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Abstract: Herein, we have discussed three major methods which have been generally employed for
the generation of optical beams with orbital angular momentum (OAM). These methods include
the practice of diffractive optics elements (DOEs), metasurfaces (MSs), and photonic integrated
circuits (PICs) for the production of in-plane and out-of-plane OAM. This topic has been significantly
evolved as a result; these three methods have been further implemented efficiently by different novel
approaches which are discussed as well. Furthermore, development in the OAM detection techniques
has also been presented. We have tried our best to bring novel and up-to-date information to the
readers on this interesting and widely investigated topic.

Keywords: orbital angular momentum; optical waveguide; diffractive optic elements; spatial light
modulator; metasurfaces; computer-generated holograms

1. Introduction

Optical beams transporting orbital angular momentum (hereafter expressed as OAM),
also known as optical vortices (OVs), have piqued researchers’ interest in recent years
due to their unique properties [1]. A helical wavefront and a phase proportional to
exp(ilφ) describe such beams, where l is an integer known as the topological charge,
which could take any value. Optical OAM modes form an orthogonal basis that can be
utilized to fundamentally enhance the capability of fiber optic [2], free-space, and quantum
communications [3]. Also, the phase of optical vortices is utilized in the analysis of the laser
field’s polarizing properties. For example, a single fork-shaped phase grating matched
with first-order vortices for detecting radially and azimuthally polarized laser beams [4],
and more complex multi-order optical elements matched with vortices of different orders,
make it possible to uniquely determine various combinations of the cylindrical polarization
state and the vortex phase of the laser beam [5–7]. Optical tweezers and spanners [8–12],
non-diverging speckles [13], imagining and microscopy [14–17], novel sensing technologies
for detecting molecules and nanostructures [18–22], and object motion detection [23,24]
are only a few of the applications for optical vortices that have been proposed so far. As a
result, there is a growing demand for efficient beam generation methods.

Since Allen and coworkers’ seminal paper [25], light beams carrying OAM have
spawned a burgeoning area of study, resulting in a plethora of studies and applications [26],
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including particle trapping [27], tweezing and manipulation [28], astronomical coronag-
raphy [29], mode-division multiplexing [30], and security [31]. Discrete optical elements
perform most methods of generating optical vortices, which are traditionally divided
into two groups: spatial and fiber generating methods [32]. Diffractive optical compo-
nents [33,34], cylindrical lens mode converters [35], spiral phase plates (SPPs) [36,37],
circular and spiral gratings [38], spatial light modulators [39], metamaterials [40], and
q-plates [41] are among the devices in the first category. On the millimeter scale, the second
category of fiber-based systems, such as fiber gratings [42], chirally coupled core fibers [43],
and photonic lanterns [44], seem to provide more promising solutions in terms of system
size. In addition, the solutions based on photonic integrated circuits (PICs), due to their
energy efficiency, small footprint, and performance reliability, become a sensible option
for implementing the OAM-based applications. Furthermore, PIC’s fabrication processes
ensure repeatability in the large-scale production of the developed devices. The PIC-based
OAM modes generator satisfies the modern trend toward optical integration in terms
of practical miniaturization and multiplexing optical signals for transmission in a single
propagation medium.

The generation of in-plane or out-of-plane light with OAM is an interesting topic that
has been studied by researchers all over the world. The popularity of this topic can be
witnessed in Figure 1 where the number of published papers index in the Scopus database
is presented from the years 2000–2021. It shows a linear trend in the publication of papers
as the topic is developing with time and several new techniques have been proposed for
the efficient generation of light with OAM.

Figure 1. The number of papers related to the “Orbital angular momentum” topic searched in the
Scopus database for the years 2000–2021.

In this paper, the most significant and recent advances in the generation of light
with OAM are discussed. We have focused on three different methods that are popular
among the scientific community and widely researched in recent times. In Section 2, OAM
generation via diffractive optics is discussed. It involves three significant methods, i.e., spi-
ral phase plate (hereafter expressed as SPP), computer-generated holograms (hereafter
expressed as CGHs), and diffractive optical elements (DOEs) that are considered in detail.
Section 3 is devoted to metasurfaces (hereafter expressed as MSs). In recent times, the
adaptable MSs, 2D arrays of subwavelength structures with space-variant phase responses,
deliver robust and accessible methods for the generation of OAM. Section 4 discusses
recent developments in OAM generation in photonic integrated circuits (PICs). These
OAM generators can be separated into two categories; one is that OAM beams are created
out-of-plane and transmitted in free space, while the other is that OAM beams are pro-
duced in-plane and propagated in waveguides (hereafter represented as WG). The latter
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has attracted a lot of interest in fully utilizing the distinctive characteristic of OAM beams
in guided optics. Nevertheless, to ensure uniform spatial distributions of multi-coupled
WGs, the majority of the integrated OAM generators need extremely critical dimension
control technology. In the end, a brief overview of the OAM detection methods is discussed
in Section 5 followed by the conclusion in Section 6.

Allowing a light beam to transmit through a medium with spiral inhomogeneity
in the longitudinal path to produce an integer phase stage along the azimuthal angle is
the most explicit method to establish a helical wavefront. The spiral phase plate (SPP),
which was first used in 1994, is a straightforward route to assemble a plate with a helical
surface [36]. Usually, the helical surface is discretized into various steps as diffractive
elements to make the fabrication process simpler. The working wavelength can be slightly
tuned by matching the refractive index. Another approach for creating optical vortices
is to utilize a computer-generated hologram (CGH) [45,46]. A spiral interfering fringe
is produced when an OV beam bearing a spiral wavefront collinearly interferes with a
Gaussian beam, with the number and rotating direction of the spiralling arms signifying
the number and sign of the topological charge, respectively. As it hits with an off-axis
plane wave, it produces a forked grating with a visible defect on the fringes where a phase
singularity occurs. These distinctive interference patterns were also commonly used to
describe an OV beam’s topological charge. The spiral fringe or the forked grating may
be used to create a hologram plate established on the interference property. Commercial
spatial light modulators (SLMs) established on pixelate liquid crystals can be programmed
to produce holograms through a consumer terminal, and are widely used in this way [47].

