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Abstract: Molecularly imprinted polymers have been shown to be useful in competitive biomimetic
binding assays. Recent developments in materials science have further enhanced the capabilities
of imprinted polymers. Binding assays, biological and biomimetic alike, owe their usefulness to
their selectivity. The selectivity of competitive binding assays has been characterized with the
cross-reactivity, which is usually expressed as the ratio of the measured IC50 concentration values
of the interferent and the analyte, respectively. Yet this cross-reactivity is only a rough estimate
of analytical selectivity. The relationship between cross-reactivity and analytical selectivity has
apparently not been thoroughly investigated. The present work shows that this relationship depends
on the underlying model of the competitive binding assay. For the simple but widely adopted
model, where analyte and interferent compete for a single kind of binding site, we provide a simple
formula for analytical selectivity. For reasons of an apparent mathematical problem, this formula
had not been found before. We also show the relationship between analytical selectivity and cross-
reactivity. Selectivity is also shown to depend on the directly measured quantity, e.g., the bound
fraction of the tracer. For those cases where the one-site competitive model is not valid, a practical
procedure is adopted to estimate the analytical selectivity. This procedure is then used to analyze the
example of the competitive two-site binding model, which has been the main model for describing
molecularly imprinted polymer behavior. The results of this work provide a solid foundation for
assay development.

Keywords: binding assay; antibody; interference; cross-reactivity; IC50; competitive; homogeneous;
heterogeneous; tracer; binding curve

1. Introduction

Molecularly imprinted polymers (MIP) [1–15] may be considered as bioinspired ma-
terials for a variety of reasons. They are macromolecules, often constitute a part of a
nanocomposite system, and they can interact selectively with either small molecules, or
macromolecules, or whole microorganisms, just like their biological counterparts. One
of the main recent trends in MIP research has been the combination of a wide range of
nanomaterials with MIPs. Furthermore, MIPs have been themselves prepared on the
nanoscale. Nanocomposites have been shown to have improved features compared to
more conventional MIPs. While there has been impressive progress in the design of ever
newer and more complex MIP materials, the understanding of one of the main features of
MIPs, their selectivity has not kept pace with the preparative developments [16,17].

The physical and chemical structure of the MIP binding sites has remained largely
unknown. For this reason, one knows very little about the exact origin of MIP selectivity.
Empirical methods for characterizing MIP selectivity vary according to the intended appli-
cation. A fairly general method is the comparison of the binding isotherm of the analyte
with that of a likely interferent [7]. In this method, no mixtures of the two compounds are
studied, while in real life applications the two substances would be present together in
the samples.
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An important application of MIPs is in binding assays [18–24]. MIPs have been
indeed regarded as artificial antibodies. It has also been claimed that the selectivity of
certain MIPs is similar to that of the antibody it might replace. This has been proven by
measuring the cross-reactivity of the MIP. This occurred by comparing the respective IC50
values (concentrations causing 50% inhibition of tracer binding) of the antibody and the
MIP, respectively.

Despite the widespread use of the IC50 based cross-reactivity, both in bioanalysis
and with MIPs, it appears difficult to find any proof that it really does what it promises,
i.e., that it quantitatively characterizes the analytical selectivity of binding assays. Yet
selectivity is very important in bioanalysis, i.e., in the analysis of small compounds or large
biomolecules in biological samples [25].

In the present work we derive an exact formula for the selectivity of those binding
assays which follow the widely used competitive binding equilibrium model on a single
kind of binding site. It is shown that the selectivity depends on the value of the measured
quantity, e.g., on the bound fraction, B, of the tracer. In contrast to this, the ratio of the
IC50 value of the interferent to that of the analyte, is a single number, and thus it cannot
characterize the selectivity, which depends on the bound fraction. Nevertheless, as shown
in this paper, in a well-designed, single-site binding assay, the IC50 ratio is a reasonable
approximation for the selectivity. Furthermore, it is shown, that “relative potency”, as
defined by Ekins [26] is equal to the analytical selectivity if the single site model is valid.

The situation changes, however, if the single binding site model is not applicable.
This is a common situation with MIPs. For this case, a general characterization method of
binding assay selectivity has been adopted here. It is shown then, by example of a two-site
binding model, that selectivity may change non-monotonously with B, and may go through
a maximum. In the two-site model, neither the IC50 ratio nor the relative potency describes
selectivity exactly.

The present work provides a solid basis for the assessment of the selectivity of biologi-
cal and artificial binding assays.

