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A B S T R A C T   

The incidence of lung cancer, especially lung adenocarcinoma (LUAD), has recently increased. 
Targeted therapy and immunotherapy combined with conventional treatment have shown sur-
prising benefits in enhancing the LUAD patient’s prognosis. For the purpose of guiding treatment 
planning and the prognosis of LUAD, more research is required. The particular aim of this work 
was to establish a purine metabolism scoring (PMS) model for the purpose of individually fore-
casting treatment outcomes and overall survival for patients who have LUAD. Clinical and whole 
genome data were obtained from the TCGA-LUAD cohort via “UCSC”. The 25 driver purine 
metabolism-related prognostic genes were determined founded on univariate Cox regression. 
Then PMS was developed through stepwise LASSO Cox regression. Survival analysis indicated 
that patients who have PMS experienced worse outcomes. We validated the PGM2 effect on lung 
adenocarcinoma malignancy in in vitro experiments. Univariate as well as multivariate Cox 
regression suggested that PMS was an independent prognostic indicator for LUAD patients, which 
was confirmed in subgroup analysis. Functional assay demonstrated that immune response as well 
as cytotoxicity pathways have a connection with lower PMS, and patients who have low PMS 
possess an active immune microenvironment. Moreover, the LUAD patients who have low PMS 
showed greater sensitivity to immunotherapy, targeted therapy, as well as chemotherapy. 
Knockdown of PGM2 was discovered to decrease the proliferation, invasion, as well as migration 
of lung adenocarcinoma cells in an in vitro assay. Pertaining to this particular research, we 
created a PMS model and conducted a thorough analysis of purine metabolism in LUAD in order 
to determine prognosis and offer recommendations for treatment. This finding offered a fresh 
concept for the clinical management of LUAD and novel therapy protocols.   

1. Introduction 

Among the most prevailing malignant tumors in the respiratory system is lung cancer, and there is an increasing trend in the lung 
cancer’s incidence,making it rank the most frequent cancer [1,2]. In worldwide, the majority of lung cancer patients (70%) was 
identified as having lung adenocarcinoma (LUAD) [3]. Patients with LUAD usually had an inferior prognosis since the advanced LUAD 
5-year survival rate is below 20% [4,5]. When patients have unresectable advanced LUAD, chemotherapy as well as radiotherapy are 
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the cornerstones [6]. In addition, the past few decades have seen the growth of targeted therapies and/or immunotherapy-based 
combined therapies for LUAD patients [7]. However, response to treatment varies among patients individually, and novel bio-
markers are needed to aid prognosis and determine the optimal regimens. 

Purine metabolism is crucial in cancer progression and has a close connection to the growth, metastasis, as well as efficacy of 
therapies for tumors [8]. As one of the basic components of DNA molecules, purines is vital in DNA synthesis and maintenance in 
cancer cells, and thus tumor cells require large amounts of purine nucleotides to support their rapid cell division and proliferation [9]. 
Adenosine to inosine ratio imbalance often occurs in the cancer process, and the disturbance of purine metabolism is largely involved 
in tumor growth, invasion, as well as metastasis [10]. Additionally, purines are involved in the regulation of immune cell activity as 
well as cytokine release via different receptors and receptor subtypes, affecting anti-tumor immune effects [11]. In the last few years, 
adenosine metabolism has become an emerging concept in cancer research, and adenosine synthesized from adenine is considered to 
be an important factor in regulating the immune escape of tumor cells [12,13]. Targeting purine metabolism is expected to assist 
immunotherapy [13]. Antimetabolites targeting purines, such as methotrexate, were the first classical anticancer drugs developed and 
are widely used in clinical treatment [14]. Therefore, targeting purine metabolism represents a potentially successful area for cancer 
treatment, and further studies on novel regulatory mechanisms of purine metabolism in cancer immunotherapy are needed to provide 
new ideas for existing cancer immunotherapy. 

Pertaining to this particular research, we integrated LUAD transcriptomic data from TCGA as well as GEO with clinical data. The 
possible crosstalk between purine metabolism and lung cancer was systematically analyzed to explore their prognostic significance, 
biological heterogeneity, and possibility of using them in a clinical setting. Moreover, our study highlights the association between 
purine metabolism in LUAD and increases the understanding of the biological role of purine metabolism. Finally, our data may suggest 
that assessing the crosstalk between purine metabolism is expected to provide guidance for prognosis and treatment strategies for 
LUAD. 

