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Osteosarcoma is the most common primary bone tumor in both humans and dogs.

It is a highly metastatic cancer and therapy has not improved significantly since the

inclusion of adjuvant chemotherapy into disease treatment strategies. Osteosarcoma

is an immunogenic tumor, and thus development of immunotherapies for its treatment,

especially treatment of microscopic pulmonary metastases might improve outcomes.

NK cells are lymphocytes of the innate immune system and can recognize a variety

of stressed cells, including cancer cells, in the absence of major histocompatibility

complex (MHC)-restricted receptor ligand interactions. NK cells have a role in controlling

tumor progression and metastasis and are important mediators of different therapeutic

interventions. The core hypothesis of adoptive natural killer (NK) cell therapy is there

exists a natural defect in innate immunity (a combination of cancer-induced reduction in

NK cell numbers and immunosuppressive mechanisms resulting in suppressed function)

that can be restored by adoptive transfer of NK cells. Here, we review the rationale for

adoptive NK cell immunotherapy, NK cell biology, TGFβ and the immunosuppressive

microenvironment in osteosarcoma, manufacturing of ex vivo expanded NK cells for the

dog and provide perspective on the present and future clinical applications of adoptive

NK cell immunotherapy in spontaneous osteosarcoma and other cancers in the dog.
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INTRODUCTION

Osteosarcoma is the most common primary bone tumor in both humans and dogs, with the
disease incidence being as much as 30–50 times higher in the latter (1). The similarities of
the disease in humans and dogs are well-described and include commonalities in underlying
molecular biology, including gene expression and genetic mutations, histopathology, clinical
presentation, disease progression, and response to therapy (2). Spontaneous osteosarcoma in the
dog has been used extensively as a preclinical large animal model to evaluate new therapies for
osteosarcoma in humans, including limb-sparing procedures (3–5), chemotherapy delivery (6, 7),
targeted therapeutics (8), and immunotherapeutics, including therapeutic vaccines and others (9–
11). New immunotherapeutic approaches to cancer treatment have emerged and are now making
a significant clinical impact for large numbers of cancer patients (12, 13). The development of
new immunotherapeutics can be greatly facilitated by the use of well-characterized and validated
animal models and spontaneously occurring osteosarcoma in pet dogs is exceptionally well-suited
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for this purpose. In addition to the similarities described
above, other features of the disease in dogs are particularly
relevant and important for evaluating immunotherapeutic
interventions. Notably, cancers in dogs occur in a relatively
outbred population that generally shares similar environmental
exposures with humans and the spontaneously occurring tumors
are heterogeneous, existing in a complex microenvironment and
in a host with an intact immune system; all critical features that
are poorly addressed in most rodent models (14).

RATIONALE FOR ADOPTIVE NK CELL
IMMUNOTHERAPY

The core hypothesis of adoptive natural killer (NK) cell
immunotherapy is that there exists a natural defect in innate
immunity (a combination of cancer-induced reduction in NK
cell numbers and immunosuppressive mechanisms resulting in
suppressed function) that can be restored by adoptive transfer of
NK cells (15). The immunosuppressive tumormicroenvironment
suppresses NK cell function (16), and although many drugs
and radiation can sensitize tumors for recognition by NK
cells, chemotherapy, anesthesia, and radiation therapies can
also adversely affect NK cell numbers and function (17–21).
While much effort has gone into T-cell based approaches for
immunotherapy, including chimeric antigen receptor (CAR) T-
cells and immune checkpoint inhibition, these approaches can
have significant problems that may impede their application such
as graft-vs. host disease (GVHD), cytokine release syndrome
(CRS), immune effector cell-associated neurotoxicity syndrome
(ICANS), or severe on-target off-tissue toxicities (22, 23).
Adoptive NK cell therapy is not associated with GVHD (24),
thus making it potentially safer than T-cell based therapies and
because allogeneic transfer is tolerated, NK cell products can
be manufactured and stored for later use in patients as needed,
rather than manufacturing “on-demand” for patient-specific use.

NK CELL BIOLOGY

NK cells are lymphocytes of the innate immune system. NK
cells can recognize a variety of stressed cells in the absence
of major histocompatibility complex (MHC)-restricted receptor
ligand interactions. NK cells are non-T, non-B lymphocytes,
and are known for their cytotoxicity and cytokine effector
functions. Importantly, they can kill target cells without
prior antigen sensitization. Also, NK cells can cross-talk with
dendritic cells in different ways, thus participating in the
shaping of the subsequent immune response. NK cells have
a role in controlling tumor progression and metastasis and
are important mediators of different therapeutic interventions,
including cytokines, antibodies, immunomodulatory drugs, and
stem cell transplantation.