2. Results
2.1. The One-Site Model of the Competitive Homogeneous Binding Assay

A homogeneous (in the sense of homogeneous phase reactions in chemistry) competi-
tive binding assay relies on the use of a tracer, T. The tracer is typically, but not exclusively,
the radiotracer version A* of the analyte, A. It will be assumed in the first part of this paper
that there is only one type of binding site in the system, and this site will be denoted here
by S. To discuss selectivity, an interfering compound X, which can react with the binding
site S, will also be considered.

The simultaneous reactions between these components are as follows:

T + S = TS (1)

A + S = AS (2)

X + S = XS (3)

The equilibrium constants of these reactions are (with square brackets denoting equi-
librium concentrations of the bracketed species):

KT =
[TS]

[T] ∗ [S] (4)

KA =
[AS]

[A] ∗ [S] (5)

KX =
[XS]

[X] ∗ [S] (6)
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The total concentrations of S, T, A, and X, respectively, will be denoted with cS, cT, cA,
and cX. The mass balances for each component are:

cS = [S] + [TS] + [AS] + [XS] (7)

cT = [T] + [TS] (8)

cA = [A] + [AS] (9)

cX = [X] + [XS] (10)

In a typical assay, the total concentrations of S, cS, and of T, cT, are the same in all
calibration and assay mixtures. The measured quantity may be either one of the following:

• the concentration of the bound tracer, [TS],
• the concentration of the free tracer, [T],
• the bound fraction of the tracer, B = [TS]/cT
• the ratio of the bound tracer concentration to the free tracer concentration, [TS]/[T].

Since the total concentration of the tracer is fixed and (usually also) known, either one
of these measurable quantities allows the calculation of all others.

The one-site competitive binding model presented above has been known [27,28]
to be only a simplified model of competitive homogeneous immunoassays. In spite of
this, it has been used quite generally as a useful first approximation. Questions about the
validity of the model will be addressed in a later section of the present paper. The model
will also be extended to heterogeneous phase competitive assays, such as the biomimetic
binding assays with molecularly imprinted polymers, or assays with antibodies fixed on a
solid surface.

2.2. Quantitative Expressions of Assay Selectivity

The main idea of the binding assay is that the bound (or the free) fraction of the
tracer depends on the concentration of the analyte A. This is so because the tracer and the
analyte compete for the fixed quantity of binding sites. In the absence of interferents, the
dependence of tracer binding (e.g., of B = [TS]/cT) on the analyte’s total concentration,
cA, or its logarithm, is the calibration function (also called “binding curve”) of the assay
(Figure 1). In the presence of an interferent, X, at concentration cX, the calibration curve is
no more valid. In practice, we are either unaware of the presence of the interferent, or we
have no means to remove its effect. Thus, we read the concentration of A at the B value
measured in the presence of both A and X, but from the calibration curve, which had been
established in the absence of X. The determined apparent analyte concentration will be
obviously in error.

Figure 1 shows, that by taking a sample containing only A (point P in the figure), and
then adding X to the sample, the binding value, B, decreases. If one reads the apparent
concentration of A at the new B level from the binding curve of pure A (i.e., at point Q), the
estimated sample concentration, cA(Q), will be higher than the true concentration cA(P).

The analyst’s goal is to estimate the error cA(Q) − cA(P), and to keep it within some
predetermined tolerance limits. If this error in the analyte determination is small, even
if the interferent concentration, cX, is high, then the assay is selective. It seems therefore
meaningful to characterize the assay selectivity by the quantity

SEL(cA, cX) =
cX

c′A − cA
(11)

where we denote cA(Q) with cA
′ and cA(P) with cA for simplicity. Note, however, that this

ratio, and thus the selectivity, is generally not a constant, because it depends on cA and
on cX.
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Figure 1. Binding curve of the analyte A. If interferent is present in a sample, the bound fraction of 
the tracer is lower than in the absence of interferent (vertical arrow). Since the concentration of A is 
estimated from this lower B value (as point Q), the estimated analyte concentration is higher than 
the true value. The error (more precisely the log ratio of estimated to true value) is shown by the 
horizontal arrow. This figure is general, i.e., not restricted to a particular binding model. 
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Figure 1. Binding curve of the analyte A. If interferent is present in a sample, the bound fraction of
the tracer is lower than in the absence of interferent (vertical arrow). Since the concentration of A is
estimated from this lower B value (as point Q), the estimated analyte concentration is higher than
the true value. The error (more precisely the log ratio of estimated to true value) is shown by the
horizontal arrow. This figure is general, i.e., not restricted to a particular binding model.

