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Abstract

Background: Recent global progress in scaling up malaria control interventions has revived the goal of complete
elimination in many countries. Decreasing transmission intensity generally leads to increasingly patchy spatial patterns
of malaria transmission in elimination settings, with control programs having to accurately identify remaining foci in
order to efficiently target interventions.

Findings: The role of connectivity between different pockets of local transmission is of increasing importance as
programs near elimination since humans are able to transfer parasites beyond the limits of mosquito dispersal, thus
re-introducing parasites to previously malaria-free regions. Here, we discuss recent advances in the quantification of
spatial epidemiology of malaria, particularly Plasmodium falciparum, in the context of transmission reduction
interventions. Further, we highlight the challenges and promising directions for the development of integrated
mapping, modeling, and genomic approaches that leverage disparate datasets to measure both connectivity and
transmission.

Conclusion: A more comprehensive understanding of the spatial transmission of malaria can be gained using a
combination of parasite genetics and epidemiological modeling and mapping. However, additional molecular
and quantitative methods are necessary to answer these public health-related questions.
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Background
The spatial dimensions of malaria control and elimination
strategies
Assessing variation in spatial and temporal patterns of in-
fection or in the distribution of a particular pathogen
phenotype, such as drug resistance, is an important pre-
requisite for any infectious disease control effort. For mal-
aria, these considerations are critical across the range of
transmission settings (Fig. 1). In pre-elimination settings
(e.g., E-2020 countries, including Swaziland, Costa Rica,
China, and South Africa [1]), surveillance programs must
locate and track imported infections, conduct contact tra-
cing, and ensure that onward transmission resulting from
importation events are rapidly extinguished. For countries

with intermediate transmission (e.g., Bangladesh, Namibia,
and Thailand), control programs must identify the trans-
mission foci contributing to infections in the rest of the
country and locate importation hotspots since these will
require approaches focused on transmission reduction like
vector control. Even in high transmission settings
(e.g., Uganda, Nigeria, Democratic Republic of Congo, and
Myanmar), which have traditionally focused on monitor-
ing clinical cases and scaling up control and treatment
strategies across the country, the renewed interest in
measuring transmission has also raised the possibility of
more effective program evaluation to assess the impact of
interventions on transmission in different regions. Of par-
ticular importance in moderate to high transmission set-
tings is the coordination between different regions when
human mobility between them is frequent.

Model of malaria spatial epidemiology
A variety of modeling approaches has been used to de-
scribe the spatial dynamics of malaria [2] and to effectively
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allocate resources. Geostatistical modeling approaches
have been used to generate maps of epidemiological
variables such as parasite prevalence [3] and interven-
tion impact [4]. These maps derive from methods that
interpolate across spatially idiosyncratic data sources,
providing a spatially smoothed estimate of epidemio-
logical metrics relevant for targeting of interventions.
Nevertheless, certain important aspects of malaria
epidemiology cannot be captured by interpolation methods.
First, statistical methods may fail to distinguish between
areas where cases reflect local transmission intensity versus
regions with frequently imported infections; therefore, dif-
ferent assumptions about connectivity can lead to varying
conclusions with regard to the capacity for local transmis-
sion and need for vector control [5]. Second, thinking be-
yond all but the most local scales, there is a myriad of ways
to coordinate control efforts across different areas, for
example, by grouping locations that naturally cluster
together as larger units of transmission [6, 7]. Combined
with transmission models that consider numerous
non-linear feedbacks between control and transmission
[8, 9] and are capable of accounting for location-specific
intervention packages and their impacts [10, 11], these ap-
proaches could, theoretically, suggest an optimal elimin-
ation strategy. In practice, there are shortcomings in both
the currently available data and models.