2. Methods 

2.1. Data collection 

We collected transcriptomic RNA-seq data, somatic variant data from maf files on the Muctect 2 platform, as well as copy number 
variant (CNV) data from the UCSC Xena (https://xena.ucsc.edu/) database for the TCGA-LUAD cohort. Corresponding clinical follow- 
up information was as well collected. After including patients having pathological typing as LUAD and excluding those with incom-
plete follow-up information, a TCGA-LUAD cohort of 492 LUAD patients was obtained and used as the training cohort. In addition, a 
large meta-GEO LUAD cohort, including GSE30219, GSE42127, and GSE7209 was collected from the GEO database. The follow-up 
information of patients was collected from the original supplemental material, and there were 615 patients with LUAD in total 
after excluding those with incomplete follow-up information. The GEO-LUAD cohort was used for external validation. 171 purine 
metabolism-associated genes were gathered from the MSigDB database (http://www.gsea-msigdb.org/). A comprehensive list of genes 
was presented in Table S1. 

2.2. Construction of a purine metabolism score 

Firstly, we conducted a univariate cox regression analysis for purine metabolism-related genes to identify independent prognostic 
factors of LUAD. Subsequently, stepwise multi-factor Cox regression was utilize to develop the purine metabolism score (PMS). The C- 
index of the PMS was determined via the “survcomp” package to assess prognostic efficacy [15]. A higher C-index represents a more 
optimal and stable prediction of the model. High PMS and low PMS groups were distinguished by the median PMS. Meanwhile, using 
time-dependent ROC (tROC) curves, univariate and multifactorial Cox regression, as well as Kaplan-Meier survival analysis, the in-
dependent prognostic value of PMS was thoroughly examined. In order to more accurately assess each patient’s chance of survival, we 
built a nomogram as per PMS and clinical variables. 

2.3. Cell proliferation detection 

Human esophageal cancer cell lines Eca-09 and TE-1 were purchased from Bioss, China. In this study, LipofectamineTM 2000 
Transfection Reagent (Invitrogen, USA) was employed for the siRNA transfection. The proliferation level of ESCA cells was detected by 
Cell Counting Kit-8 kit (Bioss, China). The digested single-cell solution was inoculated in 96-well plates at approximately 1500 cells per 
well. At 0, 12, 24, 48, and 72 h, three wells of each group were selected randomly and 10 μL of the Cell Counting Kit-8 reagent was 
incorporated, and the incubation came next at 37 degrPMS for 2 h. Detection of absorbance values were at 450 nm. 

2.4. Analysis of potential biological regulation 

To find more differentially expressed genes (DEGs) between high as well as low PMS groups, the “limma” package has been utilized. 
Fold change>2 as well as FDR<0.05 were the threshold values that were set. The biological functions enriched by DEGs were analyzed 
on the Metascape website (https://metascape.org/). In addition, we identified differential enrichment KEGG pathways between high 
as well as low PMS groups by GSEA software (version 4.3.1). 
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2.5. Evaluation of immune heterogeneity between subgroups 

We measured the relative abundance concerning 22 immune cell types in individual LUAD samples via the “CIBERSORT” algorithm 
[16]. The “ESTIMATE” algorithm measured the samples’ immune score as well as tumor purity [17]. Subsequently, we assessed the 
activity of the immune pathways of interest by the ssGSEA algorithm of the “GSVA” package. Finally, we examined the differences in 
subgroup expression of seven classical immune checkpoints. 

2.6. Dissecting genomic alterations between subgroups 

By utilizing the “maftools” package, the maf files were processed, and the number of nonsynonymous mutations for each patient 
was determined [18]. Subsequently, we analyzed the differences in high-frequency mutated genes (mutation number greater than 5) 
between subgroups. Additionally, we extracted significant mutation signatures for various subgroups from the maf files using the 
“Sigminer” package, and perform comparison of the mutation signatures with the COSMIC database [19]. Lastly, CNV data was 
processed using Gistic2.0, which counted deletions and amplicons based on a 0.2 threshold. For the visualization, the “ggplot2″ 
package was utilized. 