Bioanalysts had sought a single number to characterize the selectivity of a binding
assay. They had proposed, and indeed have been using for decades, the concentration
ratio IC50X/IC50A of the binding assay, as the measure of its selectivity. Later, we shall
explain this selectivity concept in detail. For now, it is only noted that even in the simplest
assay model, the selectivity SEL, as defined above, is not a constant and it is not equal to
IC50X/IC50A.

2.3. Derivation of the Selectivity of the One-Site Competitive Binding Assay

In this section, we shall derive a mathematical expression of the selectivity, SEL, in
terms of the equilibrium constants and the other fixed parameters of the one-site assay.

As noted above, if one measures the bound fraction, B, of the tracer, one can calculate
also [TS] and [T] from the mass balance of the tracer. These values, in turn, determine
through the equilibrium condition of the tracer (Equation (4)) the concentration of the free
binding sites, [S]. With [S] known, one can use the respective mass balance and equilibrium
equations of A and X to express [AS] and [XS] as a function of [S], and of the respective
total concentrations cA and cX. Inserting these values into the mass balance equation of
the sites:

cS = [S] + [TS] +
cA

1 + 1
KA∗[S]

+
cX

1 + 1
KX∗[S]

(12)

The relationship between [S] and the measured quantity, B, is:

B =
[TS]
cT

=

cT
1+ 1

KT∗[S]

cT
=

1
1 + 1

KT∗[S]
(13)

and expressing [S] with B:

[S] =
B

KT(1− B)
(14)
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Substituting this result into Equation (12):

cS =
B

KT ∗ (1− B)
+ cT ∗ B +

cA

1 + KT∗(1−B)
KA∗B

+
cX

1 + KT∗(1−B)
KX∗B

(15)

This equation contains now only the measured quantity B, the known (or at least
constant) quantities cS and cT, and finally the total (analytical) concentrations of the analyte,
cA, and of the interferent, cX. If cX = 0, then the equation is the calibration curve (binding
curve) of the assay in an implicit form, because it describes the relationship between cA
and B. If cA = 0, then the equation is the interferent’s calibration curve. If neither cA nor cX
is zero, the equation describes the relationship between the measured B and the two total
(analytical) concentrations, cA and cX. In this case B is a bivariate function, and therefore its
dependence on cA and cX together can be plotted either as a 3D surface, or as a series of
contour lines in the (cA, cX) plane.

It would be convenient to obtain the B(cA, cX) function in explicit form, i.e., to express
B as a function of cA and cX. However, this would lead to a very complicated trigonometric
expression [29] because the equation is cubic in B.

This is the salient point, where earlier studies had stopped, and could not derive a
simple expression for the selectivity of the assay. To move forward from here, we use
our recent result [16,30], which tells that the selectivity of any analytical method can be
defined by a unique constant if and only if the response variable of the method (in this case
B) is an univariate function of a linear combination (i.e., additive linear function) of the
analyte and interferent concentrations, respectively, with constant coefficients. Actually,
the response function need not be an explicit function of the concentrations, it may also
have the following implicit form, as adapted for the present case:

f (B, (kA ∗ cA + kX ∗ cX) = 0 (16)

where f is an arbitrary bivariate function of B and (kA ∗ cA + kB ∗ cB), and where kA and kX
are nonnegative constants.

When Equation (16) is valid for the assay, then the selectivity of the assay may be
calculated using the procedure described above in relation to Figure 1. One needs to
equate the response B in the (cA, cX) mixture with the response of a pure A solution of
concentration cA

′:
B(cA, cX) = B(cA′) (17)

From this and from Equation (16):

kA ∗ c′A = kA ∗ cA + kX ∗ cX (18)

Hence,

SEL =
cX

c′A − cA
=

kA
kX

(19)

The bivariate binding function, Equation (15) would satisfy the general equation (16)
if the denominators of cA and cX were constant values, not functions of the variable B.
(Note that cS, cT and KT are constants, not variables in the assay).

