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Abstract

Severe Fever with Thrombocytopenia Syndrome Virus (SFTSV) was recently identified as a

tick-borne pathogen that threat to human health. Since 2010, many countries including China,

South Korea, and Japan have reported Human SFTS caused by SFTSV infection. The glyco-

protein encoded by the SFTSV M gene is the major antigenic component on the viral surface,

and responsible for the viral entry, which makes it an important viral antigen and a clinical diag-

nostic target. The present study aimed to map linear B cell epitopes (BCEs) on the N-terminal

glycoprotein (Gn) from SFTSV strain WCH/97/HN/China/2011 using the modified biosynthetic

peptide method. Five fine epitopes (E1, 196FSQSEFPD203; E2, 232GHSHKII238; E3, 256VCY-

KEGTGPC265; E4, 285FCKVAG290, and E5, 316SYGGM320) were identified using the rabbit

antisera. Western blot analysis showed that all the five epitopes interacted with the positive

serum of sheep that had been naturally infected with SFTSV. Three-dimensional structural

modeling analysis showed that all identified BCEs were located on the surface of the SFTSV-

Gn and contained flexible loops. The sequence alignment revealed high conservation of the

identified BCEs among 13 SFTSV strains from different lineage. These mapped epitopes will

escalate the understanding of the epitope distribution and pathogenic mechanism of SFTSV,

and could provide a basis for the development of a SFTSV multi-epitope detection antigen.

Introduction

Severe Fever with Thrombocytopenia Syndrome Virus (SFTSV) is a human pathogen that

causes Severe Fever with Thrombocytopenia Syndrome (SFTS), an emerging disease with high

mortality rates up to 30% [1–3]. Since 2010, SFTSV is broadly disseminated in countries like

China, South Korea, and Japan [4–6]. The clinical symptoms of SFTSV infections include

fever, thrombocytopenia, gastrointestinal disorder, and leukocytopenia [7]. SFTSV is a tick-

borne virus [8] and has infected many domestic animals, including goats, cattle, dogs, cats and

chickens [9–12]. Humans could generally be infected through tick bites, direct contact with
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blood or mucus of infected livestock, or patients [13]. Thus, early diagnosis and vaccine devel-

opment are critical for the prevention and control of SFTSV.

SFTSV is classified as Bandavirus genus within the family Phenuiviridae [14]. The genome

consists of three negative stranded RNAs, designated as large (L), medium (M), and small (S),

which encode RNA polymerase, glycoprotein (GP) and nucleocapsid protein (NP), respectively.

Studies have indicated that GP mediates the first step in the virus replication cycle of binding

and entry into the host cell, and are the primary targets for neutralizing antibodies [15, 16]. The

GP of Phenuiviridae are synthesized as precursor polyprotein in the infected cells, which can be

cleaved by cellular proteases during translation, and processed into the mature virion subunits

N-terminal glycoprotein (Gn) and C-terminal glycoprotein (Gc) [17], this step was executed by

signal peptidase [18]. Gn/Gc is responsible for cell attachment and membrane fusion, which is

required for host cell entry [15]. In the endoplasmic reticulum Gn and Gc are decorated with

N-linked glycans, mature Gn and Gc are targeted to the Golgi apparatus for virus budding [19].

Gn and Gc are two major antigenic components on the viral surface, and are incorporated into

the envelope of the virus particles. Finally, infected cells released infectious virus particles by

exocytosis [17, 20]. Among them, the Gn protein plays a critical role in virion structure forma-

tion and adhesion to new target cells, rendering it the main target of neutralizing antibodies

[16]. Therefore, elucidating the epitopes or immunodominant regions of Gn is critical for the

development of vaccine design and diagnosis of viral infection.