2.7. Evaluations of chemotherapy implementation for PMS 

The individual patients’ sensitivity to five drugs frequently employed in LUAD (5-FU, Cisplatin, Docetaxel, Doxorubicin, and 
Paclitaxel) was first predicted using “pRRophetic” based on the GDSC database [20]. Ridge regression was used to estimate the IC50 
values; lower IC50 values denoted greater sensitivity. Due to the fact that the genes that differed between the high as well as low PMS 
subgroups were assumed to be potential therapeutic targets, we uploaded the Top 150 genes that were up- and down-regulated to the 
CMap database (https://clue.io/) in order to look into possible small molecule compounds. In addition to predicting medications that 
relies on gene expression profiles, it can also reveal the biomolecular pathways targeted by drugs. Finally, the Pubmed database 
(https://pubmed.ncbi.nlm.nih.gov/) was employed to obtain the compounds’ molecular structures that were identified. 

2.8. Predicting immunotherapy response 

Utilizing the genetic profiles of various immune cell phenotypes, we computed the Immunophenoscore (IPS) of the patients [21]. 
An active immune response and a better response to immunotherapy are indicated by a higher IPS. To anticipate the therapeutic effect 
of immune checkpoint blockers on individual patients, we utilized the TIDE algorithm to simulate the mechanism of tumor immune 
escape [22]. Furthermore, we gathered data from the well-established immunotherapy cohort Imvigor210, which included 298 pa-
tients who acquired anti-PD-L1 immunotherapy for uroepithelial cancer and had full follow-up records. The transcriptomic data from 
the Imvigor210 cohort were used to construct PMS based on the same method to evaluate the PMS’s ability to predict immunotherapy 
outcomes. 

2.9. Cell culture and siRNA transfection 

Procell (Wuhan, China) provided the human lung cancer cell lines H1975 and A549. These cell lines were cultured in DMEM 
medium obtained from Bological (Israel), and maintained in a CO2-filled constant temperature incubator at 37 ◦C. 10% heat- 
inactivated fetal bovine serum (FBS) in addition to 1% penicillin were added to the DMEM medium. As directed by the manufac-
turer, the Lipo3000 kit from Invitrogen (USA) was utilized for transiently transfecting siRNA designed to specifically target PGM2, 
resulting in a temporary reduction in the target gene expression. Following transfection, the cells were cultured for 48 h and subse-
quently subjected to qRT-PCR analysis to assess the transcription-level silencing effect of PGM2. 

2.10. Detection of cell proliferation level 

A colony formation experiment was conducted to investigate the impact of knocking down PGM2 on LUAD cell lines’ proliferation 
ability. After 48 h of cultivation, single-cell suspension was collected and seeded with approximately 1000 cells in each well of a 6-well 
plate. The cells were cultured in a standard DMEM medium and the medium was replaced every three days. After the formation of 
typical colonies was observed, LUAD cells were counted using microscopic images after being fixed with 4% formaldehyde and stained 
with crystal violet. 

2.11. Cell invasion and migration ability detection 

Transwell experiments were conducted on two types of LUAD cells: PGM2 knockdown cells and control cells, to evaluate their 
invasiveness and migratory capabilities. Matrigel was applied to the Transwell assay plate wells to measure invasion, while the wells 
without Matrigel were used for assessing migration. The number of invading cells was determined via ImageJ software. Once the fusion 
rate of H1975 and A549 cells reached 90%, they were collected and subjected to a 24-h starvation period in serum-free DMEM me-
dium. A deliberate scratch was made on the starved cells using a 200 μl pipette tip, followed by washing with warm serum-free medium 
to eliminate cellular debris. After 48 h, the extent of wound healing at the scratch was evaluated under a microscope, and the wound 
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healing ratio was determined using ImageJ software to assess the cells’ migratory capacity. 

2.12. Bioinformatics and statistical analysis 

Fisher’s exact test was employed to identify variations in proportions. On top of that, the Wilcoxon test was employed to evaluate 
group differences in addition to the Kaplan-Meier plotter was utilized to create survival curves. Moreover, the log-rank test was used to 
evaluate differences in survival. Meanwhile, the R package “survivalROC” was utilized to plot time-dependent ROC curves (tROC). Via 
the “survival” R package, univariate and multivariate Cox regressions were conducted. Moreover, plotting nomogram and calibration 
curves was done via the “rms” R package. Next, the “pROC” R package was employed to examine the predictive ability of various 
indicators on the immunotherapy response. A two-tailed p-value of less than 0.05 was deemed significant unless otherwise stated. R 
software (Version 4.1.0) has been employed for each analysis. 