Now one can use a simple trick. Consider Equation (15) separately for each value
of the measured B. For any fixed B, the denominators of cA and cX are constants, and
the equation describes a contour line of the three dimensional B(cA, cX) function. As the
equation shows, the contour lines are straight lines, which are parallel with the (cA, cX)
plane. The selectivity of the assay is constant along these lines, and its value is the ratio of
the respective multiplier of cA and cX in the equation:

SEL(B) =
1 + KT∗(1−B)

KX∗B

1 + KT∗(1−B)
KA∗B

(20)
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This result shows, that the selectivity of the assay depends on the measured value B,
and through it from [S], the concentration of free binding sites. This situation is completely
analogous with the selectivity of ion-selective electrodes [31,32], which depends on the
measured EMF value alone.

It is useful to calculate the selectivity of the binding assay at some particular values of
B. If B is close to 1, i.e., when cA and cX are very low, and almost all tracer is bound, then
SEL ≈ 1, as is easily seen from Equation (20). This means, that when almost no tracer has
been displaced by the analyte and the interferent together, the assay cannot differentiate
the analyte from the interferent. If B is close to zero, i.e., when almost all tracer is displaced
by high analyte and/or interferent concentrations, SEL ≈ KA/KX. Thus, at high analyte
concentration, the selectivity is high since typically KA >> KX. Practical competitive assays
often start from B ≈ 0.5. At this value of B, and assuming KT ≈ KA and KA >> KX (which
is the case with many radio-immunoassays) SEL ≈ 0.5 ∗ KA/KX.

These examples show that the selectivity of the binding assay depends very much
on the value of B. Figure 2a. shows the selectivity as the function of the analyte’s log
concentration, and Figure 2b shows the selectivity, calculated from Equation (20), as a
function of B. The parameters of the calculations may be found in the figure legend. Note
the strict linear relationship between SEL and B.
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In view of Equation (16), if the simple one-site competitive model is valid, the analytical
error, cA

′ − cA, which is due to a small addition of interferent, may be simply expressed as:

c′A − cA =
cX

SEL(B)
(21)

At any measured B value, the SEL(B) value can be calculated from Equation (20).
The equilibrium constants, needed for this calculation, can be obtained from the separate
calibration (binding) curves of the analyte and the interferent, respectively.

3. Discussion
3.1. Expressing the Selectivity with IC50 Values and with Relative Potency

The selectivity of binding assays has been traditionally expressed by the cross-reactivity.
This is the ratio of the respective IC50 values of the analyte and the interferent. IC50 is
the concentration of the respective compound which decreases B to 50% of B0, where B0 is
the value of B measured at cA = cX = 0, i.e., in the absence of both analyte and interferent.
Typical competitive immunoassays are designed to have B0 ≈ 0.5. In this case, IC50A
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is the concentration of the analyte which pertains to B ≈ 0.25 on the analyte’s binding
curve. IC50X is the concentration of the interferent which pertains to B ≈ 0.25 on the
interferent’s binding curve. Figure 3 shows calibration lines and IC50 values calculated
with realistic parameters.
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The cross-reactivity, i.e., the concentration ratio IC50X/IC50A, can be calculated by
expressing cA from Equation (15) for B = 0.25 and cX = 0, and comparing the value with cX
obtained from the same equation for B = 0.25 and cA = 0. By doing this calculation, one
obtains (assuming again KT ≈ KA and KA >> KX) that the cross-reactivity is approximately
equal to 0.775 KA/KX. This is three quarters of the maximal selectivity.

As noted earlier, the analytical selectivity, SEL, depends on B. If we calculate its
value at B = 0.25 from Equation (20), it is found to be 0.775 KA/KX, i.e., equal with the
cross-reactivity. This is not a mere coincidence, as will be shown in the next section.

3.2. What Does the IC50 Ratio Tell about Assay Selectivity?

The ratio of the IC50 values of an interferent and the analyte, IC50X/IC50A, has been
typically used to characterize the assay selectivity. For example, if the ratio was 20, then it
was concluded that the interference level was 5%. In other words, it was assumed that the
analytical bias, cA

′ − cA, caused by X was 0.05 ∗ cX, independently from the value of the
actual concentrations or of B.

A problem with this assumption had been recognized, but not widely known, in
the immunoassay literature (but was probably not noticed at all in the MIP literature).
Regarding immunoassays, Ekins [33] wrote: “Regrettably, the observation that the potency
of a cross-reacting substance relative to the analyte is not a constant has been obscured by
the common practice of reporting the relative amounts of cross-reactant and analyte which
reduce the zero dose response (e.g., B0) by 50%, this quantity sometimes being referred to
as the ‘coefficient of cross reactivity’ (CR50%). However, for several reasons, the value of
this coefficient may substantially misrepresent the biasing effect of the cross reactant in
the system.”