Recent advancements in flexible MSs have also accelerated the development of efficient
and convenient OAM generation routes [48–53]. MS is based on frequency selective
surfaces (FSSs) [54]. They are made up of different shaped and oriented subwavelength
scatterers [55]. As a result of the high feasibility of tailoring the geometry and orientation
of the ultracompact scatterers, they go beyond traditional FSSs. The sudden phase shift at
the scatterers causes MSs to change the wave properties locally. Scatterers can cover an
entire 2π phase shift by adjusting the geometry or alignment, allowing for arbitrary beam
formation [56]. In the meantime, scatterers can be built to adjust the wave front. They
may also have a magnetic response in addition to the electric response. Nonperiodic MSs
that respond to both electric and magnetic fields have been introduced. These surfaces are
referred to as metamaterial Huygens’ surfaces, since their design is based on a rigorous
interpretation of Huygens’ principle [57]. The magnetic response aids in compensating
for the impedance mismatch at the MS interface, allowing for perfect performance. The
design principles for OAM generation lead to one familiar rule: the implementation of
the azimuthal phase term eilφto EM waves, even though there are numerous models
in various categories and appropriate for different application circumstances. They are
divided into two groups: those that are independent of wave polarization and those that
are dependent on it.

Figure 2 demonstrates four different methods used for the creation of light with
OAM which are widely used among the researchers [58–61]. Another device, comprising
a mutable amplitude splitter (VAS) and an OAM emitter, has recently been suggested,
in which the comparative amplitude of the two OAM states with inverse chirality can
be tuned [62]. Furthermore, many methods such as WG-array centered radial grating
coupling system [63], hybrid 3D PIC device [64], organic semiconductor µ-disk laser,
and micro-scale SPP integrated VSCEL [65] have demonstrated readily OAM generation
and (de-)multiplexing (multiple OAM states superposition) functions, which differ from
this azimuthal grating coupling system. These devices demonstrated the possibility of
developing advanced OAM functions on scalable and dense PICs using on-chip dynamical
control of OAM states [66].
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Figure 2. Methods to generate light with OAM: (a) Shift in the OAM order by illuminating a
3D element with the laser light of different wavelengths [58]; (b) OAM generator via CGH [59];
(c) Schematic of the OV beam generator from MS [60]; and (d) The schematic illustration of the OV
beam generator on the embedded multi-WG [61].

2. OAM Emitters Based on Diffractive Optic Elements

Fiber optics are now employed in the backbone part of modern data communications.
However, for specific applications, fiber is not practical due to the immobility of the sending
and receiving ports connected to the fiber laid down. Free space optical networking, also
identified as wireless optical communication, reduces the system’s spatial dependency.
Furthermore, applying OAM to a beam of light mitigates some of the shortcomings that
would otherwise be present. A significant limiting factor on signal path length is the rate
at which light signals spread through the air. An image has been effectively sent 3 km
through the air utilizing OAM, despite considerable turbulence along the path length [67].

Since laser beams with OAM are of special interest for data channel multiplex-
ing [2,68,69]. Many studies are devoted to the propagation of OV beams as in free
space [70–73] and in optical fibers [74–76]. To implement multichannel information transfer
using OAM, a certain superposition of OVs with a given energy and phase distribution
in the transmitter must be excited on the transmitting side, so each mode transmits an
independent information signal. This can be done using elements of diffractive optics. The
design doctrines for OAM production leads to one general rule: the implementation of
the azimuthal phase term eilφ to EM waves, even though there are numerous models in
different types and appropriate for distinct application circumstances. The first scheme
makes use of isotropic materials like SPPs [77] and CGHs [78]. An SPP is the simplest
device for manipulating OAM modes at millimeter frequencies. An SPP is a dielectric
slab of material with an azimuthally reliant on thickness that causes incident radiation to
undergo an azimuthal phase change [79,80]. The SPP’s total step height, h, is selected so
that the total phase change around the SPP’s center is an integer multiple of 2πl, where l is
an integer. The azimuthal mode number l of the incident radiation is modified because of
this, such that: ∆l = h∆n

λ , where ∆n is the refractive index difference between the dielectric
material and the surrounding medium, and λ is the incident wavelength.

In addition to SPPs, various DOEs (see Figure 3) are actively used to generate OVs,
such as spiral axicons [81–83], generating Bessel beams of high orders, and spiral zone
plates [84–86] which are a combination of a focusing lens and an SPP. Recently, unconven-
tional focusing elements have been used to provide abruptly autofocusing [87–89]. The
listed elements form OV beams on the optical axis. To generate OV beams at an angle to
the optical axis or in different diffraction orders, fork gratings are used [90–93], as well as
curved fork gratings [94–96]. Regular fork gratings correspond to plane wave multiplexing,
while curved fork gratings provide conical wave multiplexing. More complex elements are
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also known, for example, for multiplexing Airy beams [97], hypergeometric beams [98],
and Laguerre-Gauss modes [99–101].

Figure 3. Elements of singular optics: (a) SPP. Reprinted with permission from ref. [36]. Copyright
1994, Elsevier; (b) spiral axicon; (c) spiral zone plate; (d) OV autofocusing optical element; (e) fork
grating; (f) curved fork grating; and (g) grating for OV hyper-geometric laser beams generation.

DOEs are relatively simple optical elements, as shown in Figure 3. To generate a co-
axial linear arrangement of a finite number of OV modes with given weights (or information
codes) more complex optical elements are used [102–105], which are calculated using
various coding methods [106–109]. Note, the classical diffraction SPPs are manufactured
for a specific laser wavelength. However, refractive (with high relief) SPPs have been
successfully used for different wavelengths [110,111] allowing the OVs generation of
various orders, including fractional orders [58]. The advantages of SPPs made from solid
materials are high damage threshold and efficiency.