3. Results 

3.1. Dissecting key purine metabolism genes in LUAD 

A total of 51 purine metabolism genes were identified as per a threshold of P less than 0.05, we demonstrated the top 25 prognostic 
purine metabolism genes (Fig. 1A). These 51 genes were the subject of a correlation network construction, and the findings showed a 
positive correlation between them (refer to Fig. 1B). Fig. 1C displays the mutation landscape of these 51 genes in the TCGA-LUAD 
cohort. PDE10A and PDE11A are the genes with the highest frequency of mutations. It has been discovered that missense muta-
tions are the most common type. Lastly, we compiled a summary of the 51 important genes’ CNV events (refer to Fig. 1D). The findings 
demonstrated that most genes had extensive CNV, with NT5C3A, POLR2K, and TWISTNV having the highest amplification frequency 
and AK9 and ENTPD3 having the highest deletion frequency. 

3.2. Construction of the purine metabolism score 

We then performed stepwise LASSO regression using these 25 genes and finally identified the best 2-gene model (PGM2 and RRM2) 
(Fig. 2A). We developed the PMS model following the formula: PMS = 0.003858*EXP(PGM2) + 0.001776*EXP(RRM2). C-index 
showed that PMS had excellent performance in the TCGA cohort and average effect in the GEO cohort (Fig. 2B). Survival analysis 
indicated that patients who have high PMS group suffered inferior outcomes than its competitor in different LUAD cohorts (Fig. 2C and 

Fig. 1. Identification of EMT and Exosome related genes in TCGA-ESCA (A) Univariate Cox regression identified 51 purine metabolism genes with 
prognostic efficacy. (B) The correlation network of 51 purine metabolism genes. (C) The summary of somatic mutation of 51 purine metabolism 
genes. (D) The summary of CNV status of 51 purine metabolism genes. 
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D). The tROC curves confirmed that the PMS is an effective predictor for OS in 5 years (Fig. 2E and F). ROC analysis revealed that PMS 
performed better than the other cohort in the TCGA (ROC>0.6, Fig. 2G), although the GEO cohort also showed positive results 
(ROC>0.6, Fig. 2H). 

3.3. Evaluation of the predictive independence of PMS 

We initially analyzed the relationship between PMS and patient clinical characteristics (which includes gender, age as well as stage) 
via one-way Cox and multifactor Cox regression. In both the training and validation sets, PMS was discovered to be an independent 
prognostic indicator (P < 0.05) by one-factor Cox regression (Fig. 3A). PMS persisted as an unfavorable factor for OS in the training as 
well as validation cohorts, as determined by multi-factor Cox regression (P < 0.05) (Fig. 3B). Therefore, in patients with LUAD, PMS 
may be a reliable prognostic indicator for OS. Then, we created a Nomogram to more accurately measure the risk evaluation of LUAD 
patients (Fig. 3C). The Nomogram’s curve demonstrated good accuracy and stability at one, three, and five years (Fig. 3D). The tROC 
analysis shows that the Nomogram model possesses a better performance compared to use PMS alone. (Fig. 3E). 

3.4. Dissecting the biological background of PMS 

To examine the biological characteristics associated with PMS in LUAD, we first identified DEGs between low and high PMS groups 
via the limma algorithm. By functional enrichment, we discovered that genes upregulated in high PMS were associated with the 

Fig. 2. Prognostic efficacy of the purine metabolism genes score (PMS) (A) The 2-gene PMS model obtained by optimal lambda value convergence. 
(B) C-index comparing PMS with clinical characteristics in both TCGA and GEO cohort. (C) KM survival curves of patients with high PMS and low 
PMS in TCGA cohort. (D) KM survival curves of patients with high PMS and low PMS in GEO cohort. (E) The tROC curves of PMS in the GEO cohort. 
(G) ROC curves of PMS at 1, 3 and 5 years in the TCGA cohort. (H) ROC curves of PMS at 1, 3 and 5 years in the GEO cohort. 
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Fig. 3. Verifying the independence and robustness of PMS (A) Univariate COX regression analysis of OS in TCGA and GEO datasets. (B) Multivariate 
COX regression analysis of OS in TCGA and GEO datasets. (C) The subgroup analysis of PMS in the whole cohort. (D) Nomogram based on PMS and 
clinical characteristics. (E) Calibration curve of Nomogram. (F) tROC curve of Nomogram and clinical characteristics. 