Monoclonal antibodies (mAbs) or convalescent sera from SFTS patients were tested to

identify potential therapeutic intervention targets, resulting in the identification of SFTSV-GP

as molecules required for host cell entry and also as critical targets for virus neutralization

through the development of humoral immunity [21, 22]. Specific treatment with antiviral

agents targeting SFTSV is urgently needed to reduce the morbidity and mortality as much as

possible. The mAb 10 [21] and mAb 4–5 [23] from SFTS patients targeting SFTSV-Gn were

showing successful neutralizing activity to a variety of strains of SFTSV isolates in China [22].

Fine epitope motif mapping is an active field and one of the mapping approaches is called the

biosynthetic peptides method (BSP). Overcome many obstacles in other mapping approaches,

it has been recognized with many merits including simple design, outstanding cost-efficiency,

high reliability, and adaptability to screening the entire region of interest [24]. Some research

implies the BSP can be utilized for epitope motif identification [25, 26]. However, there have

only been a few reports on epitope identification of SFTSV-Gn.

In this study, to identify immunodominant linear B cell epitopes (BCE) in the Gn (amino

acid (aa) 189–451) of SFTSV, named as SGn, the modified BSP method was used to identify

the fine epitopes of Gn from the SFTSV strain WCH/97/HN/China/2011 using rabbit poly-

clonal antibody (pAb) against SFTSV-Gn (α-SGn). We have identified five epitopes on the

SGn by using the BSP method. All the five epitopes identified could be recognized by the anti-

sera of sheep infected with SFTSV. We also analyzed the conservation of each epitope among

homologous SGn proteins and their location in the predicted three-dimensional (3D) struc-

ture. All the five epitopes were distributed on the surface of SGn and thus facilitates antigen-

antibody binding accessibility. These investigations have provided novel and comprehensive

data about linear BCEs on SFTSV-Gn as well as their unique distribution profile, supported a

more solid foundation for the design of SFTSV multi-epitope peptide diagnostics.

Materials and methods

Ethics statement

All methods were carried out in accordance with relevant guidelines and regulations. All

experimental protocols were approved by the Committee on the Ethics of Animal Experiments
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of Xinjiang Key Laboratory of Biological Resources and Genetic Engineering (Approval num-

ber: BRGE-AE001), Xinjiang University, and by the Ethics committees of Animal Experiments

of Wuhan Institute of Virology, Chinese Academy of Sciences (Approval number:

WIVH33201801). This study did not involve suffering or killing the animals.

Plasmids and antibodies

The prokaryotic expression plasmid pMAL-c2x, and SFTSV strain WCH/97/HN/China/2011

were donated by Professor Fei Deng from Wuhan Institute of Virology, Chinese Academy of

Sciences. The coding region (aa, 189–451) of SFTSV-Gn from strain WCH/97/HN/China/

2011 was amplified by PCR using 2×Rapid Taq Master Mix (Vazyme Biotech, Nanjing, China)

according to the manufacture’s instruction. The PCR products were cloned into the plasmid

pET-28a to generate the expression plasmid pET-28a-SGn and the insert was confirmed by

sequencing. Protein expression and purification were conducted as described [27]. New Zea-

land rabbits were injected intramuscularly with 0.5 mg of purified SGn segment and immu-

nized at two-week intervals according to the conventional animal immune method. After the

third immunization for two weeks, rabbit antiserum was separated and stored at -80˚C until

use. The sheep serum samples used in the study were kindly provided by Professor Yujiang

Zhang from Xinjiang Centers for Disease Control and Prevention (XJCDC). The SFTSV posi-

tive or negative sheep serum samples were previously identified using an immunofluorescence

assay (IFA) and enzyme-linked immunosorbent assay (ELISA) [27]. SFTSV negative sheep

serum and non-immunized New Zealand rabbit serum were used as negative controls in the

Western blot and IFA, respectively. Escherichia coli BL21 (TB1 strain) competent cells were

used to express 16/8/10mer peptides fused with a truncated MBP protein. Goat anti-rabbit and

mouse anti-goat IgG conjugated to horseradish peroxidase (HRP) were purchased from Bei-

jing TransGen Biotech, Co., Ltd. (Beijing, China).

