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Abstract 

Increased accessibility of health data provides unique opportunities to discover spatio-temporal patterns of diseases. 

For example, New York State SPARCS (Statewide Planning and Research Cooperative System) data collects patient 

level detail on patient demographics, diagnoses, services, and charges for each hospital inpatient stay and outpatient 

visit. Such data also provides home addresses for each patient. This paper presents our preliminary work on spatial, 

temporal, and spatial-temporal analysis of disease patterns for New York State using SPARCS data. We analyzed 

spatial distribution patterns of typical diseases at ZIP code level. We performed temporal analysis of common diseases 

based on 12 years’ historical data. We then compared the spatial variations for diseases with different levels of 

clustering tendency, and studied the evolution history of such spatial patterns. Case studies based on asthma 

demonstrated that the discovered spatial clusters are consistent with prior studies. We visualized our spatial-temporal 

patterns as animations through videos.  

Introduction 

Open data initiatives supported by the governments are providing unprecedented information about our health. New 

York State SPARCS (Statewide Planning and Research Cooperative System1) data, for example, collects patient level 

detail on patient characteristics, diagnoses and treatments, services, and charges for each hospital inpatient stay and 

outpatient (emergency department, ambulatory surgery, and outpatient services) visit. More examples include a data 

set from CMS (Centers for Medicare & Medicaid Services) that contains information about providers who participate 

in Medicare20 and New York State Cancer Mapping dataset2,3 that consists of the number of people diagnosed with 

cancer (cancer counts, 2005-2009) in small geographic areas.  

All these datasets provide street level location information for each patient, healthcare provider or facility site. These 

datasets cover a history of patient records, which also makes it possible for longitudinal analysis of historical disease 

patterns. The improved availability of health data combined with improved geospatial analysis and spatial statistics 

techniques has significant potential to uncover the spatial, and spatial-temporal patterns of diseases in a population at 

community level and provide new insights as to their causes and controls.17-18 

Spatio-temporal data analysis for public health has a strong focus on locating patients and the agents of disease, 

studying the region level patterns and variations, and assessing the spatio-temporal trends on diseases and human 

health8. In the past, due to limited accessibility of heath data, public health studies were often limited at global level, 

and may not allow public health researchers and officials to adequately identify most at-risk populations, analyze, and 

monitor health events with fine-grained spatial resolutions, such as at the community or neighborhood level12-16. 

Our goal is to integrate open health data with a comprehensive set of spatio-temporal exposure data, which ranges 

from levels of various environmental pollutants to the socioeconomic status of persons at risk3. We focus on the spatio-

temporal public health research with a fine-grained spatial resolution and consolidate a variety of spatial datasets into 

a data warehouse for scalable integrative spatial and spatial-temporal analytics6.  

In this paper, we introduced our preliminary study of spatial, temporal, and spatio-temporal analysis of disease patterns 

for New York State SPARCS data at the ZIP code level. The approach is generic and can be applied to finer spatial 

resolution at address level through geocoding patients’ addresses and approximating them as census block group 

identifiers, which is an ongoing project.   

The paper is organized as follows. We first present an overview of New York State SPARCS data with basic statistics 

for inpatient stay, emergency department visit, ambulatory surgery and outpatient visit, for the year 2014 (Table 1, 

Figure 1). We then studied spatial distributions for the top ranking diseases by discharge count, for the year 2014 

(Table 2 and Figure 2-4). We then performed spatial clustering of asthma for the year 2014 (Figure 5) and analyzed 

the temporal trends for a selected group of diseases for the year 2003-2014 (Figure 6-8). At the end, we demonstrated 

our results as animation videos to visualize how the spatial clusters of asthma varies over time for the year 2005-2014, 

followed by discussions and conclusion. 
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Methods 

Overview of New York State SPARCS Data 

Population. In this work, we used four types of New York State SPARCS data according to the discharge claim type, 

namely inpatient stay (IP), emergency department visits (ED), ambulatory surgery (AS), and outpatient visits (OP) 

with basic demographics for the year 2014 given in Table 1. Any New York State healthcare facility certified to 

provide inpatient services, ambulatory surgery services, emergency department services or outpatient services is 

required to submit data to SPARCS. The purpose of SPARCS was to create a statewide data set to contribute to the 

goal of providing high quality medical care by serving as an information source4. 

