-5 gave
rise to binding isotherms, from which we could deduce
that the binding constant of o-Me2-1.1.1 is about one order of
magnitude higher than that of 15-crown-5 (see Supplementary
Figs 20–22 for further thermodynamic data). In a pristine
mixture of cryptate [NaþCo-Me2-1.1.1]BArF� and cryptand
o-Me2-1.1.1 (vide infra for preparation method), we were
able to determine an exchange rate of 0.6 s� 1 for sodium
exchange between degenerate orthoester cryptands (NMR
exchange spectroscopy (EXSY); Supplementary Fig. 23 and
Supplementary Note 1).
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Figure 2 | One-pot self-assembly of dynamic cryptate [NaþCo-Me2-1.1.1]BArF�. Partial 1H NMR spectra (400 MHz, CDCl3, 298 K) showing the

evolution of the dynamic system over time (see Supplementary Fig. 1 for full spectra). (a) Starting materials. (b) Complex mixture that forms rapidly after

addition of acid catalyst (1 h). (c) After 5 days [NaþCo-Me2-1.1.1]BArF� is formed as major product, alongside hydrolysis product MeOAc (singlets at

3.6 and 2.0 p.p.m.). (d) The crude product is obtained by removal of MeOAc under reduced pressure. (e) Further purification is conveniently achieved by

passing the crude product through a short plug of silica gel. Reaction conditions: trimethyl orthoacetate (120 mmol), diethylene glycol (180mmol), NaBArF

(60mmol), TFA (3.0mmol; added over 5 days), MS (4 Å, 1 g), CDCl3 (6.0 ml), 5 days, room temperature.
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Other metal templates and orthoester crown ethers. To confirm
that a metal template effect is responsible for the remarkably
clean formation of [NaþCo-Me2-1.1.1]BArF� (Fig. 1), we
studied the exchange reaction between 1 and 2 in the absence
of template and in the presence of different metal templates
under otherwise identical reaction conditions. As shown in
Fig. 4 (top), the exchange reaction without template mainly gave
rise to exchange product 3, a monomeric orthoester featuring
an eight-membered ring that results from one molecule of
diethyleneglycol (2) having displaced two molecules of
methanol (Supplementary Fig. 24). Theoretically, it should
be possible to remove the last equivalent of methanol by
increasing the time during which the mixture is exposed to
MS, but we found that the system has a strong tendency to
remain at this particular state (that is, product 3). However, when
such a dynamic mixture was treated with one equivalent of
Sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (NaBArF),
the dynamic system responded by forming cryptate
[NaþCo-Me2-1.1.1]BArF� quantitatively and in a relatively
short time (Fig. 4, right-hand side, and Supplementary Fig. 25).

When we used metal salts LiTPFPB, NaBArF or KBArF for the
self-assembly reaction, we observed that after 2–3 days reaction
time two distinct reaction products had formed in a 1:1 ratio.

Careful analysis of one- and two-dimensional NMR spectra, as
well as high-resolution mass spectrometry, indicated that
unprecedented orthoester crown ethers1 o-Me2-(OMe)2-16-
crown-6 had formed as a mixture of syn and anti
diastereomers (Fig. 4, centre). These crown ethers are the main
products at a stage of the reaction where two equivalents of
methanol have been removed through the effect of MS (2–3 days
reaction time). The dynamic chemical system is thus not only
responsive to the described metal template effect, but also to the
precise quantity of available methanol.

Molecular sieves (4 Å) as an unexpected sodium source. To our
initial surprise, the crown ethers originating from the lithium
and potassium salts eventually transformed into the corres-
ponding sodium cryptates [NaþCo-Me2-1.1.1]X� (Fig. 4,
X� ¼ tetraarylborate anion). Using mass spectrometry, 23Na
and 7Li NMR spectroscopy and, most notably, atom absorption
and emission spectroscopy, we were able to confirm that
these cage compounds were indeed the sodium cryptates
[NaþCo-Me2-1.1.1]X� (Supplementary Figs 26 and 27), and
that the sodium source is type A zeolite (4 Å MS)47, a porous
framework material that contains accessible sodium ions. A search
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of the literature revealed several reports on this type of ion exchange
in aqueous47,48 and one report in organic medium49. When we used
metal salt KBArF in conjunction with MS 3 Å, which contain
potassium instead of sodium ions, we did not observe self-assembly
of a potassium cryptate from starting materials 1 and 2. Collectively,
our experiments with different metal ions point towards a
pronounced preference for sodium cryptate [NaþCo-Me2-1.1.1]
over the potential lithium or potassium cryptates, which could be
explained by the differences in effective ionic radii between
lithium (0.9 Å), sodium (1.2 Å) and potassium (1.6 Å)50. Only
sodium appears to have the right size for forming nine efficient
metal–oxygen bonds, while not inducing energetically costly
conformations within the organic host.

Preliminary experiments on scope and limitations. We con-
ducted preliminary studies on the scope of the described orthoester
cryptates and coronates. A cryptate derived from orthoester
trimethyl orthopropanoate, [NaþCo-Et2-1.1.1]BArF� (terminal
substituent: Et), could be prepared without difficulty, following a
similar procedure to that used for cryptate [NaþCo-Me2-
1.1.1]BArF� . Using trimethyl orthoformate as the starting
material (terminal substituent: H) led to the formation of
remarkably stable and pure crown ether complexes [NaþCo-H2-
(OMe)2-16-crown-6], which did not further react to the corre-
sponding cryptates under our standard conditions. A notable
limitation of the self-assembly reaction concerns the counteranion
of the sodium template. Thus far, we were able to prepare
cryptate [NaþCo-Me2-1.1.1]X� with three different tetra-
arylborate anions (X� ¼BArF� , TPFPB� and tetrakis(4-chloro-
phenyl)borate), while simpler anions such as PF6

� or BF4
� have

failed, suggesting that a truly ‘non-coordinating’37 anion needs to
be present during self-assembly.

