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ABSTRACT
Background. Research has shown that Poly-ADP-ribose polymerases 1 (PARP-1) is a
potential therapeutic target in the clinical treatment of breast cancer. An increasing
number of studies have focused on the development of highly selective inhibitors
that target PARP-1 over PARP-2, its closest isoform, to mitigate potential side effects.
However, due to the highly conserved and similar binding sites of PARP-1 and
PARP-2, there is a huge challenge for the discovery and design of PARP-1 inhibitors.
Recently, it was reported that a potent PARP-1 inhibitor named NMS-P118 exhibited
greater selectivity to PARP-1 over PARP-2 compared with a previously reported drug
(Niraparib). However, the mechanisms underlying the effect of this inhibitor remains
unclear.
Methods. In the present study, classical molecular dynamics (MD) simulations and
accelerated molecular dynamics (aMD) simulations combined with structural and
energetic analysis were used to investigate the structural dynamics and selective
mechanisms of PARP-1 and PARP-2 that are bound to NMS-P118 and Niraparib with
distinct selectivity.
Results. The results from classical MD simulations indicated that the selectivity of
inhibitors may be controlled by electrostatic interactions, which were mainly due to
the residues of Gln-322, Ser-328, Glu-335, and Tyr-455 in helix αF. The energetic
differences were corroborated by the results from aMD simulations.
Conclusion. This study provides new insights about how inhibitors specifically bind to
PARP-1 over PARP-2, which may help facilitate the design of highly selective PARP-1
inhibitors in the future.

Subjects Molecular Biology, Oncology, Pharmacology, Computational Science
Keywords PARP-1, PARP-2, Selective mechanisms, Molecular dynamics simulations

INTRODUCTION
As one of themost commonly diagnosedmalignancies inwomen, breast cancer accounts for
about a quarter of all female cancer cases (Siegel, Miller & Jemal, 2018). In the past few years,
the incidence of breast cancer has continued to rise, with more than 1 million new cases
worldwide each year (Siegel, Miller & Jemal, 2018). It is estimated that a total of 5–10%
of all breast cancer cases are genetically susceptible to the disease, with multiple breast
cancer susceptibility genes having been proposed, including breast cancer 1 (BRCA1) and
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breast cancer 2 (BRCA2), two of the major genes (Begg et al., 2008). Currently, sequencing
of these two genes is considered as the optimal approach to determining the mutation
status in breast cancer patients (Pfeffer, Ho & Singh, 2017). Previous studies have shown
that homologous recombination-deficient tumor cells resulting from BRCA1 or BRCA2
gene mutations are hypersensitive to the inhibitory effect of poly-ADP ribose polymerase-1
(PARP-1) (Lin & Kraus, 2017; McCann, 2019). One mechanism that has been proposed as
a tentative explanation is that inhibition of PARP-1 blocks DNA single strand break repair
and leads to the formation of unrepaired double strand breaks at the replication fork (Kim
et al., 2020;Min & Im, 2020;Wang, Luo & Wang, 2019b). Aside from DNA damage repair,
PARP-1 is also involved in a wide variety of cellular processes, such as cell proliferation and
cell death. The implication of PARP-1 in these processes is a result of the diverse substrates
in PARP-1, such as nuclear proteins, which are involved in apoptotic cell death, cell
cycle regulation, chromatin decondensation, inflammation, and transcriptional regulation
(Jubin et al., 2016). Due to these functions, PARP-1 inhibitors have been developed as the
first class of cancer therapeutics in clinical trials (Min & Im, 2020).

Currently, four PARP-1 drugs have been approved by the US Food and Drug
Administration (FDA), including olaparib, niraparib, talazoparib, and rucaparib. In
addition to these commercially available PARP-1 drugs, numerous PARP-1 inhibitors have
also entered different phases of clinical research, targeting multiple types of tumor either
collectively or as single agents (Min & Im, 2020). Most of the marketed PARP-1 drugs and
inhibitors exhibit poor selectivity when targeting PAPR-1. For instance, olaparib, the first
PAPR-1 drug approved by FDA, also interacts with PAPR-1 close homologues PARP-2 and
PARP-3 (Gunderson & Moore, 2015; Min & Im, 2020). Similarly, Niraparib, Talazoparib
and rucaparib were also found to exhibit no selectivity between PARP-1 and PARP-2 (Min
& Im, 2020). There is ample evidence in previous studies that inhibition of PARP-2 could
produce potentially undesirable side effects (Farres et al., 2013; Navarro et al., 2017). For
instance, Farres et al. (2013) reported that loss of PARP-2 leads to a shortened red blood cell
lifespan and impaired differentiation of erythroid progenitor cells, thereby causing chronic
anemia. In light of this situation, a great deal of efforts has been put into the design and
development of potent PARP-1inhibitors with high selectivity, especially between PARP-1
and PARP-2 (Eltze et al., 2008; Fatima et al., 2014; Papeo et al., 2015). However, given high
sequence similarity (84% identity and 90% similarity) and conserved catalytic domain
(Figs. 1A–1C), increasing the selectivity of inhibitors remains a huge challenge (Yelamos et
al., 2011).