Table 1. Demographics of New York State SPARCS data, 2014 

Population/Discharge occurrence 

Census* 
Inpatient 

Stay 

Emergency 

Department 

Ambulatory 

Surgery 

Outpatient 

Visit  

19,795,79

1 

2,298,756 
7,356,608 2,443,416 11,033,814 

Age 

and 

Sex 

Persons under 5 years 6.0% 12.5% 8.6% 1.8% 5.1% 

Persons under 18 years 21.3% 15.4% 20.2% 5.3% 13.3% 

Persons 65 years and over 15.0% 34.2% 13.9% 32.5% 24.5% 

Female persons 51.4% 56.2% 55.1% 55.9% 59.2% 

Race 

White alone 70.1% 57.4% 47.1% 65.8% 37.0% 

African American alone 17.6% 18.5% 25.5% 10.6% 23.8% 

American Indian and 

Alaska Native alone 
1.0% 0.3% 0.2% 0.4% 0.4% 

Asian alone 8.8% 3.8% 2.5% 3.0% 3.4% 

Native Hawaiian and 

Other Pacific Islander  
0.1% 0.0% 0.0% 0.0% 0.0% 

Two or More Races 2.4% 0.4% 0.3% 0.5% 0.1% 

Other Race or Unknown - 19.6% 24.4% 19.7% 35.3% 

* Estimates, July 1, 2015 

Disease Categories. While the SPARCS data contains a comprehensive list of diagnoses and treatment procedure code 

for each discharge record. This paper focused on analyzing the spatio-temporal trends on disease categories based on 

the principal diagnostic code. The ‘Principal/Primary Diagnosis’ is the condition established after study to have been 

chiefly responsible for occasioning the admission of the patient to the hospital for care.4 We used the Clinical 

Classifications Software (CCS) for grouping patient diagnoses into a manageable number of clinically meaningful 

categories. Figure 1 included the hospital discharge counts for the year 2014 for major disease groupings while the 

rest of this paper used more detailed disease categories from the single-level CCS.5 
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Figure 1. Occurrence Counts for Major Disease Groupings by Discharge Claim Type, New York State, 2014 

Patients’ Home Address and Hospital Admission Year. We approximate patients’ home location by combining the 5-

digit ZIP code number from the patients’ home address and geographic data from TIGER/LINE data.7 We then 

aggregated disease occurrences at ZIP code level and generated disease regional counts for the following spatio-

temporal analyses. To evaluate the temporal trends, this work used the hospital admission year for the time range 

2005-2014 for IP discharge and 2003-2014 for ED, AS, and OP discharge. 

Spatio-temporal Analysis 

We first used global spatial clustering analysis to determine whether a disease is dependent to patients’ home locations. 

As a starting point to access all disease mappings of New York State, we examined the top ten diseases of inpatient 

stays and emergency department visits according to the discharge counts. We then checked the spatial variation and 

local spatial clustering for exemplary diseases according to their degree of spatial dependence. At last, we analyzed 

detailed temporal and spatio-temporal trends for one exemplary disease (asthma inpatient stay). 

Hospital Discharge Rate. We used the hospital discharge rates to measure the probability of occurrence of a given 

disease in a population within a specified period of time. We calculated hospital discharge rates for inpatient stays, 

emergency department visits, ambulatory surgery, and outpatient visits respectively. The hospital discharge rate was 

calculated through dividing discharge counts by population counts from Census data7. In this paper, we evaluated both 

statewide rate and rates at ZIP code level. The discharge rates provide useful information about how common a disease 

is when compared to other diseases, or how common a disease in a specific location is as compared to the global 

baseline. 