The same qualities are inherent in devices based on solid anisotropic crystals, which are
often used not only to generate OV beams but also cylindrically polarized beams [112–116].
For example, Figure 4 shows an optical system for the generation of OV Laguerre-Gaussian
beams with radial or azimuthal polarization by a combination of DOEs and anisotropic
crystals [115]. Spatial light modulators (SLMs) are very convenient and versatile devices
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for the formation of vector OV beams [117–121]. However, it is known that SLMs are
characterized by low efficiency, resolution, and when used with high-power lasers they
require additional cooling systems [122]. Thus, the application of DOEs remains relevant.

Figure 4. Optical system for generation of vector OV beams by a combination of DOEs and anisotropic crystals: a He-Ne
laser emitting linearly polarized light which was expanded using an objective (L1), a quarter-wave plate (QWP) was utilized
to alter the linearly polarized beam into the circularly polarized beam, the diffractive optical element (DOE) generates OV
Laguerre-Gaussian modes which are focusing by a lens (L2) into a c-cut CaCO3 crystal, cylindrically polarized beams (with
radial or azimuthal polarization) are imaging by a lens (L3) at CCD array and analyzed by a polarizer (P). Reprinted with
permission from ref. [115]. Copyright 2017, Elsevier.

3. MSs for Generation of Vector OV Beams

Alternatively, an antenna or antenna array’s excitation may be explicitly modified to
fulfill the necessary phase requirement, allowing an OAM wave to be emitted out [123].
The abrupt phase change at scatterers on an MS can also be used to create eilφ. The
resonant frequency of the scatterer is modified by changing its geometry, causing the phase
shift to differ at the desired frequency. After optimization, a total of 2π phase shift is
achieved, and the effective generation of various OAM states has been demonstrated [124].
Tunable scatterers stocked by varactor diodes have recently been suggested as a convenient
way to generate multiple OAM modes [125]. Scatterers can also be rendered anisotropic
to regulate various polarizations independently. Even if the scatterer’s responses are
polarization-dependent, the helicity of the emitted OAM is independent of the incident
wave’s polarization state. In other words, the helicity is fixed.

To generate dual-mode convergent OAM beams, a high-efficiency dual-polarized
transmissive MS is presented in [126]. To achieve the phase modulation for the orthogonal
polarizations, the recommended transmissive MS consists of dual-polarized MS units made
up of four packed stripes coupled through a Jerusalem-cross aperture on the interlayer
ground. The MS units are capable of absolute 2π phase modulation with low transmission
loss. The suggested transmissive MS for both orthogonal polarizations, which has been
proven numerically and experimentally, stimulates converged OAM beams with mode
numbers `x = +1 and `y = −2. The MS prototype with 30 × 30 units was fabricated and
tested to authenticate the efficacy of the engineered MS for generating dual-polarized dual-
mode converged OAM beams. The measurements are carried out in the near-field anechoic
chamber using a 3D platform and an open-ended WG probe, as shown in Figure 5a [126].
Figure 5b,c depicts the measured full hemisphere far-field radiation patterns in magnitude
and phase for the two orthogonal polarized OAM modes, with the excessive intensity
annular tapered patterns, as well as the typical spiral phase fronts and on-axis phase
singularities, obviously visible [126].
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Figure 5. (a) The fabricated MS and its experimental setup with a WG probe in the near field chamber [126]. Radiation
forms of the MS: (b) x-polarization, OAM mode lx = +1 [126]; and (c) y-polarization, OAM mode ly = −2 [126].

The transformation and coupling of SAM and OAM are the basis for the second
scheme [127,128]. This occurs in media that are nonuniform and anisotropic, such as
q-plates [129]. Q-plates have a spatially shifting optical axis and change the circular
polarization state from left to right or right to left. AM conservation law may be used to
justify their behavior. SAM changes by a factor of ±2h̄ when the circular polarization state
is flipped. The cumulative AM is conserved when the q-plate is cylindrically symmetrical
so that the output wave must have an OAM of ∓2h̄. When the q-plate is not cylindrically
symmetrical, it introduces extra AM into the device, allowing for the generation of different
orders of OAM in the output wave. Because of their versatility and anisotropic properties,
liquid crystals are commonly used to make q-plates. The birefringent retardation in liquid
crystals varies with temperature on external voltage, allowing the conversion efficiency
to be tweaked [130]. When the retardation is π, optimum productivity is achieved. The
function of q-plates has been implemented using MSs [78,131,132]. The rotation of the
optical axis of a q-plate, along with the insertion of a geometric step, is analogous to the
flipping of the circular polarization state accomplished by anisotropic scatterers and the
rotation of the scatterers. Geometric phase MSs is the name given to this type of MS [133].
Geometric-phase MSs, unlike MSs that use the first scheme, generate OAM in conjunction
with a transition in the polarization state of the output wave, which is radically different
from the first scheme. The incident SAM determines the handedness of the generated OAM.

Of course, MSs are very promising devices for generating vector OV beams, since they
are compact optical elements and can simultaneously perform several operations: to not
only generate OV phase and perform polarization conversion, but also focus or multiplex-
ing beams. There are metal MSs (subwavelength structures etched on metal films) [134,135]
and dielectric MSs [136,137]. Metal subwavelength gratings operate as a rule in a reflecting
mode and are less chemically resilient to an assertive medium. The main disadvantage
of subwavelength dielectric gratings is the nonuniformity of amplitude transmission for
different polarizations. This drawback can be prevented by merging several functions:
polarization transformation by subwavelength gratings and focusing, for orthogonal ridges
in adjacent Fresnel zones [138,139].