NK Cell Receptors and Function
The number of NK cells as a percentage of peripheral
lymphocytes varies widely in humans (1–32.6%, median 7.6%)
and in dogs (2.5–15%) (25–29). In humans, NK cells are

identified by the lack of CD3 and the presence of CD56 and/or
CD16, and make up 85% of the large granular lymphocyte
(LGL) population (30). The phenotypic characteristics of NK
cells in the dog are not as clearly defined; however, distinct
phenotypic NK cell subsets have been described (31). NK cells
express many different cell surface receptors that can be grouped
as activating, inhibitory, adhesion, cytokine, or chemotactic
receptors. Although many of the cell surface molecules involved
in the regulation of NK cell function are found in both humans
and mice, only a small subset has been validated in the dog.
Canine NK cells do express at the mRNA level several genes
classically associated with NK cells, such as NKp30, NKp44,
NKp46, NKG2D, CD16, DNAM-1, perforin, and granzyme
B (25).

The regulation of NK cell function relies on a complex
interplay of activating and inhibitory signals. Unlike T-cells,
whose activation is highly restricted to an antigenic peptide
presented in the groove of MHC proteins, NK cell activation
is not antigen specific. NK cell activation and tolerance are
accomplished through a large variety of activating receptors for
recognition of danger, balanced with an equally large number of
inhibitory receptors that identify self. The balance between these
signals determines whether NK cells will activate their effector
function (e.g., FasL/TRAIL-mediated killing, perforin/granzyme
release, or cytokine production). In humans, there are several
families of activating receptors, including CD126 (FcRγIIIa),
natural cytotoxicity receptors (NCRs), NK Group 2 (NKG2)
lectin-like receptors, DNAM-1, and 2B4; however, most of these
have not been well-characterized in the dog (32). Activating
receptors generally recognize proteins that are upregulated by
cell stress or are of non-self-origin, whereas inhibitory receptors
primarily bind MHC for self-recognition (33). Inhibitory
receptors provide control for NK cell activity against healthy
tissue. The primary inhibitory receptors in human NK cells are
killer-cell immunoglobulin-like receptors (KIRs) and NKG2A,
both of which bind to HLA class I molecules, preventing NK
cell-mediated lysis of cells with normal HLA expression (33).
MHC class-I deficient targets have heightened sensitivity to
NK cell killing. This biology is reflected and summarized by
the “missing self ” hypothesis, which states that the presence
of MHC class I, ubiquitously expressed by healthy cells,
provides NK cells with a “self ” signal that is recognized by
NK cell inhibitory receptors and thus prevents NK cell self-
reactivity (34).

Canine NK Cells
While human NK cells are distinguished by the absence of
surface expression of CD3 and the presence of variable levels
of expression of CD56 and CD16, depending on differentiation
state (35), the phenotypic characterization of canine NK
cells is still evolving. Morphologically, canine NK cells are
medium- to large-sized lymphocytes containing electron-
dense intracytoplasmic granules that contain granzyme B
and perforin and lack expression of CD4 and CD20, T-cell
and B-cell markers, respectively (36). However, CD8 may
be expressed by a subset of these cells (37, 38). Canine NK
cell populations have also been defined based on density of
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CD5 surface marker expression, with CD5dim representing
a NK cell population (28), especially in the setting of IL-2
stimulation. Further, under ex vivo expansion conditions with
cytokine stimulation, the majority of cytotoxic large granular
lymphocytes expressed a CD5dimCD3+CD8+TCRαβ−TCRγδ
−CD4−CD21−CD11c+/−CD11d+/−CD44+ phenotype that
highly upregulated NKp46, and expressed traditional T-cell
lineage markers, but lacked T-cell receptors (39). NCR1/NKp46,
a NK-specific activating molecule, is considered a “pan-species”
NK cell marker (40). One study concluded that canine NK
cells are comprised of both CD3−GranzymeB+NCR1+ and
CD3−GranzymeB+NCR1− populations cells, with the presence
of NCR1/NKp46 positive cells representing an activated
state (27, 31). Similarly, a canine-specific antibody to NKp46
identifies CD3−NKp46+ and CD3−NKp46− NK subsets that
vary in cytotoxicity, with CD3−NKp46− population being less
cytotoxic, but could be induced to express NKp46 (25). Another
putative marker for canine NK cells is the C-type lectin-like
CD94 (KLRD-1). Experiments with a canine-specific anti-CD94
identifies a candidate NK cell population representing ∼7.7%
of PBMCs and subsets within the CD5dim population (26).
It should be noted that the KIR family of surface receptors
described above for humans has not been identified in dogs.
One gene of a similar paralogous family found in mice,
the Ly49 family, has been identified in the canine genome
(39, 41).