Ekins had recognized that the “relative potency”, i.e., the ratio of cX to cA, as read
at a common B value from the respective calibration lines (binding curves) of A and X,
respectively, depends on the B value where these readings are made. He also recognized
that the cX/cA ratio is related to the analytical bias. However, he and others had only
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assumed and not proved that the bias (cA
′ − cA in our notation) at any binding value B

was proportional to the relative potency at this B. Yet this can be easily proved using our
Equation (15). The binding curve for A in the absence of X is simply Equation (15) with
cX = 0. Similarly, the binding curve of X in the absence of A is Equation (15) with cA = 0.
Expressing cA from the first of these equations and cX from the second, while using the
same B, and forming the ratio cX/cA with these values, one obtains SEL(B), as given in
Equation (20). This proves that the relative potency at any B is equal to SEL(B). Note,
however, that this result has been derived here with the one-site model. For other models
it may not be valid. It will indeed be shown below that for a two-site binding model it is
not valid.

3.3. Biomimetic Binding Assays with MIPs

Molecularly imprinted polymers (MIP) have been used as artificial antibodies since
the early 1990-s [19,20]. Mosbach’s group presented several successful competitive binding
assays with MIPs [8,18], and these were followed by others. The MIPs, at least in the
version used by these pioneers, were solid sorbents. Their binding behavior resembled
that of immobilized antibodies. Yet it has been debated for decades [7] if a MIP has one,
two, or many different types of binding sites, of which only one would participate in the
immunoassays, or there is a continuous spectrum of binding sites.

The selectivity of the MIP binding assays has been characterized by IC50 ratios. This
had been done apparently merely by analogy with immunoassays. One may ask therefore,
if this practice is justified, and if so, if it has the same problems, which had been noted above
for homogeneous assays. The main difference from the homogeneous assays discussed
above is, that the binding sites, S, and the bound forms of T, A, and X, i.e., ST, SA, and SX,
are all in (or on the surface of) the solid phase.

If one assumes that in the MIP binding assay only one kind of binding site participates,
and the analyte has to compete for a limited amount of such sites with the tracer, and with
an interferent, then one can obtain similar equations to those found above for homogeneous
phase binding assays. If we denote solid phase/surface concentrations by overbars, the
equilibrium equations will be:

KT =

[
TS

]
[T] ∗

[
S
] (22)

KA =

[
AS

]
[A] ∗

[
S
] (23)

KX =

[
XS

]
[X] ∗

[
S
] (24)

The mass balance equations will be as follows:

qS =
[
S
]
+

[
TS

]
+

[
AS

]
+

[
XS

]
(25)

V ∗ cT = V ∗ [T] + m ∗
[
TS

]
(26)

V ∗ cA = V ∗ [A] + m ∗
[
AS

]
(27)

V ∗ cX = V ∗ [X] + m ∗
[
XS

]
(28)

where qs is the total site concentration in the solid phase related to unit mass of the solid, m
is the mass of the solid phase and V is the volume of the liquid phase. Note that cT, cA and
cX denote total concentrations of the respective species in solution before equilibrating the
solution(s) with the solid.

From these equations one can derive the same relationship, Equation (15), between
the bound fraction of the tracer and the total sample concentrations cA and cX, as before.
One may go through the whole derivation again, or one may simply note that by division
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of the new mass balance equations by V, and applying the following replacements, one
gets automatically the same result as above in Equation (15):

m
V
∗
[
TS

]
= [TS] (29)

m
V
∗
[
AS

]
= [AS] (30)

m
V
∗
[
XS

]
= [XS] (31)

m
V
∗ qS = cS (32)

m
V
∗
[
S
]
= [S] (33)

With these notations, B and SEL have the same formulas as above in Equations (15)
and (20). This proves that the conclusions made above for the selectivity of one-site
homogeneous binding assays are also valid for the heterogeneous phase one-site binding
assays including the biomimetic MIP binding assays.

3.4. The Limitations of the Competitive One-Site Model

In the above derivations it has been assumed that the binding of the tracer, of the
analyte and of an interferent occurs competitively on a single kind of binding site. Real
systems may differ from this simple model in many ways. Some of these are as follows:

• There may be more than one kind of binding site in the system.
• The binding sites, even of the same kind, may not be independent from each other,

i.e., binding at one site may influence the binding at another site.
• The stoichiometry of binding may be different from the simple 1:1 stoichiometry

assumed above.
• There may be more than one interferent present, and their effects may not be additive.
• The interferent may interfere with the measurement by a different mechanism from

competitive binding, e.g., it may react with the analyte.