Up to now, some potent inhibitors with high selectivity to PARP-1 over PARP-2 have
been discovered, such as WD2000-012547, BYK204165 and NMS-P118 (Eltze et al., 2008;
Fatima et al., 2014; Papeo et al., 2015). Despite these promising results, little computational
research has been conducted to elucidate the selective mechanisms underlying the effect of
these inhibitors. To this end, two representative inhibitors (Niraparib, NMS-P118) with
divergent selectivity to PARP-1 and PARP-2 were utilized in this study to demonstrate
such mechanisms (Ison et al., 2018; Papeo et al., 2015). Niraparib (also formerly known
as MK-4827) is a novel, highly selective, and orally available PARP-1 and PARP-2 small
molecule drug developed by Tesaro, approved by FDA in 2017 to treat ovarian cancer
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Figure 1 Alignment of the crystal structures of PARP-1 and PARP-2, and representative inhibitors.
(A) Overview of the crystal structures of PARP-1 (magenta, PDB code: 5A00) and PARP-2 (green, PDB
code: 4ZZY), the binding pocket is colored blue. (B) Close up view of the active site of PARP-1, the
residues of Glu-988 is vital for catalysis. (C) Close up view of the active site of PARP-2, the residues of
Glu-558 is vital for catalysis. (D) Chemical structure of NMS-P118. (E) Chemical structure of Niraparib.

Full-size DOI: 10.7717/peerj.9241/fig-1

(Ison et al., 2018). Recent clinical studies show that the combined use of niraparib and
pembrolizumab can have promising antitumor effects on patients with advanced or
metastatic triple-negative breast cancer (Lin, Yang & Zhao, 2019). NMS-P118, another
inhibitor originally designed by Papeo et al., has been shown to exhibit ∼150-fold
selectivity to PAPR-1 over PARP2 (Figs. 1D–1E). In addition, the researchers also reported
the co-crystal structure of PARP1 and PARP-2 bound to NMS-P118, and proposed
that helix αF in the two proteins may be responsible for the drug selectivity, as the
induced binding pocket is larger in PARP-1 than in PARP-2 (Papeo et al., 2015). However,
this explanation seems far from satisfactory. Here, classical molecular dynamics (cMD)
simulations and accelerated molecular dynamics (aMD) simulations were employed to
clarify the selective mechanisms between PARP-1 and PARP-2 using two representative
inhibitors (Niraparib, NMS-P118). A combination of classical MD simulations, the
root-mean-square deviations (RMSD), principal component analysis (PCA), dynamical
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cross-correlation (DCC) analysis, and root-mean-square fluctuations (RMSF) was applied
to investigate the effects of the inhibitors on the protein flexibility and dynamic behavior
of key parts of PARP-1 and PARP-2. Afterwards, binding free energy calculations and
per-residue free energy decompositions based on the molecular mechanics/generalized
Born solvent area (MM/GBSA) method were performed to highlight key residues related
to selectivity. Next, aMD simulations combined with RMSD, PCA, DCC and free energy
landscape (FEL) analyses were carried out to examine in detail the local energy minima and
the conformational space that were not illuminated in the classicalMD simulations. Overall,
these results can be effective to deepen our understanding of the selective mechanisms
between PARP-1 and PARP-2, and may help facilitate the design of novel inhibitors to
improve drug selectivity.

METHODS AND MATERIALS
Preparation of the initial systems
The three-dimensional structures of human PARP-1 bound to NMS-P118 (PDB ID:
5A00), Niraparib (PDB ID: 4R6E), and PARP-2 bound to NMS-P118 (PDB ID: 4ZZY)
were obtained from the Protein Data Bank (Papeo et al., 2015; Thorsell et al., 2017). The
Loops/Refine Structure module of UCSF Chimera program was employed to model the
missing side-chains and loop structures (Pettersen et al., 2004). The PDB2PQR Server
was employed to estimate the protonation states of ionizable side chains (Dolinsky et al.,
2004). The initial coordinates of PARP-2 bound to Niraparib were constructed using the
AutoDock program (Morris et al., 2009). The grid size of cubic box, which was centered on
the binding pocket, was set to 60 ×60 ×60 xyz points with a grid spacing of 0.375 Å. The
AutoDockTools program was employed to assign the Gasteiger partial charges to PARP-2
and Niraparib. The affinity maps of grids were estimated using AutoGrid program. The
docking protocol involved the generation of 200 conformations. The maximum number
of energy evaluations and iterations were set to 25,000,000 and 3,000, respectively. Other
parameters were set to default. The top-ranked structure was used for the subsequent
molecular dynamics (MD) simulation analyses.