MECHANISMS OF NK CELL KILLING

NK cells exert direct and indirect antitumor activity and kill
target tumor cells via release of granules containing perforin
and granzyme, secretion of cytokines such as IFNγ and other
effector molecules, ligation and activation of death receptors, and
antibody-dependent cellular toxicity (ADCC) mediated through
CD16 when combined with anti-tumor antibodies. Further, the
release of pro-inflammatory cytokines enhances the recruitment
and maturation of adaptive immune responses (42, 43). The
mechanism by which NK cells induce apoptosis in osteosarcoma
cells may depend on both the activation state of the NK cells
and the death receptor and apoptotic pathways present and
functional in the target cell (33). For example, in vitro, direct
NK cell lysis of osteosarcoma cells is mediated via direct release
of granzyme B (44); however, granule-independent mechanisms
may be more relevant in vivo, as losing Fas and TRAIL may
be simpler mechanisms of escape than redundant downstream
death pathways (45). Degranulation of NK cells is mediated
by the balance of activating and inhibitory receptors, which
in turn is influenced by the expression of ligands on the
tumor cell. This suggests that NK cells isolated, expanded, and
activated using different techniques may differ as to which
activating receptors are highly expressed and important for
recognizing a particular tumor (33). For example, in one study
IL-15 stimulated NK cells targeted osteosarcoma predominantly
through DNAM1, whereas in another study IL-2 stimulated
NK cells targeted osteosarcoma predominantly through NKG2D
(44, 46).

OSTEOSARCOMA, THE
IMMUNOSUPPRESSIVE
MICROENVIRONMENT, AND TGFβ

Tumors, especially solid tumors, have evolved mechanisms to
actively suppress the immune system. These include induction
of inhibitory receptors on NK and T-cells, recruitment of
Tregs, myeloid derived suppressor cells and tumor associated
macrophage, and production of immunosuppressive cytokines
and other factors, including TGFβ (47). Overexpression of
TGFβ is a hallmark of many cancers, including osteosarcoma.
It inhibits NK cell activity through several mechanisms-
suppressing NKG2D and CD16 expression, decreasing perforin,
and inhibiting cytokine release (48–51). TGFβ is highly expressed
in cancer cell lines and notably, is more highly expressed
in osteosarcoma than most other solid tumor cell lines,
suggesting that TGFβ is an important contributor to the
immunosuppressive tumor microenvironment for osteosarcoma
in particular (52). TGFβ signaling is a crucial factor in cross-
talk between osteosarcoma cells and stroma cells. Secretion
of TGFβ by tumor cells or stroma cells can act in a
paracrine manner to regulate the tumor microenvironment,
promoting angiogenesis, bone remodeling and cell migration,
and by inhibiting immunosurveillance. TGFβ secretion and
TGFβ receptor expression has been demonstrated in canine
osteosarcoma cells (53). Our group has developed a NK
cell expansion technique that confers relative TGFβ-resistance
to NK cells in an attempt to improve their function in
the hostile immunosuppressive tumor microenvironment (54).
TGFβ resistance, or imprinting, is achieved by chronic exposure
of NK cells to IL-2 and TGFβ during the expansion process.
TGFβ-imprinted NK cells secrete more IFNγ and TNFα than
non-imprinted NK cells in the absence, or presence, of TGFβ.
Furthermore, TGFβ-imprinted NK cells have increased cellular
toxicity compared to non-imprinted cells and are more resistant
to TGFβ-mediated decreases in cellular cytotoxicity (54). Ex vivo
expanded canine NK cells cultured under similar conditions are
likewise conferred relative TGFβ-resistance (Lee, unpublished).

MANUFACTURING OF EX

VIVO-EXPANDED CANINE NK CELLS FOR
ADOPTIVE IMMUNOTHERAPY

NK cells for clinical use can be obtained through apheresis
with T-cell depletion, or by ex vivo expansion. In humans, NK
cells have been successfully expanded from peripheral blood,
cord blood, and pluripotent or embryonic stem cells (55).
Various methods for expanding purified NK cell populations
have been developed in people, using exposure to different
cytokines and co-culture with feeder cell lines (15, 55). Several
of these methods have been extrapolated to and modified
for canine studies (25, 56). In general, superior expansion
is achieved when recombinant canine cytokines are used vs.
recombinant human cytokines. In humans, the incorporation
of IL-21 cytokine exposure by co-culture with the K562 feeder
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FIGURE 1 | Adoptive natural killer (NK) cell therapy. PBMCs are isolated from blood buffy coats of healthy blood donor dogs by Ficoll separation. The separated cells

undergo CD5 cell depletion and are then co-cultured and recursively stimulated in the presence of IL-2 (±TGFβ) 3× over a 3-week period with irradiated K562 feeder

cells expressing membrane bound IL-21. Expanded NK cells can be used immediately, or cryopreserved for later use.

cell line, significantly enhanced NK cell expansion in IL-15/IL-2
expanded NK cells (55).