In the next section, the first of these problems will be discussed, and it will be assumed
that there are two different kinds of binding site present. This case is particularly important
for MIPs, which are often described as having two kinds of binding site: one strong and
selective but at low concentration, and another which is weaker, less selective (or not
selective at all), but more abundant.

3.5. The Competitive Model with Two Sites

As noted above, one limitation of the model used in the first part of this paper is,
that only one kind of binding site is considered. Now, we shall show that for competitive
binding at two different binding sites, the results may be surprisingly different.

The competitive binding of analyte A and interferent X will be simulated for the
case when there are two types of binding site, S1 and S2, of different selectivities and
concentrations in the system. To simplify the discussion, it will be assumed here that the
tracer is chemically identical with the analyte, and the tracer concentration is negligible.
Thus, B will be equal to the fraction of analyte bound to both sites together.

A relatively simple binding equation, like Equation (15), could not be derived for the
two-site case. One can use, however, a simple method to calculate the binding curves even
in this case.

In the Appendix A of this paper it is shown how one can calculate B for any mixture of
A and X. As special cases, the equations of the separate binding curves of A and X are also
derived. This allows to read from the curves the IC50 values, the crossreactivity, as well as
the relative potency as a function of B. The analytical selectivity, SEL, is also obtained for
any mixture of A and X.
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Using the results of the Appendix A, the binding curves of A and X have been
calculated for a hypothetical (but realistic) MIP, and are shown in Figure 4. The parameters
used in the calculation are shown in Table 1. The phase ratio, i.e., the ratio of solution
volume to sorbent mass has been selected as 1000.
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Figure 4. Determination of the cross-reactivity of a two-site, heterogeneous phase binding assay from
the binding curves of the analyte A (left, blue) and the interferent X (right, green). The parameters of
the curves are shown in Table 1.

Table 1. Parameters of a two-site, heterogeneous phase binding assay. The unit of qsite is mol/kg,
and the unit of K is M−1. KT = KA is assumed.

Site Number qsite KA KX

1 1.00 × 10−3 1.00 × 106 1.00 × 105

2 1.00 × 10−2 1.00 × 104 1.00 × 104

As seen from Table 1, site 1 has higher binding constant (KA1) for A than for X (KX1),
but on site 2 the binding constants are equal. This means that site 1 is selective for the
analyte, but site 2 is not. The concentration of site 1 is ten times lower than the concentration
of site 2. Such relationship is fairly typical for MIPs.

Figure 4 shows the separate binding curves of A and X, respectively. The IC50 values
are shown on the corresponding curves.

Figure 5 shows the selectivity of the two-site binding assay as a function of log cA,
the logarithmic analytical concentration of the analyte A. (The selectivity, SEL, has been
calculated directly with the definition of selectivity, Equation (11), for small interference
levels, where SEL did not depend significantly on cX). One can see that as cA increases,
or as B decreases, the selectivity increases at first, similarly to the one-site case discussed
earlier. However, between log cA =−6 and−5, the selectivity begins to decrease, and finally
flattens. The reason for this behavior is, that the selectivity of the weaker sites is lower
(KA2/KX2 = 1), than that of the stronger sites (KA1/KX1 = 10). The strong sites dominate
adsorption at low concentrations, and their selectivity improves as cA increases. The weak,
and in this case not selective, sites become more important at high concentrations, and the
overall selectivity shows the curious behavior presented in Figure 5.



Int. J. Mol. Sci. 2021, 22, 10552 11 of 15

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 11 of 16 
 

 

 
Figure 4. Determination of the cross-reactivity of a two-site, heterogeneous phase binding assay 
from the binding curves of the analyte A (left, blue) and the interferent X (right, green). The param-
eters of the curves are shown in Table 1. 

Figure 5 shows the selectivity of the two-site binding assay as a function of log cA, the 
logarithmic analytical concentration of the analyte A. (The selectivity, SEL, has been cal-
culated directly with the definition of selectivity, Equation (11), for small interference lev-
els, where SEL did not depend significantly on cX). One can see that as cA increases, or as 
B decreases, the selectivity increases at first, similarly to the one-site case discussed earlier. 
However, between log cA = −6 and −5, the selectivity begins to decrease, and finally flat-
tens. The reason for this behavior is, that the selectivity of the weaker sites is lower (KA2/KX2 
= 1), than that of the stronger sites (KA1/KX1 = 10). The strong sites dominate adsorption at 
low concentrations, and their selectivity improves as cA increases. The weak, and in this 
case not selective, sites become more important at high concentrations, and the overall 
selectivity shows the curious behavior presented in Figure 5. 