Other reagents and materials

DNA ligase and restriction enzymes BamH I and Sal I (Takara Co., Ltd, Dalian, China), E. coli
strain BL21 (TB1) competent cells (Novagen, Inc., Madison, USA), QIA quick Gel Extraction

Kit (QIAGEN, Duesseldorf, Germany), 0.2 μm nitrocellulose membrane (Whatman GmbH,

Dossel, Germany), unstained or prestained molecular weight markers (ThermoFisher Science,

Waltham, MA, USA), and enhanced chemiluminescence (ECL) plus Western blot detection

kit (GE Healthcare, Buckinghamshire, UK) were obtained. Other general chemicals were

obtained from Shanghai Sangon Co., Ltd (Shanghai, China).

Immunofluorescence Assay (IFA)

Vero cells were infected with SFTSV strain WCH/97/HN/China/2011 at an MOI of 5. At 72 h.

p. i., the cells were fixed for 10 min with 4% paraformaldehyde-PBS. Then the fixed cells were

incubated in 0.2% Triton X-100-PBS for permeabilization, and then blocked with 5% bovine-

serum albumin (BSA). The cells were treated with rabbit pAb α-SGn (1:1000 dilution) as a pri-

mary antibodies for 2 h at room temperature or 4˚C overnight, and incubated with goat anti-

rabbit IgG-fluorescein isothiocyanate (FITC) (1:2000 dilution, TransGen Biotech, Beijing,

China) for 1 h at room temperature. For visualization of the nuclei, the cells were incubated

with Hoechst 33,258 (Beyotime, Shanghai, China) for 5 min at room temperature. All images

were acquired using IX73 microscope (Olympus, Tokyo, Japan).
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Expression of truncated SGn fragment

In order to map the epitope region of SGn, series of trunctated fragments of SGn were cloned

for expression (Fig 1). Primers were synthesized according to the sequence of strain WCH/97/

HN/China/2011 (GenBank accession no. JQ341189.1). PCR was performed to amplify the

fragments from plasmid pET-28a-SGn which contains the Gn aa 189–461 fragment of SFTSV.

The clones were sequenced for verifying the veracity of the fragments. Then, the fragments

were sub-cloned into prokaryotic expression vector pET-32a (+) with the BamH I and HindⅢ
sites on the 5‘and 3‘terminus. The expression vectors pET-32a-SGn1, pET-32a-SGn2, pET-

32a-SGn3, pET-32a-SGn4 and pET-32a-SGn5 were identified by DNA sequencing (Sangon

biotech, Shanghai). The fusion proteins were expressed in E. coli and SDS-PAGE was per-

formed for detecting fusion protein expressions.

Mapping strategy and biosynthesis of overlapping 16/8/10mer peptides

To map epitopes on the SGn1 and SGn2 segments, we used the feasible strategy shown in Fig

1. A total of 16 overlapping 16mer peptides spanning Gn numbered P1-P16 were bio-

expressed (S1 Table). The 16mers all had an overlap of 8 aa residues between each two adjacent

peptides. For fine epitopes motif mapping, eight sets of a total of 42 8mer peptides (named

P17-P58) with an overlap of 7 aa residues and 6 10mer peptides (named P59-P64) with an

overlap of 9 aa residues were bio-expressed based on the reactive 16mer peptides mapped in

the first round of antigenic peptide mapping (S2 Table).