Table 2. Spatial Autocorrelation of Top Ten Diseases by Discharge Count for Inpatient Stay and Emergency 

Department Visit, New York State, 2014 

Disease Name 

Total 

Discharge 

Count 

Hospital Discharge Rate  Moran's I  

Index Mean (St. Dev.) 

Inpatient 

Stay 

(IP) 

Liveborn 222,803 100 (165) 0.01 

Osteoarthritis 54,367 44 (93) 0.46* 

Congestive heart failure (non-hypertensive) 45,722 25 (34) 0.64* 

Mood disorders 43,209 122 (230) 0.54* 

Other complications of birth; puerperium 

affecting management of mother 
36,480 15 (30) 0.70* 

Cardiac dysrhythmias 35,297 22 (40) 0.61* 

Complication of device; implant or graft 33,305 20 (34) 0.62* 

Diabetes mellitus with complications 33,040 15 (31) 0.70* 

Asthma 32,505 10 (23) 0.78* 

Acute myocardial infarction 31,249 22 (36) 0.53* 

Emergency 

Department 

(ED) 

Abdominal pain 342,294 189 (210) 0.05* 

Nonspecific chest pain 300,623 197 (449) 0.02 

Asthma 158,175 52 (191) 0.04* 

Other non-traumatic joint disorders 137,937 58 (73) 0.25* 

Other complications of pregnancy 134,195 49 (247) 0.02* 

Other injuries and conditions due to external 

causes 
111,137 63 (114) 0.04* 

Other viral infections*** 109,746 35 (48) 0.38* 

Sprains and strains 109,429 81 (211) 0.02 

Superficial injury; contusion 102,582 79 (222) 0.03** 

Other gastrointestinal disorders 93,094 49 (140) 0.01 

* Significant at 1% confidence interval 

** Significant at 5% confidence interval 
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*** other viral infections include herpes zoster infection, herpes simplex infection, and other and unspecified viral infection. 

Global Spatial Clustering. In spatial statistics, spatial autocorrelation measures how much close objects are in 

comparison with other close objects. To test whether there is spatial autocorrelation, this work used Moran’s I (Table 

2). Moran’s I is a widely used global cluster test, which determines the degree of clustering or dispersion within a data 

set. The resulting values may range from 1 (perfect correlation), 0 (complete spatial randomness) to -1 (perfect 

dispersed).8 For the hospital discharge rates, a positive spatial autocorrelation means that the areas with high discharge 

rates are close to other areas with high discharge rates. 

Local Spatial Clustering. In addition to the global cluster test (with Moran’s I index in Table 2) and visual analysis 

for mapping hospital discharge rates (in Figure 2-4), we then took cluster and outlier analysis with local Moran’s I 

statistics8 to quantitatively detect local clusters for the asthma IP rates (Figure 5). The local Moran's I statistics is a 

local cluster test that, given a set of weighted features, identifies statistically significant hot spots, cold spots, and 

spatial outliers.  

Temporal Analysis and Spatio-temporal Animation. As a starting point for spatio-temporal analysis for SPARCS data, 

we used the admission dates to examine the temporal trends of the top ten IP diseases (excluding liveborn) for the 

year 2003-2014 in Figure 6-8. To observe patterns that emerge in the mapping of discharge rates as time passes, we 

made spatio-temporal animations to visualized how the spatial clusters varies over time for the year 2005-2014. 
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Figure 2. Liveborn Inpatient Discharge Rate per 10,000 Residents by ZIP Code, New York State, 2014 

Results 

Spatial Trends 

According to the Moran’s I indexes and the significant levels (Table 2), four types of disease discharge rates were 

spatially random, including IP liveborn, ED nonspecific chest pain, ED sprains and strains, and ED other 

gastrointestinal disorders (constipation, dysphagia, and other and unspecified gastrointestinal disorders). For the top 

ten IP diseases, asthma had the highest Moran’s I index that indicates the highest spatial clustering tendency. For the 

top ten ED diseases, other viral infections (herpes zoster infection, herpes simplex infection, and other and unspecified 

viral infection) showed the highest spatial clustering tendency. 