Large numbers of OAM modes are normally controlled with a diffractive hologram
projected on an SLM in optical systems, however, due to the comparatively long wave-
lengths, comparable systems do not occur for millimeter and radio frequencies. The results
of measurements performed on a modular SPP design capable of producing millimeter-
wavelength beams with an azimuthal mode number of l ± 10 is offered [140]. The plate is
made up of 10 single modules that interlock to form the entire plate assembly, allowing
for better machining precision than traditional methods. As a result, this design may be
utilized in millimeter-wavelength systems that involve massive OAM mode manipulation.
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The plate was made of polypropylene and tested at a frequency of 100 GHz. Three near
field surfaces behind the plate were measured using a 3D field scanner. The OAM intensity
ring was visible in intensity measurements, and phase measurements revealed 10 phase
dislocations, indicating appropriate functionality [140].

In [141], an all-fiber high-efficiency OV beam generator is demonstrated experimen-
tally. The generator is created by combining a kinoform spiral zone plate (KSZP) on top
of the composite fiber structure, as illustrated in Figure 6a, using fs-laser two-photon
polymerization 3D nanoimprinting. By overlaying a spiral phase onto a kinoform lens,
the KSZP with spiral continuous-surface relief function is created, allowing an all-incident
beam to be efficiently concentrated and transformed into a single-focus OV beam without
the unwanted zero-order diffracted light and extra high-order focus. The SEM image of the
nanoimprinted KSZP microstructure with topological charge l = −1 is shown in Figure 6b.
Experiments show that the all-fiber generators’ focusing efficiency and OV purity are over
60% and 86%, respectively, under arbitrary polarized light incident conditions, which is
significantly greater than a typical binary SZP integrated on an optical fiber facet [141]. The
simulated and experimental focal spot profiles along with the coaxial interference patterns
are shown in Figure 6c. The suggested all-fiber photonic devices have encouraging capacity
in optical communication, particle manipulation, and quantum computing applications
because of their compact size, versatile nature, polarization insensitivity, superior focusing
power, and high OV purity.

Figure 6. (a) Graphical design of all-fiber focused OV beam generator [141], (b) SEM image of
the nanoimprinted KSZP microstructure with topological charge l = −1 [141], and (c) focal spot
profiles acquired from FDTD simulation (top row), experimental measurement (middle row), and the
measured coaxial interference forms (bottom row) [141].

4. OAM Beams Generation with Photonic Integrated Circuits

There are two types of PIC solutions for generation and (de)multiplexing of OAM-
beams currently available: out-of-plane and in-plane solutions. The out-of-plane approach
implies the principles of scattered field generation with a help of single passive PIC
elements or integrated with a light source. Most methods for out-of-plane generation
and (de)multiplexing demonstrate good potential for scalability. For example, a CMOS-
compatible PIC for generating or receiving azimuthally or radially polarized beams is
revealed in [63,142], which is based on the SOI platform. The PIC uses annular gratings
and a star coupler and can focus the beam on its own, so no external lenses are needed. It
was validated, that the device is mode-number scalable, which is obtained by increasing
the number of WG arms. The proposed principle was also experimentally demonstrated
in [143], in which data transmission using the proposed PIC was performed for two
multiplexed OAM states. The annual grating is also used in [144], where the authors show
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a structure for producing and encoding OAM modes that includes a ring cavity, a bus WG,
and eight download units that are evenly connected to the ring and spread evenly around
the circle. The electrically controlled thermo-optic effect in [145] demonstrated the dynamic
switching of nine OAM modes with azimuthal polarization by using a spatially isolated
µ-ring cavity and scattering unit that could be tuned individually. Figure 7a shows an
applied cobweb-like unit consisting of a bus WG and a µ-ring hollow with 16 downloading
WGs and 16 gratings. The micrograph of the fabricated emitter with the resolution of
200 µm is presented in Figure 7b, and the scanning electron micrograph with the resolution
of 5 µm in Figure 7c. As it could be seen, the total diameter of the ring is 400 µm.

Figure 7. The integrated photonic emitter: (a) The graphical illustration [145]; (b) the micro-
graph [145]; and (c) the SEM image of the manufactured device [145].

Another widespread solution is to obtain light enclosed in whispering gallery modes
(WGMs) with high OAM into free-space beams with the well-controlled extent of OAM
using Si-integrated optical OV emitters and angular gratings. The angular grating’s work-
ing theory is like that of second-order gratings, which are generally used as input/output
couplers in straight WGs, in which the directed wave is dispersed by the grating elements
collectively and a substantial fraction of power is redirected in a specific direction, resulting
in constructive interference [146]. WGMs with high OAM can be assisted by circular optical
resonators such as µ-rings or µ-disks. The example of silicon nitride µ-disk OAM-resonator
was demonstrated in [147], where it was combined with an aluminium nanorod antenna
array shaped in periodic rings for generation of a polarization-pure single OAM beam. The
proposed unit cell engineering could provide many more possibilities for vector OV beams
implementation; however, this approach is not without the disadvantage of simultaneous
generating high-order parasitic modes. In [148] a µ-ring is represented by an angular
grating structure with a periodic modulation of refractive index in the azimuthal direction
which is embedded into the WGM resonator. The wavefront of the radiated light from the
µ-ring skew in the azimuthal direction turns into a helix if the WG with grating is bent to
form a loop. Theoretical predictions that the emitted beams hold precisely specified and
customized OAM were also confirmed by experimental characterization.