Construction of recombinant plasmids

All plus and minus strands of DNA fragments that encoded target 16/8/10mer peptides and

had cohesive end nucleotides of BamH I and TAA-Sal I sites at the 5‘- and 3‘- ends were syn-

thesized by Tianyi biotech Co., Ltd (Wuhan, China). Each plasmid expressing a 16/8/10mer

Fig 1. Schematic representation of epitope mapping strategy. (A) Schematic representation of the full length

SFTSV-Gn [23], including Signal peptide (SP), three domains (I, red; II, blue; and III, purple), and Transmembrane

region (TM). (B) Schematic representation of truncated fragments of Gn. The blue band indicates the SGn (aa 189–

451), SGn1 (aa 189–289), SGn 2 (aa 229–319), SGn 3 (aa 269–369), SGn 4 (aa 320–410) and SGn 5 (aa 349–451)

segments respectively. (C) Schematic representation of epitope mapping strategy involved 16 overlapping 16mer

peptides spanning SGn1 and SGn2.

https://doi.org/10.1371/journal.pone.0248005.g001
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peptide was constructed into prokaryotic expression vector pMAL-c2x with the Tag protein

maltose binding protein (MBP) [28], in which the major steps were conducting an annealing

reaction involving paired plus and minus strands, conducting a ligation reaction involving

annealed DNA fragment and pMAL-c2x plasmid cut by BamH I and Sal I, then transformed

into E. coli (TB1 strain) [29] competent cells with the ligation mixture; screening of the r-

clones by carrying out sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)

using total proteins from each induced clone and observing whether there is a specific 16/8/

10mer peptide on the gel; and sequencing of inserted DNA fragment encoding each 16/8/

10mer peptide for each determined r-clone to ensure that all synthesized DNA sequences are

accurate. The expression vectors were identified by DNA sequencing (Sangon biotech, Shang-

hai, China).

Expression of target short peptide

Each determined r-clone was used to express a 16/8/10mer peptide in E. coli (TB1 strain) cells,

which was fused with the MBP protein, that is, each r-clone was cultivated in 3 mL Luria Ber-

tani (LB) medium with 100 μg/mL ampicillin at 220 rpm overnight. The following day, 30 μL

of bacterial culture was added to 3 mL of fresh LB medium, grown at 37˚C for 4 h to increase

the bacterial density until reaching an optical density at 600 nm (OD600) of 0.5–0.7, IPTG was

added to the cultures to a final concentration of 0.2 mM, and then grown at 37˚C for 4 h for

inducing the expression of the target short peptide. All collected cell pellets containing the

expressed 16/8/10mer peptide fusion proteins were stored at -20˚C.

SDS-PAGE and Western blot

The cell pellets obtained from 2 mL culture of expressed 16/8/10mer peptide were boiled at

95˚C in 200 μL of 1×SDS-PAGE loading buffer for 10 min, and the proteins were resolved by

15% SDS-PAGE under reducing conditions. Gels were either stained with Coomassie brilliant

blue G-250 for analyzing the bands corresponding to the target 16/8/10mer peptide, or used

for Western blot by electro transferring the proteins onto a 0.2 μm nitrocellulose (NC) mem-

brane [30]. Regarding the specific antigen-antibody reaction, the NC membrane was blocked

with 5% (w/v) skimmed milk powder in Tris-buffered saline-Tween 20 (TBS-T), treated with

rabbit pAb α-SGn (1:1000 dilution) or sheep serum (1: 100 dilution) as the primary antibody,

and then reacted with goat anti-rabbit IgG or mouse anti-goat IgG conjugated to HRP (1:5000

dilution, Trans-Gen Biotech) as the secondary antibody. Finally, the blot was performed using

the ECL plus Western blot detection reagent according to the manufacturer’s instructions, and

it was then imaged by GE-Image Quant LAS 4000 (GE Healthcare, Buckinghamshire, UK).

Sequence alignment of homologous SFTSVs

To assess the conservation of each identified epitope among SFTSV homologous proteins, 13

SGn aa sequences from different genetic lineages were obtained from GenBank based on the

phylogenetic tree of SFTSV strains [9]. The aa sequences of the SGn segments from the strain

WCH/97/HN/China/2011 (GenBank code: AFH88227.1) and other 12 homologous proteins

were aligned using the ClustalW program [31] and visualized using Genedoc [32].