Fig. 4. Dissecting the biological and functional background of PMS (A) Functional enrichment of characteristic genes in the high PMS group. (B) 
Functional enrichment of characteristic genes in the low PMS group. (C) The top 5 KEGG pathways enriched in the high PMS group. (D) Top 5 KEGG 
pathways enriched in the low PMS group. 
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cytoskeleton, collagen fibers, and WNT signaling pathway (Fig. 4A). Conversely, the genes that were upregulated in low PMS were 
linked to cytolysis, immune response, and cytokine (Fig. 4B). Further GSEA and KEGG analysis indicated that the genes linked to the 
cell cycle, P53 signaling pathway, RNA degradation, as well as other replication dysregulation-related pathways were upregulated in 
the high PMS group (Fig. 4C). Based on this, we infer that high PMS tumors proliferate and migrate mainly through active skeletal 
response and collagen fibrils through the extracellular matrix. On the other hand, low PMS tumors have an active anti-tumor immune 
response, as antigen presentation, cytotoxicity, as well as hematopoietic cell lineage were upregulated (Fig. 4D). 

Fig. 5. Dissecting the immune microenvironment of different PMS groups (A) Differences in Estimate scores between the high and low PMS groups 
in the TCGA-ESCA cohort. (B) Differences in expression level of classical immune checkpoint between high and low PMS groups in the TCGA-LUAD 
cohort. (C) Differences in immune-related pathway activity between high and low PMS groups in the TCGA-LUAD cohort. (D) Differences in immune 
cell infiltration between the high and low PMS groups in the TCGA-LUAD cohort. 
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3.5. Low PMS and abundant immune infiltration associated 

Next, we examined PMS’s tumor immune microenvironment. Even though the group with low PMS had higher immune and es-
timate scores, the ESTIMATE results specified higher tumor purity in the high PMS group (Fig. 5A). Furthermore, we found elevated 
expression of CD8A, LAG-3, and PD-1 in low PMS (Fig. 5B). Using ssGSEA, we then evaluated immune-related pathways’ activity. The 
low PMS group was found to have a significant enrichment in most immune-related pathways, in accordance to the findings (Fig. 5C). 
In conclusion, we discovered that the low PMS group possessed more M0 macrophages and CD4 T cells, while the high PMS group had 
more gamma delta T cells, CD8 T cells, as well as Tregs infiltrate (Fig. 5D). Therefore, we hypothesized that Tregs suppressed the 
antitumor immune response in the high PMS group, whereas the low PMS immune infiltration was elevated. 

3.6. Correlation of PMS with genomic alterations 

Afterward, we examined the TCGA-LUAD genome-wide data to interpret the status of genomic alterations in various PMS groups. 
We discovered a significant positive correlation between PMS and TMB, with significantly upregulated TMB observed in LUAD patients 

Fig. 6. PMS can distinguish genomic variation patterns in LUAD patients (A) Correlation of PMS and TMB. (B) The forest plot shows significantly 
mutated driver oncogenes among different PMS subgroups. (C) Oncoplot showing the mutation landscape of driver oncogenes among different PMS 
subtypes. (D) The NMF algorithm identified 3 mutant features in the high PMS group. (E) The NMF algorithm identified 2 mutant features in the low 
PMS group. (F) CNV differences between different PMS subgroups on the chromosome arms. 
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with high PMS (Fig. 6A). Furthermore, we found substantial differences in 9 high frequency mutated genes including TP53 between 
PMS subgroups (Fig. 6B). Oncoplot revealed the mutation profiles of all 25 high-frequency mutated genes between subgroups (Fig. 6C). 
Subsequently, three mutational features were identified in the high PMS as well as two in the low PMS group by the NMF algorithm 
(Fig. 6 D, E). APOBEC-related features (SBS2 and SBS13) played a dominant role in both groups. Notably, a significant smoking-related 
feature (SBS4) and an unknown SBS5 feature (Fig. 6D) were found in the high PMS group, while a dominant Defective DNA mismatch 
repair feature (SBS6) was found in the low PMS group (Fig. 6E). Subsequently, we determined that the high PMS group possessed 
higher amplification at 16p and higher deletion at 22q. While the low PMS group had more amplification on 22q and more deletions on 
3p (Fig. 6F). 