The OAM beam emitter constructed on a shallow-ridge silicon µ-ring is proposed
in [149] where the azimuthally distributed gratings generate an OAM beam, and each
grating element is a hole etched on top of the WG to scatter radially polarized light. The
key parameters, i.e., the number of grating elements and the radiation efficiency of a
single element, are optimized to enhance the OAM order purity for l up to ±4. A variable
amplitude splitter and an OAM emitter based on a µ-ring cavity are presented in [62].
Another research [150] employs a silicon-on-insulator µ-ring with three superimposed
gratings, each designed to emit a different OAM order, as a device enabling 3 × 3 optical
switching. This approach utilizing the ring resonators with gratings provides good mode
purity for OAM-multiplexing, however, the OAM-beams are generated already out of the
chip plane in free space and cannot be used or processed at the chip any more.
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Finally, a generation of optical beams carrying superposition of OAM states by utiliz-
ing superimposed angular gratings embedded into WGM µ-ring resonators is described
in [151]. Two sets of angular gratings with distinct period-Λ1 (Figure 8(a1)) and Λ2
(Figure 8(a2)) have been superimposed into a ring resonator in the device, resulting in
a superimposed grating envelope with numerous beat perturbations, as illustrated in
Figure 8(a3). Figure 8b–d shows far-field images of the two-beat grating device recorded at
various resonant wavelengths according to the transmission/radiation spectrum, resulting
in various topological charge combinations. The near-field pattern (Figure 8e) and the well-
defined spiral interference fringes (Figure 8d) show two crescent-shaped lobes positioned
in a circular pattern, showing that the radiated beams are truly emitted from the modulated
gratings. Because it does not require any extra couplers or MZIs, the suggested device is
quite small. Furthermore, by simply adding more gratings, it may construct superposition
states in more than two dimensions. Because all modes are emitted from the same source
mode via the same superimposed grating, the used methodology is simple and maintains
a fairly constant phase between the OAM states.

Figure 8. (a1,a2) Schematic of two single grating (with period of Λ1 and Λ2, respectively) super-
imposed into multiple-beat modulated device [151]. An unfolded view of resulting the three beats
device (a3) [151]. The far-field patterns of the two-beat grating device: (b) 1508.1 nm, topological
charges combination +1 and −1; (c) 1518.9 nm, topological charges combination 0 and −2; and
(d) 1530 nm, topological charges combination −3 and −1 [151]. The near-field pattern is showing
in (e), and the well-defined spiral interference fringe existed at appropriate locations is showing
in (f) [151].

Integrated WGs could be also applied in the out-of-plane approach. In [148] optical
OV beam with a well-defined and continuously tunable OAM state is generated using
the silicon bus WG that forms an open circle. A multi-WG surface holographic gratings
composed of four WGs perpendicular to each other with holographic gratings etched on
their surfaces is proposed in [61] for high-order OAM generation up to l = +8. In [152,153],
the free space OV beam and the in-plane guiding wave can be transferred to each other by
placing a holographic grating on top of a dielectric WG. The geometry parameters of this
µ-scale holographic grating are extremely stable. Furthermore, multiple generators made
up of two holographic gratings on two parallel WGs are investigated, which can modulate
the OV beam in an efficient and versatile manner by regulating the phase of the input light.
Figure 9a shows a schematic of the proposed OV beam generator, in which incident light
from one WG port (in-plane) is transformed to free space (vertical) OV beam by the WG
surface holographic grating (WGSHG).
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Figure 9. (a) The graphical image of the OV beam generator, (b) (b1–b4), the basis of the holographic
grating on WG. The acquired OV beams by the holographic gratings with different sizes. The intensity
and phase distributions are shown in the upper row and down row of the figures, (c–f) consistent to
the holographic gratings with a constant width d = 1.5 µm but different lengths b = 1, 1.4, 1.8, 2.2 µm,
and (h–k) corresponding to the holographic gratings with a constant-length b = 1.8 µm but dissimilar
widths d = 1, 1.4, 1.8, and 2.2 µm, respectively, (g,l) are the fidelities of the attained OV beams as
the functions of length b and width d, correspondingly. Reprinted with permission from ref. [152].
Copyright 2016, Elsevier.

The essential idea of holographic grating is shown in Figure 9(b1–b4). Figure 9c–f
shows the simulation findings of the acquired beam for holographic gratings with a con-
stant width d = 1.5 µm and different lengths b = 1 µm, 1.4 µm, 1.8 µm, and 2.2 µm. Figure 9g
shows the OV beam fidelities as a function of length b, where the fidelities are larger than
0.7 for b in the range [1,2.4] µm. Fidelity is calculated by using the following formula:

F =

∣∣∫ A∗o (x, y, z)At(x, y, z)dxdydz
∣∣2∫

|Ao(x, y, z)|2dxdydz
∫
|At(x, y, z)|2dxdydz

,

where Ao(x,y,z) and At(x,y,z) are the amplitudes of the obtained and target vortex beams,
respectively [152]. Fidelity surges with b until it hits a peak, after which it drops with b.
The greatest fidelity is 0.93 for b = 1.8 µm, which is the length of the holographic grating in
the accompanying figure. The OV beam is formed based on the grating width d and the
fixed length b = 1.8 µm, as shown in Figure 9h–l. The field distribution for d = 1 µm, 1.4 µm,
1.8 µm, and 2.2 µm indicate that d has a moderate effect on phase but a considerable effect
on amplitude. The fidelity represented in Figure 9l has an optimal F = 0.93 for d = 1.6 µm.

The main disadvantage of the WGMs OAM emitters is that their inherent narrow band-
widths prevent them from being compatible with WDM/FDM techniques. To overcome the
µ-ring’s bandwidth restriction, freeform MS was demonstrated in [154], utilizing a novel
joint path-resonance phase control concept. The proposed SOI emitter is based on series of
subwavelength cavities with low Q resonance, providing phase control and short response
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time for an ultra-broadband operation. [154] proposes an OV beam generation method
based on elliptical nanoholes array designed on the MS with spiral phase distributions.

OAM beams can also be generated directly by adding an integrative OV generator
module to the light source’s output port or directly generating a OV beam within the light
source cavities [155]. In this manner, integrated micro SPPs and two-dimensional fiber-
gratings placed at the output port of a single-mode 860 nm vertical-cavity surface-emitting
laser (VCSEL) were utilized in [65] and [156], respectively. This approach has shown
robustness and high purity of the generated OAM states, allowing OAM multiplexed data
transmission [157,158]. Fabrication of a broadly wavelength tunable MEMS-based Fabry-
Perot filter with the sized SPP placed on the filter aperture has been proposed in the papers
with our contribution [159,160]. This device divides wavelengths in a controllable manner
while also giving a fixed OAM determined by the topological charge of SPP in the output
beam. Figure 10a,b shows the construction and top view of a constructed OV emitter that
included an anti-reflection coating, a Si substrate, a fixed bottom distributed Bragg reflector
(DBR), a changeable air gap, a moveable MEMS DBR, and an SPP. Figure 10c shows a SEM
image of the first-order SPP that will be inserted into the circular aperture in the Cr/Au
layer of the MEMS DBR.