Quantifying connectivity is one of the most important
aspects of characterizing the spatial dynamics of malaria,
yet it can be one of the most vexing. Call data records
routinely collected by mobile phone operators, as well as
other novel data sources on human travel, have offered
hope in recent years [5, 7, 12]. These data are not with-
out their challenges, however, including variable cell
tower densities, mobile phone market fragmentation,
and possible disconnects between who is making calls
and who is transmitting parasites [13]. Traditional travel
survey data may be more directly related to known
symptomatic individuals; however, these data are often
limited in scope and accuracy [14]. Understanding which
travel patterns are epidemiologically relevant further re-
quires an understanding of vector distribution, identity,
and abundance. The complex relationship between these
ecological parameters of transmission and the epidemi-
ology of disease, along with the lack of robust parasite
strain markers, make it difficult to accurately identify
the geographical source of particular infections, in turn
hindering efforts to map the routes of parasite importation
at the population level. Ultimately, models are necessary
to appropriately combine information about human mo-
bility with a variety of epidemiological data to arrive at an
estimate of how parasite movement arises on different
spatial scales. Indeed, recent work using mathematical

Fig. 1 Actionable insight from genetic epidemiological studies of malaria across a range of transmission settings. This schematic depicts actionable
insight that can be obtained from genetic epidemiological studies of malaria across a range of transmission settings, from high transmission (red) on
the left to low transmission (gray) on the right. Here, both imported (stars) and local (points) infections, which may originate from different parasite
lineages (various colors), are shown. In high transmission settings, parasites mix panmictically, polyclonal infections are common, and the goal is to
evaluate the effectiveness of ongoing interventions. Genetic correlates of declining transmission (e.g., diversity) can provide sensitive indicators of the
impact of an intervention. At intermediate transmission, parasites may cluster into interconnected populations. The goal is to delineate regions into
units for targeted intervention and to identify the sources that seed transmission for maximally efficient resource allocation. In this setting,
models incorporating human mobility and genetic measures of parasite relatedness can provide directional estimates of connectivity between parasite
populations. At very low transmission, most infections are imported. The goal is to identify origins of imported parasites, quantify any onward
transmission and, if onward transmission exists, the average length of local transmission chains. Models incorporating detailed case data, including
genetic data and travel history, can reconstruct transmission chains to infer who acquires infection from who and how
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models based on epidemiological data in Senegal showed
that genetic data collected in parallel can provide consist-
ent and confirmatory signals of significant transmission
reductions followed by signatures of a rebound [15]; simi-
lar approaches in a spatial context may well be useful in
other settings.
Parasite genetic signals may offer some of the richest

information about these otherwise elusive patterns of
parasite movement and, although this approach is still in
its early stages, researchers have begun to assess the util-
ity of molecular surveillance as a routine tool for the
optimization of control and elimination strategies. We
propose that the marriage of parasite genetic data and
models in a spatial context may offer unique insights
into the epidemiology of malaria. Below, we discuss the
techniques, challenges, and promising applications of
molecular surveillance.

Discussion
Applications of parasite genetics to spatial epidemiology
of malaria
Molecular tools may be most valuable when epidemio-
logical information is scarce and/or mobility data is
unavailable. Genomic surveillance and phylogenetic ana-
lyses that relate the geographic distribution of genetic
signals within and between populations have enabled near
real-time estimation of transmission chains for
non-sexually recombining, rapidly evolving pathogens
(e.g., Ebola, influenza) [16, 17]. This nascent field of
pathogen phylogeography has provided key insights into
the routes of pathogen introductions and spread, particu-
larly for viral diseases. However, directly extending these
methods to a pathogen such as Plasmodium falciparum—
a sexually recombining eukaryotic parasite with a complex
lifecycle—requires both molecular and analytic advance-
ments that are still at the early stages of development. In
particular, the malaria parasite P. falciparum undergoes
obligate sexual recombination and is often characterized
by multi-genotype infections and low-density chronic
blood-stage infections that can last for months in asymp-
tomatic individuals. More complex still are the many chal-
lenges associated with the second most abundant cause of
malaria, Plasmodium vivax [18]. Unlike P. falciparum par-
asites, P. vivax parasites can survive for months or years
as dormant hypnozoites in the liver, where they are un-
detectable, and can relapse and cause blood-stage infec-
tion at any time. Since genetically diverse hypnozoites can
build up in the liver, relapses lead to an even greater abun-
dance of multi-genotype blood-stage infections and thus
more frequent recombination between genetically diverse
parasites. Moreover, in regions of ongoing transmission,
relapses cannot be definitely distinguished from reinfections
due to new mosquito bites, further complicating efforts to
spatially track P. vivax infection. These complexities mean