These techniques have been modified by our group to
manufacture ex vivo expanded canine NK cells with similarly
robust results (25). Clinical grade expanded NK cells are
produced using good manufacturing practices (GMP) principles
including closed-system processes and standardized release
testing and certification criteria. For our studies, the primary
donor NK cells used for expansion are obtained from the
buffy coats of routine whole blood donations from healthy
volunteer canine blood bank donors at our veterinary medical
center. Peripheral blood mononuclear cells (PBMCs) are isolated
by Ficoll separation from the buffy coats. The separated cells
undergo CD5 cell depletion and are then co-cultured and
recursively stimulated in the presence of IL-2 three times over a 3
week period with irradiated human K562 feeder cells expressing
the co-stimulatory ligand 4-1BBL and membrane bound IL-21
(Figure 1). The final ex vivo expanded NK cell product release
criteria include: ≥70% viability, CD3+ cells <5%, NKp46+ cells
as reported, endotoxin <5 EU/kg, and mycoplasma negative.
Expanded NK cells can be used immediately, or cryopreserved
for later use.

The influence and importance of the donor on the final NK

cell product is largely unexplored, although there does appear

to be individual donor variability in the robustness of expansion
and in vitro cytotoxicity of the final expanded NK cell product.

The influence of donor breed is also unknown. A preliminary
survey of NK cell numbers (NKp46+, CD3–) and expression
of DNAM-1 and TIM-3 receptors in the four most common
donor breeds (greyhound, pit bull, golden retriever, and Labrador
retriever) in our blood bank showed minor breed differences
with no one breed being a clearly superior donor source (Peck,
unpublished). Ultimately, for our initial clinical trials, we chose to
use greyhound donors exclusively, as they are the most common
breed in our blood donor population and by doing so, any
unknown breed associated variability in the final product could
be excluded.

CLINICAL APPLICATION OF ADOPTIVE NK
CELL IMMUNOTHERAPY IN CANINE
OSTEOSARCOMA

As described above, spontaneous osteosarcoma in pet dogs
provides an ideal large animal translational model for
studying new immuno-oncology approaches for treating
this cancer, including adoptive NK cell therapy. The more
recent development of canine-specific antibodies for identifying
canine NK cells and subsets, adaptation and development of
ex vivo NK cell expansion techniques, and overall gradually
increasing availability of canine-specific reagents and analysis
techniques, now makes clinical trials of adoptive NK cell therapy
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for osteosarcoma and other cancers in dogs more feasible and
informative. However, these studies and trials are only just
now beginning.

The first reported clinical trial of adoptive NK cell
immunotherapy in dogs with appendicular osteosarcoma
evaluated autologous ex vivo expanded NK cells administered
intra-tumorally following completion of a hypo-fractionated
palliative radiation protocol (56). In this study, NK cells
were isolated and expanded from the canine patient using an
expansion technique similar to that described above (56). Two
injections of 7.5× 106 NK cells/kg were co-injected with 250,000
IU/kg of rhIL-2. Ten dogs were treated in this study. Overall,
there was limited systemic toxicity with this protocol. One
dog had a grade 3 reaction of fever, chills, excessive salivation,
and dehydration consistent with IL-2 toxicity. Three dogs had
local infection/tissue breakdown at the NK cell injection site.
Persistence of labeled viable NK cells could be demonstrated in
tumor biopsies performed 1 week after intra-tumoral injection.
Interestingly, analysis of PBMCs pre- and post-treatment
demonstrated a significant increase in circulating granzyme B+
CD45+ cells (56).

Our group recently opened a phase I clinical trial of
intravenously administered allogeneic TGFβ-resistant
(imprinted) NK cells combined with adjuvant carboplatin
chemotherapy in dogs with appendicular osteosarcoma receiving
limb amputation (54). In this trial, dogs receive a single dose of
NK cells 24 h prior to amputation to evaluate NK cell trafficking
to the primary tumor. Three additional doses are administered
during the subsequent 48 h post-amputation period. Dogs then
receive standard adjuvant carboplatin chemotherapy every 3
weeks, with additional NK cell doses administered on the weeks
they are not receiving chemotherapy. In total, dogs receive a total
of twelve doses of adoptive NK cells—significantly more doses
than in most human NK cell immunotherapy trials, to date. The
use of allogeneic NK cells greatly increases the yield and potential
cell doses, reduces the cost of therapy, and simplifies the logistics
for delivery. Although this approach requires cryopreservation
of the product which may impact NK cell viability and function,
we have successfully used cryopreserved NK cells for several
human studies (57, 58).