Classical MD simulation
The prepared crystal structures of PARP-1 bound to NMS-P118 and Niraparib, PARP-2
bound to NMS-P118, and modeled complex of PARP-2 bound to Niraparib were applied
to determine the dynamic structural behavior via Assisted Model Building with Energy
Refinement 18 (Amber 18) program. The restrained electrostatic potential (RESP) fitting
technique was employed to estimate the partial atomic charges of NMS-P118 andNiraparib
(Wang, Cieplak & Kollman, 2000). The parameters of protein and ligand were derived from
the ff14SB force field the General Amber Force Field 2 (GAFF2) in Amber 18 (Maier et al.,
2015; Vassetti, Pagliai & Procacci, 2019). Each of the prepared complexes was solvated in a
cubic box containing TIP3P water molecules, with a minimum distance of 15 Åfrom any
edge of the box to any complex atom. Counter ions of an appropriate quantity were added
to the system to preserve overall charge neutrality.
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Prior to the classical MD simulation, two-step minimizations, heating and equilibration
were performed. At first, two-stepminimizationswere undertaken to eliminate bad contacts
between the solvent molecules and the complexes. To reduce the counterions and water
molecules to a minimum, a harmonic constraint of 20 kcal mol−1 Å−2 was first imposed on
the four complexes. Then, restriction was eliminated in order for all atoms to move freely.
During each stage, the steepest descentminimization of 7,000 stepswas performed, followed
by conjugate gradient minimization of 7,000 steps. Thereafter, Langevin thermostat with
a position restraint of 20 kcal mol−1 Å−2 was applied to gradually heat up each complex
from 0 K to 300 K over 300 ps. Then, each complex was equilibrated at 300 K with 1000
ps simulation time in the isothermal isobaric (NPT) ensemble. Finally, 800 ns production
classical MD simulation was carried out for each complex in the NPT ensemble with a
time step of 2fs. During the simulations, the Langevin temperature scalings and Berendsen
barosta were utilized tomaintain the temperature and pressure, respectively (Izaguirre et al.,
2001; Praprotnik, Delle Site & Kremer, 2005). The Particle mesh Ewald (PME) method was
employed to estimate the long-range electrostatic interactions, with the cutoff parameter
of nonbonded interaction set to 10 Å (Essmann et al., 1995). SHAKE method was applied
to constrain all covalent bonds connecting hydrogen atoms (Krautler, VanGunsteren &
Hunenberger, 2001). The coordinates for each complex were saved at an interval of 10 ps
for subsequent analysis. The RMSDs and RMSF of the trajectories were calculated using
CPPTRAJ module in Amber 18 program.

aMD simulations
The aMD is an enhanced sampling technique that alters the energy landscape through the
addition of a boost potential 1V(r) to the original potential energy surface. The 1V(r)
stands for either the total potential energy (Etotal) or the dihedral energy (Edihedral) of a
system (Hamelberg, Mongan & McCammon, 2004). When V(r) is equal or greater than
a predefined reference energy E, none of addition energy will be added (Eq. (1)). On
the contrary, the modified 1V (r) of the system is calculated according to the following
Eq. (2):

1V (r)= 0 1V (r)≥ E (1)

1V (r)=
[E−1V (r)]2

α+[E−1V (r)]
1V (r)< E (2)

where α is the acceleration factor that governs the size of the boost. The α is calculated with
Eqs. (3) and (4), and the E is calculated according to Eqs. (5) and (6). The boost parameters
E and α for the total boost (Etotal and αtotal) and dihedral boost (Edihedral and αdihedral;) are
based on the corresponding average Etotal (Vtotal_avg ) and average Edihedral (Vdihedral_avg ),
which are calculated from the classical MD simulations prior to the aMD simulations.
Natoms and Nres represent the number of atoms and residues in the system, respectively. In
Eq. (3), the n is an integer defined as the magnitude of the threshold, which is a multiple
of the α.

Etotal =Vtotal_avg +n×αtotalral (3)
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αtotalral = 0.2×Natoms(N = 1,2,3...) (4)

Edihedral =Vdihedral_avg + (3.5×Nres) (5)

αdihedral = 3.5×
Nres

5
(6)

Herein, the equilibrated structures extracted from classicalMD simulations were selected
as the initial structures for the aMD simulations. The Dual-boost approach was applied
by adding 1V(r) to both the Etotal and Edihedral of the system. The 1V(r) was obtained
based on the Natoms, Nres, Vtotal_avg , and Vdihedral_avg from the first 40 ns of the classical
MD simulations. Then, 800 ns aMD simulations were employed using the dual-boost
approach. During aMD simulations, the PME method was employed to estimate the
long-range electrostatic interactions, with the cutoff parameter of nonbonded interaction
set to 10 Å (Essmann et al., 1995). SHAKE method was applied to constrain all covalent
bonds connecting hydrogen atoms (Krautler, VanGunsteren & Hunenberger, 2001). The
Langevin temperature scalings was used to handle the temperature (Izaguirre et al., 2001).
The coordinates for each complex were saved at an interval of 10 ps and the trajectories
were calculated using the CPPTRAJ module in Amber 18 program.