Figure 10. (a) Scheme of an OV MEMS Fabry-Perot filter: AR-coating = anti-reflection coating, and DBR = distributed Bragg
reflector [160]. (b) Top view of a MEMS tunable Fabry-Perot filter with an integrated SPP [160]. (c) SEM image of a SPP of
order lSPP = 1 on a plane Si substrate [160].

Notwithstanding that most of the proposed methods are experimentally verified, telecom
applications are demonstrated only for ring resonators with annular grating [61,148,150], fixed
SPPs [65,159,160], and lately for a pixel-array structure [154]. The output OAM beam from
most out-of-plane generation methods is satisfactory in terms of mode purity; nevertheless,
free-space propagation necessitates the use of a lens to concentrate the signal and couple it
into the optical fiber, which reduces the final device’s reliability and scale. The minimal
potential for multiplexing of OVs with different topological charges is another drawback
of this method.

For more complex operations using vortices on a photonic integrated circuit, it is
necessary to generate or inject a beam into the chip’s plane, and on-chip WGs must support
its propagation. To implement such an operating principle, not only functional methods are
important, but also the features of the chosen PIC platform. The most common integrated
photonics platforms which are used for in-plane OAM applications are based on Silicon-
on-Insulator (SOI) [161–164] and Silicon Nitride (SiNx) [165–167]. Because of the low cost,
the high material strength of Si and CMOS compatibility, PICs based on the Si platform are
particularly well suited as a medium for integrating with other components. Moreover,
in [153,168] a scheme is proposed that uses a hybrid plasmonic WG to produce light beams
with selective angular momentum (AM) over a wide wavelength range. AM beams can
either propagate through optical WGs or emit into free space. Since it is based on an SOI
platform and uses standard CMOS technology, this approach has high fabrication feasibility.
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Regarding the propagation, it is experimentally demonstrated in [169,170] that OAM
mode transmit over a rectangular polymer WG. Experimental data show that the imperfect
shape of the intensity profiles and phase fronts of OV beams is caused not by the distortion
of the OV modes propagating along the WG, but by the imperfection of the WG end facet,
which affects the measured interferograms. This work provides the prototype illustration
that OAM modes can propagate through rectangular on-chip WGs, proficient of traditional
lithographic microfabrication.

In our recent work [166] we conducted a computational and theoretical investigation
into the prospect of OV modes transmission over dielectric rectangular WGs, as well as
the issue of WG structure enhancement for the sustenance of OV modes. The findings
show that rectangular WGs can theoretically transmit quasi-TE and quasi-TM modes with
high OAM purity states in the dominant field component. The constituent eigenmodes
of higher azimuthal orders can only propagate in a phase-matched regime for the quasi-
generate mode of azimuthal order ±1, and the OV modes of higher azimuthal orders can
only transmit with a particular beat length. Furthermore, the normalized power of the
subsequent OAM state in the modal superposition declines as the target azimuthal order
increases. Numerical EM simulations of silicon nitride WGs provided field mappings and
OAM spectra of the related modal superpositions, confirming the analytical predictions.
The normalized intensity distribution, normalized amplitude distribution, and phase
mapping of the leading E-field component are shown in Figure 11a–f [166].

Figure 11. The normalized transversal field component intensity distribution superimposed with
polarization map (a,d) [166], Normalized absolute amplitude mapping of dominant E-field com-
ponent (b,e) and phase distribution of dominant E-field component (c,f) of the quasi-TE (a–c) and
quasi-TM (d–f) quasi-degenerate modes of order l = 1 in the symmetric (silica clad) silicon nitride
WGs enhanced for phase-matched propagation of the constituent eigenmodes (β01 ≈ β10) [166].

In [163] SAM and OAM of light in silicon channel WGs was studied, where OV
beam carrying OAM represented by a superposition of the TE01 and TE10 modes. Due
to the transverse confinement, the SAM and OAM of the OV fields are strongly coupled
and the whole space of structure variables of the WG can be separated just into three
regimes. These results shed light on the correlation between angular momentum and
mode confinement, which is useful for applying OVs in PICs. In the case of higher-order
OAM modes propagation, the cross-shaped core WG structure was designed in [161].
Two degenerate driven modes of π/2 l-rotation symmetry can assist the l-th order OAM
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mode. The designed cross-shaped WG supports OAM modes of ±1 and ±2 topological
charges concurrently at a wavelength of 1550 nm with high mode purity. The Hermite
Gaussian (HG)-similar guided modes are shown in Figure 12a–d. To fulfil the degeneracy
of HG01–HG10 and LGe

02–LGo
02, which form OAM modes of±1 and±2 topological charges,

respectively, the geometric variables denoted as W1, L1, W2 and L2 have been optimized
(see Figure 12e). The impact of every parameter on neff of the modes is shown in Figure 12f.
Additionally, such WG structures were designed for l =±3 and l =±4 OAM modes guiding
individually, but the purity turned out to be lower and it is challenging to design the WG
concurrently supporting the l = ±3 and l = ±4 OAM modes. Probably, a more complex
transverse composition is required to further increase the topological charge. Anyway,
in-plane operation using higher-order OAM modes is a competitive field.

Figure 12. HG-similar mode field allocations in the WG (a–d) [163], WG configuration for concur-
rently managing l = ±1 OAM mode and l = ±2 OAM mode (e) [163], mode neff reliance on WG
parameters (f) [163].