3.7. Patients having low PMS possess increased sensitivity to chemotherapy 

Considering the variations in CNV and biological function among patients with PMS, we hypothesized that PMS could predict the 
response to chemotherapy in LUAD patients. First, we evaluated the IC50 of widely utilized chemotherapeutic agents for LUAD in 
different PMS groups relying on the GDSC database, and the findings yield that patients with low PMS possess increased sensitivity to 
four drugs (Cisplatin, Docetaxel, Doxorubicin, and Paclitaxel) (Fig. 7A). In contrast, patients with low PMS in the validation cohort 
possess increased sensitivity to Docetaxel and Paclitaxel (Fig. 7B). We therefore speculated that low PMS is more sensitive to Docetaxel 
and Paclitaxel. Potential drug targets highly associated with PMS and corresponding small molecule compounds may provide new 
chemotherapeutic options for high-risk LUAD patients. Therefore, using the median tau score as a guide, we identified 10 small 
molecule compounds that target high-risk PMS patients by submitting the Top 150 DEGs between low and high PMS subgroups to the 

Fig. 7. PMS can predict chemotherapy The IC50 values of the five commonly used drugs (Cisplatin, Docetaxel, Doxorubicin, and Paclitaxel) in the 
TCGA cohort (A) and GEO cohort (B) were predicted based on the GDSC database. (C) Prediction of PMS-related drug targets as well as targeted 
small molecule compounds from the CMap database. (D) 3D molecular structures of the three most prospective small molecule compounds (Ver- 
155008, Prednicarbate and Valsartan). 
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CMap database (Fig. 7C). Higher tau scores represent more appropriate chemotherapy agents for patients with high LMS. Among them, 
the dominant action was the HSP inhibitor. We also provide the 3D molecular structures of the three compounds with the highest tau 
scores (Ver-155008, Prednicarbate and Valsartan) (Fig. 7D). 

3.8. Inferring immunotherapy response 

We believed that the low PMS group was more susceptible to immunotherapy since they exhibited a stronger antitumor immune 
response. Upon calculating each patient’s IPS, we discovered that those with lower PMS had higher IPSs (Fig. 8 A, B). Next, we 
demonstrated that patients who have low PMS in both cohorts possessed a greater rate of response to immunotherapy by predicting the 
immune checkpoint inhibitor response in patients in the TCGA and GEO cohorts via the TIDE algorithm (Fig. 8 C, D). Moreover, in the 
TCGA and GEO cohort, PMS was the best predictor of response to immunotherapy compared to other indicators (Fig. 8 E, F). Lastly, we 
constructed the PMS in the IMvigor210 cohort. Here, insignificant difference can be found in overall survival between the two sub-
groups (Fig. 8G). However, taking into account the delayed effect of immunotherapy, immune checkpoint inhibitors usually take 
several months to take effect [23,24]. We calculated the difference in survival after 3 months and found that patients who have high 
PMS experienced significantly worse survival (Fig. 8H). Plus, patients who have low PMS had significantly higher neoantigens and 
TMB (Fig. 8 I, J). 

3.9. PGM2 is significantly associated with malignant phenotype in LUAD 

We constructed LUAD cell lines (H1975 and A549) with low expression of PGM2 by two different siRNAs (Fig. 9A). We first 
determined the effect of PGM2 on the proliferative capacity of the LUAD cell line by colony formation assays. The findings demon-
strated that knockdown of PGM2 substantially minimized the proliferation level of both LUAD cell lines (H1975 and A549) (Fig. 9B). 
We then performed Transwell experiments with or without the addition of matrix gel to figure out the influence of PGM2 on the LUAD 
cell line’s ability for migration and invasion. The results realistically knocked down PGM2 not only inhibited the migratory ability of 
LUAD cell lines, but also inhibited the invasive ability (Fig. 9C). Lastly, we carried out a scratch-healing assay to confirm the effect of 