Principal component analysis (PCA)
PCA was performed on the trajectories from both classical MD and aMD simulations
via the CPPTRAJ module in Amber 18 program. All snapshots of each trajectory were
aligned to eliminate the translational and rotational motions of all protein Cα atoms. Then,
a covariance matrix (3N × 3N) was generated from the Cartesian coordinates. A set of
eigenvectors and eigenvalues were generated by diagonalizing the matrix. The top two
eigenvalues (principal component 1 and principal component 2, PC1 and PC2) were used
for subsequent analysis.

DCC analysis
The Bio3D package of R was employed to conduct DCC analysis of the backbone atoms
(Cα) (Skjaerven et al., 2014). The cross-correlation matrix (Cij) between residues i and
j was generated based on the trajectories from both classical MD simulations and aMD
simulations, with 5,000 snapshots for each complex. The Cij is calculated based on the
following Eq. (3). The 1ri and 1rj represent the shift from the mean position of the ith
or jth of protein Cα atom. angle bracket represents an average of these two values over the
sampled period.

Cij =

〈
1ri1rj

〉√〈
1r2i 1r2j

〉 (7)
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Binding free energy calculations based on classical MD simulations
The MM/GBSA method is often used to perform classical MD simulations combined with
free-energy calculations, which can serve as an effective tool for quantitative prediction of
protein-ligand binding energies (Wang et al., 2019a). The binding free energies (1Gbind)
are calculated on the basis of the MM/GBSA method according to the following equations:

1Gbind =1GR+L− (1GR+1GL)=1EMM+1Gsol− T1S (8)

1EMM=1Eint+1EvdW+1Eelec (9)

1Gsol=1GGB+1GSA (10)

In Eq. (8), 1GR+L, 1GR, and 1GL stand for the free energies of receptor–ligand
complex, receptor and ligand, respectively. The sum of molecular mechanics interaction
energy (1EMM), solvation energy (1Gsol) and the change of the conformational entropy
at temperature T (-T1S) are equal to the sum of 1GR+L, 1GR, and 1GL. In Eq. (9),
1EMM is given as the sum of intermolecular interaction energy (1Eint), van der Waals
energy (1EvdW), and electrostatic energy (1Eelec). The solvation free energy can be divided
into polar (1GGB) and nonpolar (1GSA) and contributions (Eq. (10)). Here, for each
complex, 1,000 structures extracted from the classical MD simulations with a simulation
time between 600 and 800 ns were utilized to conduct binding free energy calculations
and per-residue energy decomposition. The 1Eint was canceled as the single trajectory
strategy was executed. Based on parameters by Onufriev et al., the 1GGB was determined
using a modified GB model (GBOBC1) (Onufriev, Bashford & David, 2000). The 1GSA was
determined using the solvent accessible surface area (SASA) model (1GSA= σ *SASA). The
parameter σ was set to 0.0072 kcalmol−1 Å−2. The−T1Swas excluded from consideration
because of relatively low prediction accuracy and high computational demand (Hou et al.,
2011).

Free energy landscape (FEL) calculation based on aMD
The cumulant expansion to the second order method was employed to determine the FEL
for each simulated complex from aMD simulations, because this method offers a good
approximation for calculating the reweighting factor. In this study, the 1V(r) combined
with PC1 and PC2 from PCA of the aMD simulation trajectories were utilized to recover
the FEL (Miao et al., 2014b; Roe & Cheatham 3rd, 2013).

RESULTS
Evaluation of the stability of simulated complexes from classical MD
simulations
To validate the docking results of the modeled complex of PARP-2 bound to Niraparib,
structural alignments of the PARP-2/NMS-P118 and modeled PARP-2/Niraparib were
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Figure 2 Validation of modeling results. (A) Alignment of the crystal structures of PARP-1/NMS-P118
and PARP-2/NMS-P118. (B) Alignment of the crystal structure of PARP-1/Niraparib and the modeled
structure of PARP-2/Niraparib.

Full-size DOI: 10.7717/peerj.9241/fig-2

performed with the corresponding crystal structures of PARP-1/NMS-P118 and PARP-
1/Niraparib. As shown in Fig. 2A, alignment of the crystal structures betweenPARP-1/NMS-
P118 (PDB code: 5A00) and PARP-2/NMS-P118 (PDB code: 4ZZY) exhibited relatively
high similarity, with a RMSD of 0.704 Åfor heavy atoms. Similarly, the alignment of the
modeled complex of PARP-2/Niraparib with the crystal structure of PARP-1/Niraparib
(PDB code: 4R6E) mostly showed similarities with only minor differences, with a RMSD
of 0.767 Å for heavy atoms (Fig. 2B). These results suggest that the predicted model is
sufficient to study the dynamic features through further MD simulations.