 
Figure 5. Selectivity of a two-site, heterogeneous phase binding assay as a function of analyte log 
concentration (log cA). The parameters used are shown in Table 1. Calculations were made with low 
enough interferent concentrations for the selectivity to be constant at any given cA. 

Figure 5. Selectivity of a two-site, heterogeneous phase binding assay as a function of analyte log
concentration (log cA). The parameters used are shown in Table 1. Calculations were made with low
enough interferent concentrations for the selectivity to be constant at any given cA.

The ratio IC50X/IC50A as read from Figure 4 is 7.3. This value is the same as the
highest selectivity value (7.3) in Figure 5. Therefore, the selectivity estimate based on IC50
values would be too optimistic as one moves away from the maximum point of Figure 5 in
either direction.

One may also compare the B-dependent SEL values with the B-dependent relative
potency values for the two-site competitive model. In the example of Figures 4 and 5, the
two values begin to deviate substantially from each other when B/B0 is less than about 0.2
(data not shown). When B/B0 is about 0.1, SEL is only about half of the relative potency.
This is a marked difference compared to the single-site case, where SEL was equal to the
relative potency.

The results in this section have been derived for heterogeneous phase binding assays,
but they are also valid for homogeneous phase binding assays, due to the use of essentially
the same equilibrium and mass balance equations.

3.6. A Practical Approach to Estimate the Selectivity of Binding Assays

In view of the many possible deviations from the simple model, there is probably
no general procedure possible for estimating selectivity. To circumvent at least some of
the problems, one may employ the following procedure, which is directly based on the
definition of selectivity in Equation (11). After measuring the calibration curve of the assay
for the analyte in interferent-free solutions, one can spike the analyte solutions at a few
calibration points with the interferent, possibly at two spiking levels in each point. After
addition of the interferent, one can determine for the spiked solution an apparent analyte
concentration, cA

′, from the pure analyte’s binding curve, as had been shown on Figure 1.
The difference between this apparent concentration and the true analyte concentration of
the spiked sample is the error of the analyte measurement, caused by the addition of the
interferent, X, as presented in Figure 1. The error due to X is:

error o f cA = c′A − cA (34)

For small errors, one may assume (or experimentally check with a different spike) that
the error is proportional to cX, so that the selectivity is meaningfully characterized by

SEL =
cX

c′A − cA
(35)
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From these measurements, one can derive a plot similar to that shown in Figure 5.
This is a useful information for optimizing the assay. The American Association of Pharma-
ceutical Scientists proposed a similar procedure for immunoassays [34], but no comparison
between this method and the IC50 method seems to have been made. As far as we know,
in the field of biomimetic MIP binding assays the problems with IC50 values as selectiv-
ity estimates have not yet been recognized, and the here suggested procedure has not
been tested.

The procedure described here does not increase the number of necessary measure-
ments to obtain information about binding assay selectivity, because it makes the measure-
ment of the binding curve of the interferent X superfluous. Moreover, it is free from any
assumptions concerning the binding assay model.

The usefulness of the here proposed method is also underlined by the result of
the previous section, where it had been shown, that even for the relatively simple two-
site model, neither the cross-reactivity nor the relative potency can correctly predict the
analytical selectivity.

4. Conclusions

Competitive binding assays are considered to be among the important achievements
with MIPs. The selectivity of these binding assays has been characterized in the literature
with the ratio of the measured IC50 values of the interferent and the analyte, respectively.
This practice has been borrowed from the literature of immunoassays. Yet the ratio of
IC50 values is only a rough estimate of selectivity. This difficulty had been recognized
by some authors with respect to immunoassays, but much less with the biomimetic MIP
binding assays.

For reasons of an apparent mathematical complexity, no general formula had been
found earlier for the selectivity of competitive binding assays, be they biological or MIP
based. The present work has shown how this difficulty can be overcome. As a result, a
simple formula has been provided to calculate the selectivity of the one-site competitive
binding assays, as a function of a directly measured quantity, like the bound fraction of the
tracer. The calculated, concentration (or binding ratio) dependent selectivity of the assay
has been compared to IC50 ratios and to relative potencies. It has been shown that IC50
ratios are only rough estimates of selectivity, while relative potency is accurate, but only if
the one-site model is valid.