Results

Antigenicity identification of the truncated Gn segments

To identify the antigenicity of the truncated Gn and the efficacy of rabbit pAb α-SGn [9],

Western blot and immunofluorescence assay (IFA) were carried out. Expressed recombinant
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SGn (r-SGn) was separated by SDS-PAGE (Fig 2A). The Western blot results showed that r-

SGn (29 kDa) had an apparent effect on binding to rabbit pAb α-SGn (Fig 2B). The IFA was

conducted to further confirm the reactivity of rabbit pAb α-SGn with the viral particle. The

IFA results showed that the rabbit pAb α-SGn reactive with the SFTSV viral particle, but the

Fig 2. SDS-PAGE and Western blot analysis of r-SGn expression and identification of reactivity of rabbit pAb α-SGn. (A) SDS-PAGE analysis of r-

SGn expression. M: standard protein marker; BI, total bacterial protein before IPTG induction. (B) Identification of the antigenicity of r-SGn by Western

blot using rabbit pAb α-SGn. (C) Identification of the reactivity of pAb α-SGn with the viral particle in Vero cells by IFA; bars indicate 100 μm.

https://doi.org/10.1371/journal.pone.0248005.g002
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negative sera were not (Fig 2C). These Western blot and IFA results suggest that r-SGn has

efficient antigenicity and pAb α-SGn has an effective ability to recognize antigens.

To further identify the antigenicity of truncated overlapping r-SGn, truncated fragments

were expressed using the prokaryotic expression vector pET-32a, and each predicted protein

was fused with Trx tag, S tag and His tag (with a size about 18 kDa). The SDS-PAGE result

showed the expressed recombinant proteins of r-SGn 1 (27 kDa), r-SGn 2 (28 kDa), r-SGn 3

(28 kDa), r-SGn 4 (26 kDa), and r-SGn 5 (27 kDa). All recombinant proteins were detected by

Western blot analysis using the rabbit α-SGn or anti-His antibody. The result showed that

fusion proteins r-SGn1, r-SGn2, and r-SGn3 were reacted with rabbit pAb α-SGn, but not the

other fusion expressed proteins (Fig 3). Therefore, we concluded that the region of Gn aa 189–

323 contains an epitope that can be recognized by rabbit pAb α-SGn.

Mapping epitopes on the SGn1 and SGn2 segments

To determine the existence of epitopes on the SGn1 and SGn2 segments, the immunodomi-

nant region aa 189 to aa 323 of SGn were truncated into 16 16mer peptides using BSPs

(P1-P16). The 16 overlapping 16mer peptides were fusion expressed with MBP in E. coli, and

the fusion proteins were observed as approximately 42 kDa. Among the 16 expression prod-

ucts, the following six 16mer peptides were identified as positive by Western blot: P1, P6, P9,

P12, P13, and P16 (Fig 4A). The sensitivity of the antigen-antibody reaction was determined

using the same quantity of peptides for the Western blot detection, and the data were quantita-

tively analyzed using Image-J software (http://rsb.info.nih.gov/ij/). The relative grayscale

Fig 3. Prokaryotic expression and immunoblot analysis of truncated SGn segments. SDS-PAGE and Western blot analysis of expressed

r-SGn1, r-SGn2, r-SGn3, r-SGn4, and r-SGn5 using rabbit pAb α-SGn. BI, total bacterial protein before IPTG induction. The arrows

represent the three expressed target segments on the gel and the reactive segments in the Western blot analysis. Samples were loaded on

the same gels and were processed in parallel.

https://doi.org/10.1371/journal.pone.0248005.g003
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results showed that 16mer peptides P1, P6 and P9 had a significantly (P<0.05) higher sensitiv-

ity for the antigen-antibody reaction (S1 Fig).