Firstly, 800 ns classical MD simulations for the modeled structure and the three crystal
structures were performed. As a prerequisite for all further analyses, the dynamic stability of
the simulated complexes was monitored by studying the RMSDs for all protein backbones
(Cα) atoms and all ligand heavy atoms for each complex with the starting structure as a
function of simulation time. Theoretically, smaller fluctuations of RMSDs indicate greater
stability of the complex. As shown in Fig. 3, the time evolution of the RMSD values of
Cα atoms and ligand heavy atoms in each complex tend to converge after ∼100-300 ns
simulations. During the simulation of the last 400 ns, the RMSD curves of both PARP-1
Cα atoms displayed minor fluctuations (<1 Å), indicating that NMS-P118 constrained the
protein structural flexibility of PARP-1. In contrast, those for both PARP-2 and NMS-P118
exhibited greater fluctuations compared to the complex of PARP-2/NMS-P118 (Fig. 3B).
This attested to the highly unstable nature of PARP-2 when it was bound to selective
PARP-1 inhibitor NMS-P118. In comparison, the RMSD curves for Niraparib in both
PARP-1 and PARP-2 oscillated with minute fluctuations (<1 Å) during the last 400 ns
simulation, indicating that the non-selective drug Niraparib constrained the structural
flexibility of both PARP-1 and PARP-2. Based on these results, the structural and energetic
properties for each complex were further analyzed in detail.
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Figure 3 RMSD values of the protein backbones atoms and ligand heavy atoms from the 800 ns clas-
sical MD simulations. (A) PARP-1/NMS-P118. (B) PARP-2/NMS-P118. (C) PARP-1/Niraparib. (D)
PARP-2/Niraparib.

Full-size DOI: 10.7717/peerj.9241/fig-3

Dynamic features of each complex from classical MD simulations
The different flexibility for NMS-P118 and Niraparib in different proteins may result in
different protein conformational transitions. To characterize the protein conformational
transitions over time, PCA was performed to identify the trend in large-scale collective
motions. Generally, the eigenvectors with the highest eigenvalues capture the majority of
variance in the original protein conformational distributions (Mashiko, 2018; Sittel, Filk &
Stock, 2017). Herein, the protein conformational ensembles were investigated by projecting
the first two principal components (PC1 and PC2) from classical MD simulations onto
a two-dimensional space. Generally, when PC1 and PC2 are plotted against each other,
structures with high similarity are clustered together. As a result, a cluster represents a
different state of protein conformation. As shown in Fig. 4, the protein conformational
distributions for each complex were dynamic during 800 ns classical MD simulations and
eventually reached overall stability. It is apparent that the conformational distributions of
PARP-1/NMS-P118 were remarkably different from those of PARP-2/NMS-P118, while
those for PARP-1/Niraparib and PARP-2/Niraparib were also different. Analysis of the
protein conformational distributions clearly showed that PARP-2/NMS-P118 samples
a wider conformational space compared to PARP-1/NMS-P118. However, those for
PARP-1/Niraparib and PARP-2/Niraparib shared a certain degree of similarity. These
results demonstrate that the selective PARP-1 inhibitor NMS-P118 bound to PARP-1 had
a different protein conformational flexibility compared to PARP-1, not the non-selective
drug Niraparib.
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Figure 4 The top two ranked principal components (PC1, PC2) are plotted against each other
from the 800 ns classical MD simulations. (A) PARP-1/NMS-P118. (B) PARP-2/NMS-P118. (C)
PARP-1/Niraparib. (D) PARP-2/Niraparib.

Full-size DOI: 10.7717/peerj.9241/fig-4

To further investigate the correlation between the motion of the residues in the proteins,
DCC analysis was performed. As plotted in Fig. 5, the direction of correlation is represented
by a color gradient ranging from blue (negative correlation) to red (positive correlation).
The correlation coefficient (−1 to +1), corresponding to three different colors: dark
blue (−0.25 to −1) represents anti-correlation; dark red (0.25 to 1) represents positive
correlation; blue represents anti-correlation (−0.25 to −1); and light red or light blue
(−0.25 to +0.25) represents weak or no-correlation. It can be observed that both the
red and blue regions in PARP-2/NMS-P118 were larger and more intense than those in
PARP-1/NMS-P118, implying elevated correlation or anti-correlation motions in PARP-
2/NMS-P118 (Figs. 5A and 5B). In comparison, color regions for PARP-1 and PARP-2
bound to the non-selective drug Niraparib were quite similar (Figs. 5C and 5D). These
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Figure 5 DCC analysis from the 800 ns classical MD simulations. (A) PARP-1/NMS-P118. (B) PARP-
2/NMS-P118. (C) PARP-1/Niraparib. (D) PARP-2/Niraparib.

Full-size DOI: 10.7717/peerj.9241/fig-5

results indicate that the relative motions of different protein subdomains may correlate
with different protein flexibility, which was responsible for drug selectivity.