Furthermore, the same group discovered that an OAM mode directional coupler with
fabricable dimensions might be difficult to achieve with a rectangular WG and presented
an on-chip device based on the cross-shaped WG structure [164]. The structure is effective
in balancing the horizontal direction coupling strength of OAMl=1 mode’s two constitutive
eigenmodes. The desired device has a coupling length of 670 µm and exhibits little OAM
mode purity loss during the optical power transfer procedure. But again, the design of
such a device for the higher-order OAM modes coupling is tricky and still competitive.
Figure 13 shows the dependences of the coupling coefficient on the length in the case of the
usual directional coupler and on the cutout size t in the case of cross shape WG coupler. As
can be seen, the coupling coefficient of the TE10 mode is always higher than the TE01 one
in the case of a rectangular WG coupler and does not satisfy a requirement for the OAMl=1
mode directional coupler. But when the directional coupler is made of a cross-shaped WG,
there is a cutout size around 490 µm, where TE01 and TE10 modes have the same coupling
coefficient. The insertion of the cutoff breaks down the degeneracy between TE10 and TE01
modes in the starting rectangular WG. The particle swarm optimization method can be
used to optimize WG’s width and height and the cutoff dimensions of the cross-shaped
WG simultaneously [164].
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Figure 13. Cross-section of rectangular WG coupler (a) [164], the coupling coefficient of TE10 and
TE01 modes in case of W = 0.72 µm and H = 0.6 µm (b) [164], the cross-section of cross shape WG
coupler (c) [164], the coupling coefficient of TE10 and TE01 modes as a function of t (d) [164].

To achieve a compact full-fledged device utilizing in-plane OV beams it is necessary
to generate such carrying OAM state wave on an integrated circuit. In [161], it is proposed
to produce OAM beams by a simple on-chip integrated structure involving only silicon
WGs and couplers, which controls the phase shift of the second-order propagating mode.
The idea of getting the necessary distribution at the output of the device already touched
upon TE01 and TE10 eigenmodes being mixed with π/2 phase shift. The rectangular WGs
assisting multiple transverse modes and keeping symmetry in two orthogonal transverse
directions are also proposed in [171].

Another generation method—based on a hybrid plasmonic WG—is proposed
in [153,168,172,173]. The main feature of the suggested method is to divide a WG into three
sections: the first and third sections are pure dielectric WGs, and the middle section is a
hybrid plasmonic WG. Because of the polarization rotation in the asymmetrical WG, the
transverse field factors produce a spin angular momentum (SAM). The proposed method
for generating an OAM beam in a WG could be useful for on-chip integrated optical
tweezers, data processing, and other applications [153]. Later, the application of integrable
quarter-wave plates being able to control the OAM of photons within nanophotonic WGs
was proposed [174]. Although plates do not act as the generating structure, the funda-
mental physics embraces fundamental potential and applicability to an extensive variety
of applications, such as detection of chiral molecules, nanoscale optical manipulation,
integrated computing science, and on-chip managing of quantum information [174].

Finally, an ultra-compact integrated structure to generate OAM modes is proposed
by a specially designed single-trench WG in [67]. To implement OAM modes generation,
the WG with a trench is designed. A trench can break the original rotation symmetry
and split the mode degeneracy. As can be seen from Figure 14a, OAM modes with
topological charge ±1 synthesized from two orthogonal LP-like eigenmodes that were
excited by second-order TE01 mode at the input of a trench WG. Figure 14b shows a
cross-section of a WG. The distributions of eigenmodes of a trench WG are shown in
Figure 14c and its combination evolutions are presented in Figure 14d. Moreover, the
structure of an on-chip OAM modes (de)multiplexer for x-polarization, utilizing the trench
WGs was demonstrated.
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Figure 14. (a) OAM beam generator principle built on a single-trench WG; (b) A single trench
WG in cross-section; (c) Two eigenmodes of a single-trench WG’s field distributions; and (d) For
x-polarization, intensity and phase evolutions of a combination of eigenmodes [67].

Another method involves coupling incident radiation into an integral WG through
an MS [167]. A Si antenna array on the surface of the Si3N4 WG represents the MS. MS
simultaneously realizes OAM excitation and light coupling. The device also generates and
adds two high-order TE01 and TE10 modes with π/2 phase difference. The convenience of
the MS in simultaneous excitation and mixing of modes at the required phase ratio.

Finally, the authors have recently introduced the principle of vortex mode generation
by coherent superposition between two high-ordered TE-like modes excited in one waveg-
uide from the incident radiation using the grating coupler. First, in [175] the approach
was demonstrated based on the two waveguides of different widths, which are coupled
together by the directional coupler. Next, in [176] the symmetric silica-cladded silicon
nitride WG with shallowly etched gratings is provided for the in-plane generation of the
vortex mode with azimuthal order l = ±1. The proposed design is beneficial over the
previous because it provides the generation of a pure phase vortex of quasi-TE polarization
at the PIC output; the device can be implemented as a passive PIC and can be excited by
a single standard SMF, which can be coupled in a technologically convenient in-line way.
The power coefficients of the target OAM states ±1 are higher than 0.96, which is verified
with the numerical simulation. The only drawback is relatively low coupling efficiency
compared to the typical values for fundamental TE00 mode excitation, which however
could be further increased by properly optimizing the etching depth and other grating
coupler parameters.

5. Detection of Light with OAM

OAM detection at the receiver side is needed in communications. Even though OAM
detection is simply the reverse of OAM generation, it is significantly difficult because of
the deteriorated OAM states after transmission [177]. Mode assessment established on
field data [178], the study of OAM induced effects—for instance, the rotational Doppler
shift [179,180]—and beam-restoring using holographic technology [181] are the three types
of OAM detection. To measure the OAM directly, the first method requires acquiring all
three components of E and H-fields [182]. On the other hand, the phase gradient equal to
the OAM index l can be calculated. The OAM modes can be anticipated into a measurable
Gaussian mode in the third method, which utilizes a hologram [183]. Geometric-phase
MSs can be employed to integrate holograms because they have a low profile and a lot of
tuning versatility.
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Based on DOEs, multi-channel (or multi-order) optical elements have been developed,
matched to OVs of different orders [184–187] and their action is based on the correlation
filtering in the Fourier region [188]. Subsequently, these DOEs were used in the problems of
fiber-optic multichannel communication utilizing OV beams [4]. More recent studies used
SLMs [189–193]. For example, Figure 15 shows detecting results for the phase 13-channel
filter, matched with integer and half-integer OVs [193]. Note, DOEs can be employed to
recognize not only the singular phase state of structured light beams but also for detection
polarization state [4–6,194]. However, MSs are more suitable for these purposes [195–200].