For those cases where the simple competitive model with a single kind of binding
site is not valid, a practical procedure has been proposed to estimate the selectivity. The
usefulness of this procedure has been demonstrated for binding assays where two different
binding sites are present. This example showed also that the assay selectivity may vary non-
monotonously in the useful concentration range of the assay. Finally, the deviation of the
“relative potency” of a binding assay from its analytical selectivity, has been demonstrated
for the two-site case.

The results of the paper have been shown to apply to immunological and MIP-based
biomimetic assays as well. They are equally valid for assays in homogeneous solutions and
for assays where the binding sites are in a solid phase or on the surface of a solid material.
Therefore, the present work provides a solid basis for the development of a broad range
of assays. It shows also that some conventional selectivity measures, which are used in
established analytical methodologies, e.g., competitive binding assays, may have a complex
relationship with the analytical error caused by the interferents. Analysis of selectivity
measures, as used elsewhere in (bio)analytical chemistry, may be worth a similar study to
the present one.
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Appendix A

Let us consider first only one of the two sites, say S1. For this site, one can write the
same equilibrium and mass balance equations as have been written above for the one-site
model. Only the notation of the quantities needs to be modified. For simplicity, only that
case will be considered, where the tracer is chemically identical with the analyte, and the
tracer concentration is negligible compared to the analyte concentration. Thus,

A + S1 = AS1 (A1)

A + X1 = AX1 (A2)

The corresponding equilibrium constants will be denoted by KA1 and KX1, respectively.
The total concentration of S1, A and X will be denoted with cS1, cA and cX, respectively.

The mass balance for S1 is:

cS1 = [S1] + [AS1] + [XS1] = [S1](1 + KA1[A] + KX1[X]) (A3)

Expressing [S1] from this equation and introducing it into the equilibrium expressions
of A and X, respectively, one obtains expressions for [AS1] and [XS1]. Here, only [AS1]
is shown:

[AS1] =
cS1KA1[A]

1 + KA1[A] + KX1[X]
= DA1[A] (A4)

where the notation DA1 has been introduced. This is a kind of distribution coefficient for
the distribution of A between the bound form AS1 and the free form A, respectively. Note
that DA1 can be calculated from [A], [X] and some constants.

Similar equations are obtained for [XS1], [AS2] and [XS2]. The mass balance for A is:

cA = [A] + [AS1] + [AS2] = [A](1 + DA1 + DA2) (A5)

The total adsorbed concentration of A is [AS1] + [AS2]. Thus, the bound fraction of A,
and accordingly that of the tracer, is:

B =
[AS1] + [AS2]

cA
=

[A](DA1 + DA2)

[A](1 + DA1 + DA2)
=

DA1 + DA2

1 + DA1 + DA2
(A6)

Since all D-s can be calculated if [A] and [X] are given, B can also be calculated from
these two variables. The total concentration of A, cA, can also be calculated from these two
variables, and cX similarly. Therefore, by taking an arbitrary ([A], [X]) pair, one can obtain
B, cA and cX, i.e., B can be obtained as a function of the total concentrations cA and cX. The
two binding curves can be obtained by setting [X] = 0 or [A] = 0 in the expressions for the
relevant D-s.
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For the calculation of SEL in a mixture of A and X, one needs to get cA
′ for the above

obtained B value of the mixture, but in the absence of X. Since from B one can calculate DA1
+ DA2, and in the absence of X the value of DA1 + DA2 depends only on [A], one can obtain
[A] from B, actually by solving a quadratic equation. From this [A], one then obtains cA

′ as

c′A = [A](1 + DA1 + DA2) (A7)

The selectivity is calculated finally as:

SEL =
cX

c′A − cA
(A8)

For any given cA, SEL may depend on cX. By calculating SEL for some analytically
relevant values of cX, one can get a good picture of the expected level of interference.

It is worth noting, that the total bound concentration of A is:

[AS1] + [AS2] =
cS1KA1[A]

1 + KA1[A] + KX1[X]
+

cS2KA2[A]

1 + KA2[A] + KX2[X]
(A9)

This equation is formally identical with the so-called bi-Langmuir equation [35], which
is used when A is adsorbed on a solid which has two independent binding sites. This
observation shows that our results may be used for two-site binding both in homogeneous
and heterogeneous phase, e.g., for solid state MIPs. To demonstrate this application,
the numerical examples in the paper relate to such solid phase binding on two different
binding sites.
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