Fig. 8. PMS can predict immunotherapy The IPS of individual LUAD patients in the TCGA cohort (A) and GEO cohort (B). TIDE algorithm predicts 
response rates to immune checkpoint inhibitors for patients in the TCGA cohort (C) and GEO cohort (D). ROC curve shows the predictive efficiency 
for the response rate to immunotherapy by PMS and other indicators in the TCGA cohort (E) and GEO cohort (F). (G) KM survival curves for patients 
in the high- and low-PMS groups in IMvigor210 cohort. Scatter plot and box plot show the correlation of PMS with (H) neoantigens; (I) TMB in 
IMvigor210 cohort. 
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PGM2 on the migratory capacity of the LUAD cell line. The findings illustrated that the percentage of scratch healing after 24 h was 
lower in the LUAD cell line knocked down with PGM2 than in the control cell line (Fig. 9D). 

4. Discussion 

Lung cancer has been progressively becoming more common in recent years, especially in China [25]. LUAD is the main patho-
logical type in patients with lung cancer, and advanced LUAD is extremely malignant and frequently has a bad prognosis as a result of 
treatment resistance [26–28]. Purine metabolism is crucial cancer progression and shows potential for application in immunotherapy. 
Pertaining to this particular research, we analyzed the transcriptome data of TCGA-LUAD and identified the core purine metabolism 
genes systematically. We identified a total of 50 prognostic purine metabolism genes. A significant positive correlation was discovered 
between them, which suggests the possibility of mutual regulation. Except for VCAN, the major regulation of all the core genes was 
CNV. Founded on these 18 core genes, we developed a 2-gene purine metabolism score (PMS) model by stepwise cox regression. We 
verified that PMS performs well across various LUAD cohorts and is a strong OS predictor in LUAD patients. 

The dynamic processes of purine metabolism in tumors have a role in the tumor cells’ proliferation and metastasis, and we then 
tried to understand the biological logic behind PMS. We discovered that the genes upregulated in samples from the high PMS group 
were primarily involved in cytoskeleton and collagen fiber formation. This suggests that high PMS is associated with more extracellular 
matrix (ECM) production [29]. More ECM also supported and promoted the growth of tumor cells, which may have led to a worse 
prognosis [30]. In addition, cell cycle, P53, RNA degradation, and other cell cycle pathways were more abundant in the high PMS 
group, suggesting the tumor cells in the group with higher PMS were more active in replication and proliferation and more malignant 
[31]. In contrast, the primary genes linked to the low PMS group’s upregulation were immune response as well as cytokine pathways. 
More interestingly, the antigen-presentation pathway, hematopoietic cell lineage, as well as NK cell-mediated cell killing pathway 
were enriched in the low PMS group. Here, these particular outcomes imply that low PMS is associated with activation of the immune 
microenvironment, which may lead to more powerful antitumor immunity and improved prognosis for those in the low PMS category. 

We tried to discuss in more depth the activated immune microenvironment in the low PMS group, Consequently, we looked at the 
two groups’ differences from a variety of angles, such as immune pathways, immune cell infiltration, as well as immune checkpoints. 
The ESTIMATE results indicated that the low PMS group possessed greater immune scores, whereas the high PMS group possessed 
higher tumor purity. As mentioned previously, this may be due to the active proliferation of tumor cells in high PMS. We subsequently 
found increased expression of CD8A, LAG-3, as well as PD-1 in the low PMS group, indicating that immune checkpoint inhibitor 
treatment may be more appropriate for patients who have lower levels of PMS [32]. Additionally, we discovered that most 

Fig. 9. Knockdown of PGM2 reduced the proliferation and invasion of LUAD cell lines (A) The knockout effect of si- PGM2 was confirmed at the 
transcriptional level using qRT-PCR. (B)Representative images of colony formation in two lung cancer cell lines (H1975 and A549) after knockdown 
of PGM2 and their statistical results. (C) Representative images of Transwell assays in two lung cancer cell lines (H1975 and A549) after knockdown 
of PGM2 and their statistical results. Up: Migration assays; down: invasion assays. (D) Representative images of wound healing assays in two lung 
cancer cell lines after knockdown of PGM2 and their statistical results. Up: H1975 cell line; down: A549 cell line. 
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immune-related pathways were substantially upregulated in the low PMS group, suggesting a more robust and active anti-tumor 
immune response in the PMS group, which supports the results of our functional analysis. Notably, a worse prognosis may have 
resulted from the high PMS group’s considerably greater Treg cell infiltration, which may have repressed the immune microenvi-
ronment and antitumor immune response [33]. 