that standard population genetic or phylogenetic ap-
proaches do not effectively resolve relationships between
malaria parasite lineages [19]. Therefore, new tools are
needed for the effective molecular surveillance of both
parasite species.
Most national control programs are interested in

spatial scales that are operationally relevant, namely
within a given country or between countries if they are
connected by migration. Population differentiation on
international and continental geographic scales can be
identified using principal component analysis, phylogen-
etic analysis, and the fixation index (FST) [20–24], yet
these methods are not powered to detect finer-scale dif-
ferentiation. This is because (1) recombination violates
the assumptions underpinning classic phylogenetic ana-
lyses [25], and (2) principal component analysis based
on a pairwise distance matrix and FST is influenced by
drivers of genetic variation that act on a long time scale
(i.e., the coalescent time of parasites) such that if migra-
tion occurs multiple times during this time frame, there
will be little or no signal of differentiation among popu-
lations [26, 27]. In contrast, methods that exploit the sig-
nal left by recombination (rather than treating it as a
nuisance factor) may have the power to detect geo-
graphic differentiation on spatial scales relevant for mal-
aria control programs.
Recombination occurs in the mosquito midgut when

gametes (derived from gametocytes) come together to
form a zygote. If the gametes are genetically distinct, re-
combination will lead to the production of different, but
highly related, sporozoites (and thus onward infections).
These highly related parasites would tend to have ge-
nomes with a high degree of identity. Perhaps the simplest
measure of this genetic similarity is “identity by state”
(IBS), which is defined as the proportion of identical sites
between two genomes and is a simple correlate of genetic
relatedness between parasites. However, IBS makes no dis-
tinction between sites that are identical by chance and
those that are identical due to recent shared ancestry,
making it sensitive to the allele frequency spectrum of the
particular population under study. Analyses that are prob-
abilistic (e.g., STRUCTURE [28]) provide better reso-
lution, but ultimately linkage disequilibrium-based
methods, such as identity by decent (IBD) inferred under
a hidden Markov model [29, 30] and chromosome paint-
ing [31], provide greater power. These IBD methods har-
ness the patterns of genetic linkage disequilibrium that are
broken down by recombination and are therefore sensitive
to recent migration events and useful at smaller geographic
scales. Additionally, they take advantage of the signals
present in long contiguous blocks of genomic identity,
which can be detected given a sufficient density of inform-
ative markers. The exact density required is a topic of
current research and depends on the level of relatedness,
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required precision, and the nature of the genetic markers in
question (e.g., the number and frequency of possible alleles
for each marker).
In low transmission settings, such as Senegal and

Panama, STRUCTURE as well as IBS (which approxi-
mates IBD, albeit with bias and more noise), can often
be used to cluster cases and infer transmission patterns
within countries [32–34]. In intermediate transmission
settings, such as coastal regions of Kenya and border re-
gions of Thailand, where genetic diversity is higher, IBS,
IBD, and relatedness based on chromosome painting
have been shown to recover genetic structure over popu-
lations of parasites on local spatial scales [27, 35].
However, due to dependence on allele frequency spectra,
IBS is not as easily comparable across datasets and, as
mentioned above, can be overwhelmed by noise due to
identity by chance. Moreover, all of these methods cur-
rently have limited support for polyclonal samples. In
high transmission settings, the complexity of infection is
very high, making it difficult to calculate genetic related-
ness between parasites within polyclonal infections or to
estimate allele frequencies across polyclonal infections
since the complexity entangles the signal from the gen-
etic markers belonging to the individual clones, the
number of which is unknown. Methods to disentangle
(i.e., phase) parasite genetic data within polyclonal infec-
tions are being developed [36], while THE REAL
McCOIL [37] has been developed to simultaneously
infer allele frequencies and complexity of infection,
allowing downstream calculation of FST. However, to
fully characterize genetic structure at fine scales in high
transmission settings, new methods that estimate IBD
and other relatedness measures are needed to infer an-
cestry between polyclonal infections. Indeed, across all
spatiotemporal scales and transmission intensities, we
propose that rather than being defined by the transmis-
sion of discrete (clonal) parasite lineages, malaria epi-
demiology may be best characterized as the transmission
of infection states, often comprised of an ensemble of
parasites. Subsets of these ensembles are often transmit-
ted together by a mosquito to another person, and there-
fore, the combination of alleles/parasites present in an
infection state provides rich information about its ori-
gin(s) beyond the composition of individual parasites.