As shown in the choropleth map Figure 2-4, all ZIP code areas were classified into five classes according to their 

discharge rates. Class breaks were created with equal value ranges at intervals of one standard deviations using mean 

values and the standard deviations from the mean.   

 

Figure 3. Viral Infections Emergency Department Visit Rate per 10,000 Residents by ZIP Code, New York State, 

2014 
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Figure 2 visualized the spatial distribution of liveborn inpatient discharge rate by ZIP code, New York State (NYS), 

2014. The liveborn rates for the majority part of NYS were within one standard deviation from the mean. Only a very 

small number of ZIP code areas were hotspots (areas with liveborn rate higher than 1.5 std. dev. in orange and red 

color in the map). This implied that the occurrence of liveborn was independent from the patients’ home locations. 

While Figure 2 showed an example for spatially independent disease, we used viral infection ED visit rate (Figure 3) 

and asthma inpatient discharge rate (Figure 4) as two examples for spatially dependent diseases. Both the viral 

infection (Figure 3) and asthma (Figure 4) exhibited a tendency of spatial clustering. Compared to the spatial 

distribution of liveborn rate, the maps of viral infection and asthma contained more hotspots (areas with rates higher 

than 1.5 std. dev. in orange and red color in the map), which indicates that the cases of viral infection or asthma more 

likely occurred near each other. 

 

Figure 4. Asthma Inpatient Discharge Rate per 10,000 Residents by ZIP Code, New York State, 2014 

We can see that the mapping of viral infections ED rates has no extreme hotspots (areas with rate higher than 2.5 std. 

dev. in red color in the map), which indicates a more equal distribution of the rates. The asthma IP rates, on the other 

hand, have more extreme hotspots, which indicates a tendency of more uneven spatially distribution. From Table 2, 

we can also tell that the Moran’s I index values of ED visit rates are generally lower than those of IP discharge rates. 

It means that the ED visits rates generally have a lower degree of clustering tendency than IP discharge rates. 

For the rural-urban difference, we cannot find a rural-urban disparity for viral infections or asthma. Most parts of rural 

areas and urban areas (areas in the map with line fill symbol) have no hotspots. The few cases of hotspots and higher 
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rates (with values higher than 1.5 std. dev.) areas seem more likely appear at New York City. With manual checking, 

we found the two hotspots areas for asthma are an area near JFK airport and upper Manhattan. 

The cluster/outlier type field in Figure 5 distinguishes between a statistically significant cluster of high values (High-

High cluster), cluster of low values (Low-Low cluster), outlier in which a high value is surrounded by low values 

(High-Low outlier), and outlier in which a low value is surrounded by high values (Low-High outlier). Statistical 

significance is set at the 95 percent confidence level. We applied the False Discovery Rate (FDR) correction to reduce 

this p-value threshold from 0.05 to a value that better reflects the 95 percent confidence level given multiple testing. 

The FDR procedure will potentially reduce the critical p-value in order to account for multiple testing and spatial 

dependency.8 

 

 

Figure 5. Spatial Clusters and Outliers of Asthma Inpatient Discharge Rate by ZIP Code, New York State, 2014 

As shown in the mapping of spatial clustering for asthma IP rates, two areas located at near JFK airport and upper 

Manhattan were identified as the High-High cluster (in pink color in Figure 5), which represent statistically significant 

clusters of higher asthma IP rates. Such results confirmed the visual analysis for spatial distribution map in Figure 4 

and prior research about the potential health impact of residential proximity to large NYS airports9-10. Many High-
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Low outliers and Low-High outliers were also identified near the Albany city in northeastern New York State. Such 

finding, however, may require further research for the potential driving factors. 

Temporal Trends 

In Figure 6, most diseases have a down trend over the past decade (2005-2014). The osteoarthritis and congestive 

heart failure (non-hypertensive), however, have a rising trend which may require further research for the potential 

driving factors. We then took a close look at the temporal trends for asthma with different claim types (Figure 7). 