One of the major strengths of clinical trials in dogs
with spontaneously occurring cancers is the ability to do
intensive longitudinal patient biospecimen sampling and clinical
assessments, often more intensively than is possible in a
comparable clinical trial in human patients. This is well-
illustrated in the afore described first-in-dog clinical trial,
where pre- and post-treatment serum cytokine concentrations
were assessed by ELISA, tumor gene expression profiles
by qRT-PCR, circulating immune cell phenotypes by flow
cytometry, and intra-tumoral immune cell phenotypes by
immunohistochemistry and qRT-PCR (59). Gradually increasing
availability of new canine-specific reagents and application of
new technologies to the dog, will further increase the number
and power of the correlative studies that can be done and their
translational relevance.

Understanding of the pharmacokinetics and trafficking of
adoptively transferred NK cells and consequent effects on

systemic and tumor immune cell phenotypes and responses
to therapy are important biological correlates for assessing
adoptive NK cell strategies and in principle can be addressed
in this model using a variety of approaches. Assessment
of circulating NK cell numbers and phenotypes in blood
can be assessed by flow cytometry; however, distinguishing
donor from patient cells is problematic. Optimization of
variable number tandem repeat PCR assays as is used to
assess tissue chimerism in human transplant patients (60) and
experimental canine bone marrow transplant models (61–63),
may be useful for assessing the relative circulating donor NK
cell component. Sex chromosome (XX/XY) FISH chimerism
testing may be another method that could be applied when
there is a sex-mismatched donor (64). Novel cell labeling
agents have been developed and tested in rodent and non-
human primate models and could be useful for evaluating
NK cell kinetics and trafficking in the canine osteosarcoma
model. Ex vivo-expanded human NK cells labeled with the
non-radioactive isotope fluorine 19 (19F) can be detected
in rodent tissues by NMR and imaged with 19F-MRI (65,
66). Similarly, expanded NK cells from rhesus macques were
labeled with 89zirconium-oxine (89Zr-oxine) cell labeling and
quantitated and imaged with positron emission tomography
(PET)/CT (67).

FUTURE APPLICATIONS

While these early studies of adoptive NK cell therapy in dogs
are demonstrating the feasibility, tolerability, and safety of
the approach, the model is well-suited for investigating many
ongoing and new important questions in the field. As one of
the mechanisms by which NK cells kill cancer cells is ADCC,
combining adoptive NK cell therapy with therapeutic antibodies
is of interest. Studying ADCC in spontaneous canine cancersmay
be feasible in some cases with murine, chimeric, or humanized
antibodies, as canine Fc gamma receptors bind to dog, human,
and mouse IgGs. However, caninized therapeutic antibodies may
be preferred, as species differences in affinity may result in
significant differences in activity, and eventual alloimmunization
and neutralization by the hostmay significantly alter the antibody
half-life of non-canine antibodies (68, 69). Of great interest
is the genetic modification of NK cells to express chimeric
antigen receptors (CAR) to target and enhance their killing
(70, 71). Clinical trials investigating this approach are in their
early stages in people. However, investigation of new CAR-NK
constructs in dogs with osteosarcoma could address questions
of toxicity, tumor targeting, immunologic response and anti-
tumor activity. An important hurdle to genetic modification
of NK cells has been their relative resistance to lentiviral and
retroviral transduction (24, 72). Our group recently developed
a method for genome editing of human primary and expanded
NK cells using Cas9 ribonucleoprotein complexes (Cas9/RNPs)
that allows for efficient knockout of genes in NK cells, thus
opening the door for novel and innovative genetic modification
strategies, including modifications that would affect tumor
targeting and NK cell activation state, in vivo proliferative
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capacity, and cytotoxicity (73, 74). As the use of genetically
modified cells in humans has even more significant regulatory
hurdles to overcome compared to similar trials in dogs, clinical
trials in dogs can speed the evaluation of novel approaches,
identify those that are more promising, and provide additional
useful safety data to inform subsequent human trials. As
noted above, because of the ability to easily acquire patient
biospecimens, including tumor biopsies, and the relatively
comparable size to humans, the model is ideal for investigating
effects on tumor targeting achieved with different CAR-NK
constructs and for studying novel NK cell labeling and imaging
techniques (65–67).
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