Current sampling and sequencing strategies for genomic
epidemiology of malaria
The use of genetic approaches described above will de-
pend on the routine generation of parasite genetic data
since any molecular surveillance system will improve
with more data and must be tailored to the sampling
framework and sequencing approach. To date, many
studies attempting to obtain epidemiologic information
from genomic data have taken advantage of existing

samples rather than having sampling tailored to the
questions and public health interventions of interest.
This is understandable given that a number of these
studies have been exploratory and that informed deci-
sions regarding sampling require a priori empiric data
on parasite population structure (unavailable in most
places) and a predetermined analysis plan (difficult when
analytical approaches are actively in development). A
more direct/tailored study design should be possible as
more parasite genomic data become available and ana-
lytical methods mature. However, in general, a greater
sampling of infections will be required to answer
fine-scale questions regarding transmission (e.g., whether
infections are local versus imported, determining the
length of transmission chains) than for larger-scale ques-
tions such as relative connectivity of parasite popula-
tions between distinct geographic regions. Now that
sequencing can be performed from blood spots collected
on filter papers or even rapid diagnostic tests, collecting
samples from passively detected symptomatic cases at
health facilities offers the most efficient means of collect-
ing large numbers of infected cases, often with high
parasite densities, thus making them easier to genotype.
Nevertheless, while this may be sufficient to characterize
the underlying parasite population in some settings and
for some questions, in others, the capture of asymptom-
atic cases through active case detection may be essential
to understand transmission epidemiology, e.g., to deter-
mine the contribution of the asymptomatic reservoir in
sustaining local transmission.
The discriminatory power of the genotyping method

will depend on the local epidemiology and transmission
setting. The two most common genotyping approaches,
namely relatively small SNP barcodes and panels of
microsatellite markers [38], have been extensively used
to monitor the changes in the diversity and structure of
the parasite population. However, signals in these
markers may not be sufficient to distinguish geographic
origin and have limited resolution in certain transmis-
sion settings [37, 39, 40]. Increasing the number of loci
and/or discrimination of each locus may be necessary to
answer the questions relevant to elimination. Further, in-
creasing discrimination by using multiallelic loci has par-
ticular advantages since these may provide more
information content than biallelic loci [41]. This is par-
ticularly true in polyclonal infections, frequent even in
areas close to elimination, because heterozygous geno-
types of biallelic loci contain little information (all pos-
sible alleles are present), whereas detecting, for example,
3 out of 20 potential alleles in an infection, still allows
informative comparisons between infecting strains. In
addition, some genotypable multiallelic loci contain ex-
tremely high diversity, which can be combined in rela-
tively small numbers to create high-resolution genotypes.
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Targeting specific regions of the genome for sequencing
after amplification by PCR (amplicon sequencing) or other
methods, such as molecular inversion probes [42], offers
efficient approaches to genotyping multiallelic short-range
haplotypes, SNPs, and/or microsatellites, providing a flex-
ible platform for deeper and more consistent coverage of
regions of interest at lower cost than whole genome se-
quencing. Amplicon sequencing may be of particular
interest for genotyping minor strains in polyclonal infec-
tions and/or low-density samples, whereas molecular in-
version probes may excel for more highly multiplexed
marker assays where capturing low-density samples is not
critical. Identifying a panel of optimally informative gen-
etic markers to address a specific question remains a
major challenge that must balance the cost, throughput,
and discriminatory power. For example, at fine geographic
scales, larger numbers of more closely spaced markers
with representative coverage of the genome may be re-
quired in contrast to studies comparing distant parasite
populations; the density at which infected individuals are
sampled and the underlying diversity and genetic structure
will also affect the number and type of loci required.
With proper consideration, a parsimonious set of genetic