While inpatient stay, ambulatory surgery, and outpatient visits shared a similar down trends, the emergency 

department visit rates were rising over the past years. For inpatient discharge rates, we then broke down the asthma 

into its six subcategories (Figure 8) and found that the asthma subcategory (asthma other than chronical obstructive 

asthma with acute exacerbation) also had a rising trend. All these findings require further research for the potential 

driving factors. 

 

Figure 6. Temporal Trends of Top Ten Diseases by Discharge Count for Inpatient Stay, New York State, 2005-2014 

 

Figure 7. Temporal Trends of Asthma Discharge Rate for Four Discharge Claim Types, New York State, 2003-

2014 

Spatio-temporal Animation 

We made two exemplary animations of spatial clusters for the year 2005-2014 for New York State 

https://vimeo.com/183126416 and New York City and Long Island area https://vimeo.com/183126718 separately. At 

the statewide scale, the distribution of spatial clusters over New York State changed more dramatically than that over 
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New York City and long island areas. For the areas near JFK airport, the spatial clusters with high rates emerged in 

2006, disappeared during 2008-2012, and reappear after 2012. For the Low-High outliers and High-Low outliers 

appearing near the Albany city in northeastern New York State, we also observed a similar fluctuation trend over the 

years. To evaluate the potential factors that result in such fluctuation patterns, we will integrate SPARCS data with a 

comprehensive set of spatial impact factors in our future work, which ranges from levels of various environmental 

pollutants to demographical and socioeconomic status of persons at risk3, 20. 

 

Figure 8. Temporal Trends of Inpatient Discharge Rate for Asthma’s Six Subcategories, New York State, 2005-

2014 

Discussion and Future Work 

This study provided our preliminary results of the spatio-temporal analyses on the New York State SPARCS data, 

which provides the analysis framework and acts as a baseline for more refined studies of spatio-temporal trends on 

diseases and human health in our future work. We examined the spatial variations for the top ranking diseases by 

different claim types and performed case studies on the spatial clustering patterns of asthma that draw consistent 

results with previous work. 

While our long-term goal is to provide integrative spatial analytics at fine grained spatial resolution3, this paper 

focused on the spatio-temporal analysis on the disease discharge rates at ZIP code level. Our future work will break 

down patients based on demographics, such as gender, age or age ranges, race and ethnicity groups. For discharge 

rates based patterns of the diseases, we could elaborate on age or race based analysis. More fined-grained temporal 

information such as patient admission or discharge dates could also be used for discovery of refined temporal patterns 

in our future work. 

There has long been a demand for spatio-temporal data analysis at a fine geographic resolution for use in etiologic 

hypothesis generation, methodological evaluation and teaching. In our ongoing work, we are examining the 

comprehensive list of diagnoses and treatments, services, and charges for each hospital inpatient stay and outpatient 

visit. We will also take advantage of the street level location information and specific date information (admission 

date, procedure date, etc.) for each patient, healthcare provider and facility site. 

After geocoding and approximating addresses into census block group identifiers, our framework for integrative 

spatial data analytics will provide spatial queries based on coordinates or boundaries, and enable integrating and 

correlating the health records with spatial exposure data at multiple resolutions. We will provide multi-dimensional 

analysis by grouping patients according to their demographic or socio-economic attributes. We will also study 

potential spatial clusters of disease distributions and correlations between disease risk and spatial impact factors. For 

example, we are interested in exploring potential hotspots of Hepatitis C or potential environment and weather factors 

that may have correlations with asthma. 

Conclusion 

Vast amounts of spatio-temporal big data are being increasingly generated and made available in the public health 

domain. Spatio-temporal analyses could provide new insights and create new forms of value to support community 

or neighborhood level public health studies. In this paper, we present our preliminary results of spatio-temporal 
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analysis for New York State SPARCS data. We focus on representative case studies for the top ranking diseases by 

discharge count. Our results provide much refined results on spatio-temporal trends of diseases, and demonstrate 

consistent spatial clustering patterns. The analysis framework we developed is generic and provides a foundation for 

advanced SPARCS data analysis at the community and neighborhood level in the future. 
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