To further highlight the key sub-domains, the Cα of RMSF analyses were conducted.
Low RMSF values of residues represented less flexibility, whereas high RMSF values
indicated greater fluctuations in relation to their average position during simulation. As
shown in Fig. 6, the RMSFs of PARP-1/NMS-P118 showed a high degree of similarity
with those of PARP-1/Niraparib. However, the helix αF connected with loop 347–356 in
PARP-2 exhibited amplified fluctuations when it binds to the selective PARP-1 inhibitor
NMS-P118 compared with the non-selective drug Niraparib. The above results indicate
that the binding of selective PARP-1 inhibitor NMS-P118 leads to increased fluctuations

Hu et al. (2020), PeerJ, DOI 10.7717/peerj.9241 11/23

https://peerj.com
https://doi.org/10.7717/peerj.9241/fig-5
http://dx.doi.org/10.7717/peerj.9241


Figure 6 RMSF analysis from the 800 ns classical MD simulations. (A) Alignment of RMSF of
PARP-1/NMS-P118 and PARP-1/Niraparib. (B) Alignment of RMSF of PARP-2/NMS-P118 and
PARP-2/Niraparib.

Full-size DOI: 10.7717/peerj.9241/fig-6

of PARP-2 (especially the αF and loop 347–356), which might be the dominating driving
force for the redistributions of free energies.

Binding free energy calculations using the MM/GBSA method based
on classical MD simulation trajectories
MM/GBSA binding free energy calculations based on classical MD simulation trajectories
were applied for the assessment of the energy properties of NMS-P118 and Niraparib
when they were bound with PARP-1 or PARP-2. As listed in Table 1, the predicted
binding free energies (1Gbinding) for PARP-1/NMS-P118, PARP-2/NMS-P118, PARP-
1/Niraparib and PARP-2/Niraparib were −46.06 ± 0.15, −36.40 ± 0.14, −44.35 ± 0.22,
and−43.89± 0.24 kcal/mol, respectively. It is clear that the1Gbinding was highly correlated
with the experimental data reported, and that for each system, different energy terms
contribute differentially to the 1Gbinding. In this study, only the polar contributions
(1Eelec+1GGB) for the most vital factor were discussed. The polar contributions for the
PARP-1/NMS-P118 and PARP-2/NMS-P118 were significantly different at 10.65 ± 0.34
and 19.29 ± 0.16 kcal/mol, respectively. In comparison, those for PARP-1/Niraparib
and PARP-2/Niraparib were quite similar at 9.72 ± 0.29 and 9.84 ± 0.17 kcal/mol. The
non-polar contributions (1EvdW+1GSA) for PARP-1/NMS-P118 and PARP-2/NMS-
P118 (−56.70 ± 0.12 and −55.69 ± 0.19 kcal/mol) were almost identical with those for
PARP-1/Niraparib and PARP-2/Niraparib (−53.92 ± 0.26 and −53.72 ± 0.41 kcal/mol).
Taken together, these results demonstrate that the polar contribution has a significant
impact on drug selectivity to PARP-1 and PARP-2.

To gain further insights into the vital residues in drug selectivity, per-residue
decomposition based on the MM/GBSA method was employed to assess residue
contributions to the binding of the protein-ligand complexes. Per-residue energy
differences betweenNiraparib andNMS-P118 systems (11G=1GNiraparib-1GNMS-P118)
were plotted to identify the key residues. Negative values represent the residues of Niraparib
formed stronger interactions with the protein than those of NMS-P118, whereas positive
values indicated quite the opposite, namely, that the residues of Niraparib formed weaker
interactions with the protein than those of NMS-P118. As shown in Fig. 7A, the differences
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Table 1 Binding free energies of NMS-P118 and Niraparib in PARP-1 and PARP-2 (kcal/mol).

Ligand NMS-P118 Niraparib

Protein PARP-1 PARP-2 PARP-1 PARP-2

1EvdW −50.94± 0.14 −49.87± 0.12 −48.65± 0.16 −48.46± 0.14
1Eelec −85.06± 0.70 −54.88± 0.53 −116.24± 0.91 −86.98± 1.05
1GGB 95.71± 0.68 74.17± 0.52 125.96± 0.78 96.82± 0.89
1GSA −5.76± 0.01 −5.82± 0.01 −5.27± 0.01 −5.26± 0.01
1Enonpolar −56.70± 0.12 −55.69± 0.19 −53.92± 0.26 −53.72± 0.41
1Epolar 10.65± 0.34 19.29± 0.16 9.72± 0.29 9.84± 0.17
1Gbind −46.06± 0.15 −36.40± 0.14 −44.35± 0.22 −43.89± 0.24

Notes.
1EvdW, Van der Waals energy;1Eele, Electrostatic energy;1GGB, Electrostatic contribution to solvation;1GSA, Non-polar
contribution to solvation;1Enonpolar, Non-polar interaction;1Epolar, polar interaction;1Gbind, Binding free energy.

of 11G between PARP-1/NMS-P118 and PARP-1/Niraparib were quite small with 11G
less than 0.5 kcal/mol. Alignment of the representative structures of PARP-1/NMS-P118
and PARP-1/Niraparib were highly similar (Fig. 7B). However, the residues of Ser-328,
Gln-322, Glu-335, and Tyr-455 formed significantly stronger interactions with Niraparib
than with NMS-P118 in PARP-2 (Fig. 7C). Notably, the key residues of Ser-328, Gln-322
and Glu-335 were located in the helix αF, which exhibited amplified fluctuations in RMSF
analysis. This may be due to the fact that the distinctive flexibility of the helix αF in PARP-2
bound to selective PARP-1 inhibitors induced energetic redistributions.