targets may be identified as useful to answer a number of
general questions regarding malaria genomics. Nonethe-
less, the development of a marker toolbox and genotyping
methods tailored to answering questions relevant for
transmission at different spatial scales is an important goal.
To this end, several ambitious sequencing studies have
begun, and over 4000 P. falciparum genomes have been
sequenced from different transmission settings around the

globe (such as the Pf3K Project, https://www.malariagen.
net/data/pf3k-pilot-data-release-3) [40, 43, 44]. These gen-
etic data are all publicly available, providing a crucial
framework to build upon when designing more local,
sequence-based epidemiological studies that balance the
trade-off between the number of genetic loci evaluated
and the quality of the data (e.g., depth of sequence cover-
age) for each parasite sample. Genomic sequencing
methods are evolving rapidly towards high-throughput
and low-cost, deep sequencing approaches that can be per-
formed on routinely collected patient samples, allowing
for evaluation of even asymptomatic low-density infec-
tions, e.g., by selective enrichment of parasite DNA [45,
46]. These enrichment methods can exacerbate the
non-uniformity of sequencing coverage variation across
the parasite genome and can require specialized filters to
remove erroneous heterozygous calls, yet they generally
produce genotypes exhibiting very high concordance with
those from samples sequenced via alternate means
[46, 47]. Preferential amplification of dominant strains
in a polyclonal infection (i.e., missing minority clones)
and the inability to detect copy number variation
have also been described as potential limitations of
these selective enrichment methods [47]. Nevertheless,
despite these limitations, these methods are enabling
cost-effective whole genome sequences from routinely
collected blood samples. Moving forward, we must
ensure that rich metadata are made easily available in
the context of genome sequences, so that links can
be made to experimental, epidemiological, and eco-
logical variables and models.

Fig. 2 The analysis pipeline. Both genetic and epidemiological data can be collected and analyzed in order to understand the parasite flow (with
example datasets and methods listed above). To identify how these two methods can be combined, directly related to policy-relevant questions,
and translated to control measures will require the development of novel inference frameworks and the design of studies across a range of
transmission settings
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Combining data layers to map malaria
In concrete terms, we want to be able to clearly identify
if two locations are epidemiologically linked. However,
given the current methods available and in development,
the complicated life cycle of the parasite, and the epi-
demiology of malaria, any single data source or method
is unlikely to produce a complete picture of the spatial
dynamics of malaria parasites. Figure 2 illustrates an
analytical pipeline linking different spatially explicit data-
sets to methods and ultimately interventions, highlight-
ing current uncertainties and the need to consider
policy-relevant metrics when designing sampling frame-
works. In particular, we believe that future development
should focus on identifying how these different types of
data can be combined and integrated to provide a more
complete picture of connectivity and transmission dy-
namics. If we view this problem in terms of a simplified
traditional medical statistic, malaria parasite data have a
high false-negative rate (the analysis mostly underesti-
mates relatedness between parasites), whereas connect-
ivity data inferred from mobile phone data or other
proxy measures of travel have a high false-positive rate
(the analysis mostly overestimates the number of epide-
miologically relevant connections). Ideally, joint infer-
ence methods that combine these data sources would
help improve the type I (false-positivity rate) and type II
(false-negativity rate) errors in each type of data.

Conclusions
These new data streams therefore offer great potential,
but understanding how to effectively combine them in
ways that consider the biases and strengths of each data
type will require significant research investment. Further-
more, making these methods relevant for implementation
is a consideration that must be at the forefront of research
efforts. For example, the ongoing availability of each data
stream, the feasibility of implementing these analytical ap-
proaches in the context of national control programs as
well as the capacity-building required to do so, will ultim-
ately determine their impact. This means that tools must
provide clearly communicated estimates of uncertainty
and will need to be straightforward for their use in differ-
ent contexts, easy to communicate, and generalizable.
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