Figure 15. Detecting OVs: (a) phase of a 13-channel filter; (b) intensity pattern (negative) in the focal plane and correspon-
dence of diffraction orders to OV values; and (c) results of detecting of different OVs in the beam with co-axial superposition
exp(−i2ϕ) + exp(−iϕ) (total OAM µ = −0.5) [194].

The additional degree of freedom provided by the OAM state of photons has a wide
range of uses. For enhanced fidelity, miniaturization, and reconfiguration of OAM state
measurement, which is a fundamental requirement of these applications, photonic inte-
grated devices are required. In [201], a Si-integrated OAM receiver is described that can
discriminate between separate and changeable OAM states. Also, the detector’s reconfig-
uration capability is attained by using a voltage to the GeSe film, which forms gratings
with alternate states. By modifying the duty cycle of the gratings, the resonant wavelength
for any OAM state is shown to be tunable in a quasi-linear manner. It proposes a viable
method for realizing a compact integrated OAM detection system with better functionality,
which could have vital applications in optical communications and information processing
involving OAM states [199]. Photonic integrated circuits (PICs) perform a wide range of
optical functions using light rather than electrons. The spectrum of potential functionalities
for these highly integrated optical chips has been extended thanks to recent advances in
nanostructures, metamaterials, and Si technologies. Mach–Zehnder interferometric and
ring-based modulators, for example, have been published [202–207]. Work on an OAM
detection system, which includes converting light with distinct OAM states into spatially
separated surface plasmon polaritons waves, has begun in recent years. Miniature photonic
devices with dimensions significantly smaller than those now accessible are possible thanks
to the surface plasmon polariton’s unique features in terms of short equivalent wavelength
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and excellent spatial confinement. Metaholograms with plasmonic photodiodes, for in-
stance, have been shown to detect OAM in real time [180]. This method allows for the
development of a compact, integrated detection system. It is, however, limited to one
OAM state. Several methods for the detection of OAM of light has been proposed in recent
times [208–211].

A novel concept of an optomechanical system that enables sensitive transduction of
OAM of light has recently been demonstrated [212]. A photonic crystal cavity optomechan-
ical system detects an optically induced twist on the chip. This facilitates the measurement
of the OAM of light as photons are absorbed by the mechanical element or detect photons
as they are dispersed into new OAM states by a sub-wavelength grating patterned on
the device. Such a device will detect optical pulses with l = 1 OAM field and an average
photon number of 3.9 × 103 at a repetition rate of 5 MHz, assuming detector noise does
not restrict measurement precision. High-order OAM states can be added to this design. A
schematic of the OAM detector system reported in [212] is shown in Figure 16. As shown in
Figure 16a,b, it comprises of a center suspended pad connected to one side of a slot-mode
photonic crystal nanobeam cavity [212].

Figure 16. A diagram of the device’s geometry: (a) Top view of a slot-mode PhC cavity geometry
and modeling of the E-field distribution of its fundamental optical mode [212]; and (b) The OAM
detector in isometric perspective. The cavity from (a) is attached to the square pad by a hanger whose
dimensions wh and lh are indicated in (c) [212]. The pad motion is moved to the nanobeam when
excited by a source of torque as exhibited by the simulated displacement profile shown in (c) [212].

The chip that surrounds the cavity is linked to the other half of the cavity. The cavity
operates in an air-band mode with a field centered in the space between the nanobeams,
making it very sensitive to any nanobeam motion that changes the slot-gap width, causing
the cavity mode wavelength to change. The motion of the nanobeam is transformed into
the amplitude of light coupled out of the cavity during this dispersive optomechanical
coupling phase. Light may be linked into and out of the cavity using an optical fiber taper
WG evanescently interfering with the cavity to control this optomechanical transduction.
By rotating the central pad and activating the nanobeam’s mechanical bounce mode, optical
actuation of the central pad through OAM moves the nanobeam’s center of mass location.
Figure 16c shows a simulated displacement profile of the unit when its central pad is
operated by an external torque source, displaying several forms of displacement [212].
The OAM of light incident on the device’s central pad may be transformed to torque
using a variety of different approaches. The OAM of light changes from l = l′ = 0 as the
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torsional pad is covered with an absorbent layer and lit up with helical light. A helical beam
with OAM number l can be altered during broadcast or reflection to any OAM number l′

supplied by the MS shape if the torsional pad is replicated with an appropriately built MS.

6. Conclusions

In this paper, we have reviewed the most extensively used methods for the generation
of orbital angular momentum (OAM) optical beams and their detection. These methods
include the usage of diffractive optics, metasurfaces (MSs), and photonic integrated circuits
(PICs). Diffractive optics can be further classified in spiral phase plates, computer-generated
holograms, and diffractive optical elements. MSs are relatively compact and deliver high
performance compared to conventional DOEs. PICs based OAM generators can be divided
into two sub-categories: out-of-plane OAM generator and in-plane OAM generator. For the
latter, it has attracted a lot of interest in fully utilizing the unique feature of OAM beams in
the guided optics. However, to ensure uniform spatial distributions of the multi-coupled
waveguide, the majority of the integrated OAM generators need exceedingly critical
dimension control technology. The aim of this paper is not to highlight the dominance
of one approach over another. We have provided the advantages/disadvantages of each
method based on the ease of implementation and performance.
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