Evaluation of the stability of the simulated complexes from aMD
simulations
To explore the conformational behaviors in greater detail, aMD simulations were first
employed. Thereafter, the RMSDs of Cα atoms and ligand heavy atoms were monitored.
As shown in Fig. 8, the RMSD values of Cα atoms and ligand heavy atoms for each
complex reached equilibrium after 120-200 ns aMD simulations, suggesting that simulated
complexes became dynamically stable through 800 ns aMD simulations. Interestingly, the
fluctuations of selective PARP-1 inhibitor NMS-P118 bound to PARP-1 were much smaller
than when bound to PARP-2. In contrast, the fluctuations of non-selective drug Niraparib
were similar in both PARP-1 and PARP-2. A comparison of these results revealed that the
selective PARP-1 inhibitor allowed for larger protein conformational changes of PARP-2.
These findings were corroborated by the DCC analysis, which further revealed that the red
and blue regions in PARP-2/NMS-P118 were both larger and more intense than those in
PARP-1/NMS-P118, while those for PARP-1 and PARP-2 bound to Niraparib were quite
similar (Fig. 9).

Based on the above findings, PCAwas used to identify the various protein conformations
obtained during the aMD simulations. As shown in Fig. 10, the protein conformations
of for each complex was characterized by dynamic fluctuations during 800 ns aMD
simulations. Similar with the results from classical MD simulaitons, the conformational
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Figure 7 Energy difference in per-residue contributions between Niraparib and NMS-P118. (A) The
energy differences between PARP-1/NMS-P118 (green) and PARP-1/Niraparib (gray). (B) Alignment of
representative structures of PARP-1/NMS-P118 and PARP-1/Niraparib. (C) The energy differences be-
tween PARP-2/NMS-P118 and PARP-2/Niraparib. (D) Alignment of representative structures of PARP-
2/NMS-P118 (green) and PARP-2/Niraparib (gray).

Full-size DOI: 10.7717/peerj.9241/fig-7

distributions of PARP-1/NMS-P118 were remarkably different from those of PARP-
2/NMS-P118 (Figs. 10A–10B). Meanwhile, those for PARP-1/Niraparib and PARP-
2/Niraparib were also different (Figs. 10C–10D). Compared to the PARP-1/NMS-P118
complex, the PARP-2/NMS-P118 complex exhibited more structural clusters and a wider
range of conformational distributions (Figs. 10A–10B). However, the conformational
distributions for Niraparib bound to PARP-1 and PARP-2 had a somewhat similar range
(Figs. 10C–10D), suggesting that the selective PARP-1 inhibitors could stabilize the protein
conformation of PARP-1. These results were in agreement with the RMSDs, DCC and PCA
analyses from the classical MD simulations.

The FEL was employed to further demonstrate the relationship between the changes
of conformation and energy (Fig. 11). Generally, more energy wells (dark blue regions)
represent greater conformational changes of the protein during aMD simulation (Han
et al., 2019; Miao, Nichols & McCammon, 2014a). As shown in Fig. 11A, only a deep
energy well for NMS-P118 bound to PARP-1 was observed throughout the whole
800 ns aMD simulation. In contrast, two major deep energy wells with a much wider
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Figure 8 RMSD values of the protein backbones atoms and ligand heavy atoms from the 800 ns
aMD simulations. (A) PARP-1/NMS-P118. (B) PARP-2/NMS-P118. (C) PARP-1/Niraparib. (D)
PARP-2/Niraparib.

Full-size DOI: 10.7717/peerj.9241/fig-8

range of distributions were observed for the complex of PARP-1/NMS-P118 (Fig. 11B).
Nevertheless, those for Niraparib bound to PARP-1 and PARP-2 showed a similar range
of distributions and both were confined to a single deep energy. These results highlight the
unstable nature of PARP-2 bound to selective PARP-1 inhibitor NMS-P118.

DISCUSSION
PARP-1 inhibitors have been widely studied as potential cancer therapeutics for breast
and ovarian cancers (Min & Im, 2020). The reported clinical candidates and preclinical
PARP-1 inhibitors were designed with the purpose of imitating the nicotinamide
portion of nicotinamide adenine dinucleotide (NAD+), with which they compete for the
corresponding PARP-1 binding site. A number of recent studies have indicated that due to
their high sequence and structural similarity (Figs. 1A–1C), non-selective PARPs drugsmay
result in potentially undesirable side effects, especially between PARP-1 and PARP-2 (Eltze
et al., 2008; Fatima et al., 2014; Papeo et al., 2015). In this aspect, the ideal drug candidate
should be a highly selective PARP-1 inhibitor with greater subtype specificity. Until now,
only a few highly selective PARP-1 inhibitors have been reported. However, even fewer
computational modeling researches have been conducted to elucidate their underlying
selective mechanisms.