We then examined genome-wide data to explore how genomic variations in PMS differ among individual patients, considering the 
crucial role of genomic alterations in tumor progression and the response to treatment, particularly in the context of immunotherapy. 
However, the small sample size may have contributed to our inability to find any substantial differences between the two groups’ TMB 
and single nucleotide variants. For mutational signatures, the low PMS group possessed more SBS2 and SBS6, while the high PMS 
group had more SBS4, SBS5, and SBS13. The common feature shared by both groups was the APOBEC family (SBS2 and SBS13), which 
has been shown to be significant in LUAD patients in eight countries [34]. Our study reconfirms the specificity of APOBEC features in 
LUAD. Interestingly, we found significant smoking-related features in high PMS, which are linked to a higher incidence of lung cancer 
[35]. Finally, in the high PMS group, we discovered more CNV events. CNV has demonstrated to be a key component in gene regulation 
that modifies drug response and metabolism, ultimately causing treatment failure and disease recurrence by expediting the emergence 
of anticancer drug resistance [36,37]. Therefore, we infer that patients who have high PMS are resistant to chemotherapy and patients 
who have low PMS are suitable for chemotherapy. 

Using information on drug sensitivity from three databases, we were able to confirm that patients with high PMS were resistant to 
chemotherapy. As per the GDSC database, we discovered that patients who have lower PMS were more susceptible to the effects of 
Docetaxel and Paclitaxel. Furthermore, by employing PMS to identify high-risk LUAD patients, we screened for potential drug targets 
and discovered corresponding small molecule compounds. Lastly, we determined the three small molecule compounds that are most 
likely to exist: VER-155008, Prednicarbate and Valsartan, which target the HSP, Corticosteroid and Angiotension pathways. 

Lastly, we hypothesized that patients who have low PMS would respond better to immunotherapy from a variety of viewpoints. 
Firstly, IPS was higher in LUAD patients who have low PMS, which indicates that these patients might respond better to immuno-
therapy. Furthermore, patients with lower PMS also responded more frequently to immune checkpoint inhibitors (for instance, anti- 
PD-L1, anti-PD-1, and anti-CTLA-4) according to the TIDE algorithm. Additionally, PMS was a better predictor of immunotherapy 
response than conventional measures. Additionally, a cohort for external validation supported these findings. Despite this, no sig-
nificant difference in the two groups’ overall survival rates could be discovered. However, immunotherapy is generally considered to 
have a delayed effect, and the therapeutic effect is not evident at the beginning of the drug administration [23,24]. Therefore, we 
calculated the survival rate after 3 months of treatment for both groups and were surprised to discover that the survival rate of patients 
in the low PMS group was significantly higher than that of patients in the high PMS group. Additionally, we discovered a negative 
correlation between PMS and TMB and neoantigens, which could account for the improved prognosis of immunotherapy patients with 
low PMS [38,39]. 

There are still a few limitations on this research. Due to the dearth of data in this area, the study only includes two complete RNA- 
seq data sets for LUAD. In order to further corroborate our findings, we intend to gather more sequence or platform data for LUAD in 
the future. Furthermore, since we only concentrate on a small subset of mRNAs in the broad field of genomic regulation, we might have 
missed some other regulatory genomic data. Ultimately, it is unclear how the PMS influences biological processes and phenotypes. 
Nevertheless, we incorporated the functional enrichment analysis data to generate plausible conjectures, serving as motivation for 
further mechanistic research. 

5. Conclusion 

Pertaining to this particular research, we determined the possible crosstalk between purine metabolism of LUAD patients and 
established an PMS model to measure the level of the purine metabolism pathways. Patients with lower PMS possess a better prognosis 
and increased sensitivity to chemotherapy and immunotherapy. This finding is not only an addition to the existing field of cancer 
genomics but also offers novel approaches to the clinical management of LUAD and novel immunotherapy protocols. 
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