In an attempt to exchange the counteranion in pristine
[NaþCo-Me2-1.1.1]BArF� to chloride, we discovered a
convenient method for preparing cryptand o-Me2-1.1.1 (Fig. 4,
bottom right). When a solution of [NaþCo-Me2-1.1.1]BArF�

in CDCl3 was treated with anion exchange resin Lewatit MP-64
(Cl form), we observed the clean formation of o-Me2-1.1.1, for

which the precipitation of NaCl is presumably the driving force.
With pristine o-Me2-1.1.1 in our hands, we were able to prepare
cryptate [LiþCo-Me2-1.1.1]TPFPB� by exposing the cryptand
to a solution of the lithium salt (Fig. 4, bottom right; structure
confirmed by 1H/7Li hetero nuclear overhauser effect NMR
spectroscopy; Supplementary Fig. 28). The lithium cryptate could
be transformed back into [NaþCo-Me2-1.1.1]BArF� by
addition of one equivalent of NaBArF, confirming the preference
of this cryptand for Naþ . Based on preliminary NMR data, Kþ

(salt: KBArF) appears to not enter the cage, but presumably
‘nests’ on the crown-ether-type faces of the cryptand. Further
experiments to such ends are ongoing in our laboratory.

Discussion
We have shown that a dynamic system based on two strikingly
simple organic starting materials converges to three distinct types
of exchange products under the influence of dry MS: (i) in the
absence of a template, a simple exchange product featuring an
eight-membered ring is formed; (ii) in the presence of a sodium
template, an unprecedented dynamic orthoester cryptate is
formed, in which nine oxygen donors are bound to the metal
ion; (iii) en route to the sodium cryptates, novel orthoester
coronates can be observed and, in some cases, isolated as a
mixture of syn and anti isomers. Sodium cryptate [NaþCo-
Me2-1.1.1]BArF� was found to be surprisingly stable against
water in neutral solution, but susceptible to hydrolysis in the
presence of water and acid. We believe that this property will
make orthoester cages useful for the traceless delivery of cations
into biological systems44. Competition experiments in solution
suggest that the encapsulated metal ion is in slow exchange with
the bulk (kobs¼ 0.6 s� 1) and the binding constant for Naþ lies
between the classic complexation agents 15-crown-5 and 2.2.1.
Besides their interesting structural and dynamic properties,
orthoester cryptates offer preparative advantages over their
classic analogues: their synthesis relies on a one-pot, dynamic
covalent ring-closing reaction, and substituted cages o-R2-1.1.1
are accessible simply by using different orthoesters as starting
materials. We are currently working towards further diversifying
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the target structures, as well as increasing the dynamic system’s
complexity (for example, self-sorting and response to external
stimuli).

Methods
Preparation of stock solutions. NaBArF (0.14 mmol, 127.8 mg) and diethylene
glycol (0.42 mmol, 39.9 ml) were dissolved in 14 ml CDCl3 and the mixture was
dried over MS (4 Å, 1 g) for 3 days. TFA (0.24 mmol, 18.4 ml) was dissolved in
CDCl3 (total volume 2.00 ml).

Self-assembly of cryptate [NaþCo-Me2-1.1.1]BArF� . To 6 ml of stock
solution were added fresh MS (4 Å, 1 g) and the reaction mixture was left to stand at
room temperature. After 16 h, 1 mol% TFA (10ml) was added from stock solution,
the mixture was shaken and trimethyl orthoacetate (0.12 mmol, 15.4 ml) was added.
Every 24 h, 1 mol% TFA was added to keep the exchange reaction active (MS slowly
transform the acid catalyst into inactive anhydride and/or esters). The reaction
progress was monitored regularly by 1H NMR spectroscopy. After 5 days, the
solvent was removed under reduced pressure and [NaþCo-Me2-1.1.1]BArF� was
obtained as a colourless solid (67% yield). Characterization data: M.p. 124 �C –
128 �C. 1H NMR (400 MHz, CDCl3, 298 K): d¼ 7.68 (t, J¼ 2.8 Hz, 8H), 7.51 (s, 4H),
3.79–3.77 (m, 12H), 3.50–3.48 (m, 12H), 1.43 p.p.m. (s, 6H). 13C NMR (100 MHz,
CDCl3, 298 K): d¼ 162.8, 162.3, 161.8, 161.3, 135.1, 129.7, 129.4, 129.1, 128.9,
128.8, 126.2, 123.5, 120.8, 117.7, 113.0, 69.2, 62.0, 17.7 p.p.m. 11B NMR (128 MHz,
CDCl3, 298 K): d¼ � 6.7 p.p.m. 19F NMR (282 MHz, CDCl3, 298 K): d¼ � 62.1
p.p.m. 23Na NMR (132 MHz, CDCl3, 298 K): d¼ � 5.9 p.p.m. HRMS (ESIþ ):
m/z¼ 389.1794 [MþNa]þ (calcd. 389.1782 for C16H30O9Na). For further
experimental details and characterization data, see Supplementary Methods and
Supplementary Figs 29–47.

Exclusion of moisture. Molecular sieves were dried by heating for 3 days at 150 �C
under reduced pressure (10� 2 mbar). All solvents were dried over MS for at least
24 h. All orthoester exchange reactions (catalysed by TFA) were carried out under
nitrogen. After the acid was quenched (for example, by addition of triethylamine or
basic aluminum oxide), most orthoester complexes described herein were found to
be unusually stable against water and could be handled on the benchtop without
further precautions (Supplementary Fig. 2).
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