In the present study, a comprehensive molecular computational method was employed
to demonstrate the selective mechanisms via two representative inhibitors (NMS-P118,
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Figure 9 DCC analysis from the 800 ns aMD simulations. (A) PARP-1/NMS-P118. (B) PARP-2/NMS-
P118. (C) PARP-1/Niraparib. (D) PARP-2/Niraparib.

Full-size DOI: 10.7717/peerj.9241/fig-9

Niraparib) with different selectivity to PARP-1 and PARP-2 (Figs. 1D–1E). Initially,
molecular docking was applied to predict the complex of PARP-2/Niraparib. To examine
the prediction accuracy, the predicted and the crystal structures were aligned. The RMSDs
between the predict pose (PARP-2/Niraparib) and the crystal structure (PARP-1/Niraparib)
were highly similar, a finding that was consistent with the results observed by alignment
of crystal structures of NMS-P118 bound to PARP-1 and PARP-2 (Fig. 2). Based on
the above findings, these structures were employed to further explore the dynamic
behavior via classical MD simulations and aMD simulations. Classical MD simulations
in conjunction with the RMSD, PCA, and DCC analyses provided compelling evidence
that the conformation fluctuations were different for PARP-2 bound to selective PARP-1
inhibitors and PARP-2 bound to non-selective inhibitor (Figs. 3–5). Further RMSF analysis
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Figure 10 The top two ranked principal components (PC1, PC2) are plotted against each other from
the 800 ns aMD simulations. (A) PARP-1/NMS-P118. (B) PARP-2/NMS-P118. (C) PARP-1/Niraparib.
(D) PARP-2/Niraparib.

Full-size DOI: 10.7717/peerj.9241/fig-10

revealed that the major structural variations were the conformational changes of the helix
αF, which may account for drug selectivity (Fig. 6). According to the binding free energy
calculations, the polar contributions had an obvious impact on drug selectivity (Table 1).
Per-residue decomposition analysis further revealed that drug selectivity was primarily
controlled by the residues of Ser-328, Gln-322, Glu-335, and Tyr-455, most of which are
located in the helix αF (Fig. 7).

As there are possible energy barriers between various meta-stable states, the classical MD
simulations may still not be sufficient to sample the possible conformations (Hamelberg,
Mongan & McCammon, 2004; Miao, Nichols & McCammon, 2014a). Therefore, an
enhanced sampling technique that can sample the protein conformation at various meta-
stable states is still required. Most of enhanced sampling techniques often require expert
knowledge of the studied complexes, as these techniques require reaction coordinates. This
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Figure 11 FEL analysis from the 800 ns aMD simulations. (A) PARP-1/NMS-P118. (B) PARP-2/NMS-
P118. (C) PARP-1/Niraparib. (D) PARP-2/Niraparib.

Full-size DOI: 10.7717/peerj.9241/fig-11

limitation is overcome by the aMD simulations, which can explore the conformational
behavior of the biomacromolecule without this requirement (Hamelberg, Mongan &
McCammon, 2004;Miao, Nichols & McCammon, 2014a). Therefore, within the framework
of this study, aMD simulation was employed to further sample the possible conformational
ensembles. The results of RMSD, PCA, DCC analyses from aMD simulations indicated
that the selective PAPR-1 inhibitor NMS-P118 may significantly disrupt the stability of
the PARP-2 protein, not the non-selective drug Niraparib, a finding that was consistent
with the results from classical MD simulations (Figs. 8–10). The FEL analysis further
demonstrated the unstable nature of PAPR-2 bound to the selective PAPR-1 inhibitors
NMS-P118 (Fig. 11). The preferential binding of NMS-P118 to PARP-1 takes precedence
over PARP-2, resulting in a better inhibitory effect of PARP-1 than PARP-2, and greater
PARP-1 selectivity. In summary, more selective PAPR-1 inhibitors may be required
to evaluate the above findings via molecular modeling, which might help facilitate the
rational design of high selective PAPR-1 inhibitors.
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CONCLUSIONS
Multiple computational techniques were employed to conduct an exploration of the
selective mechanisms of inhibitors underlying PARP-1 and PARP-2. The results from
classical MD simulations offered compelling evidence that preferential NMS-P118 binding
to PARP-1 over PARP-2 was controlled by the protein conformational changes of helix αF,
which lead to decreased polar contributions. These findings were further corroborated by
the RMSDs, DCC, PCA analyses from aMD simulations. FEL results from aMD simulations
further suggested that PAPR-2 bound to the selective PARP-1 inhibitor NMS-P118, but not
the non-selective drugNiraparib, underwent large conformational changes. Taken together,
these results may prove conducive to the design of more selective PAPR-1 inhibitors with
fewer potential side effects.
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