To refine and further mapping epitopes on SGn, the positive 16mer peptides were screened

in the next round involving 8/10mer peptides. All 48 biosynthetic overlapping 8/10mer pep-

tide aa sequences and corresponding sites on SGn are shown in S2 Table. The Western blot

results showed that 8mer peptide P23 (FSQSEFPD) derived from the 16mer peptide P1, was

recognized by rabbit pAb α-SGn (Fig 4B). This indicates that the minimal motifs of the epi-

topes within P1 was 196FSQSEFPD203 (designated epitope, E1), based on the shared residues

(Fig 4B). Similarly, other antigenic peptides were further identified and analyzed (Figs 4B and

5). The fine epitopes were 232GHSHKII238 (E2) in P6, 256VCYKEGTGPC265 (E3) in P9,
285FCKVAG290 (E4) in P12 and P13, 316SYGGM320 (E5) in P16.

Fig 4. SDS-PAGE and Western blot analysis of MBP fusion proteins expressed 16/8/10mer peptides derived from SGn. (A) Western blot

analysis of expressed 16mer peptides using rabbit pAb α-SGn. (B) Western blot analysis of 42 expressed 8mer peptides and 6 expressed 10mer

peptides. BI, total bacterial protein before IPTG induction. NC, negative control (MBP protein expressed by pMAL-c2x). Samples were loaded on

the same gels and were processed in parallel. The arrows indicate the 16/8/10mer peptides with a positive antigen-antibody reaction in the Western

blot analysis.

https://doi.org/10.1371/journal.pone.0248005.g004

PLOS ONE Mapping of BCEs on Glycoprotein-Gn from SFTSV

PLOS ONE | https://doi.org/10.1371/journal.pone.0248005 March 2, 2021 8 / 16

https://doi.org/10.1371/journal.pone.0248005.g004
https://doi.org/10.1371/journal.pone.0248005


Cross-reactivity of the identified epitope motifs with anti-SFTSV serum

To determine whether the minimal epitopes are rabbit specific or also recognizable by other

host species, five randomly selected 8/10mer peptides, each of which containing one of the five

identified BCEs, were subjected to Western blot using sera from sheep with or without SFTSV

infection. Results showed that, P23 (containing E1), P25 (containing E2), P62 (containing E3),

P44 (containing E4) and P56 (containing E5) were reacted with SFTSV positive sheep sera,

while all the epitopes were not reacted with the SFTSV antibody-negative sheep sera (Fig 6).

3D structures of the minimal motifs of the identified epitopes and sequence

conservation analysis

PyMOLTM software was used to simulate the 3D structure of SFTSV-Gn to locate all the

mapped epitopes. The results showed that epitopes are located on the surface of the SFTSV-Gn

protein (Fig 7). Epitopes E1 (196FSQSEFPD203), E2 (232GHSHKII238), and E5 (316SYGGM320)

are located on domain II, E3 (256VCYKEGTGPC265) and E4 (285FCKVAG290) are located on

domain III of SFTSV-Gn, all the epitopes were located on a well-defined helix-loop-helix

structure (Fig 7A and 7B). The antigenic index and hydrophilicity plot for the SFTSV-Gn aa

189–321 were obtained using the methods of Jameson-Wolf [33] and Kyte-Doolittle [34],

respectively. All five epitopes exhibited both high antigenicity and hydrophobicity, this is con-

sistent with the antigenic principles of surface accessibility and hydrophilicity (Fig 7C).

To assess the conservation of each identified epitope among SFTSV homologous proteins,

13 Gn aa sequences from different countries and genetic lineages were obtained from Gen-

Bank based on the phylogenetic tree of SFTSV strains [9]. As far as we know, 13 complete Gn

Fig 5. Synthetic 8/10mer peptide sequences derived from a span of the immunodominant peptides. The yellow highlighting represents the common

sequences among immunodominant peptides that react with rabbit pAb α-SGn according to Western blot analysis.

https://doi.org/10.1371/journal.pone.0248005.g005
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sequences of SFTSV strains isolated in China have been registered in the GenBank database,

and these were all compared to the Gn sequence investigated in this study. The aa sequences of

the SGn segments from the SFTSV strain WCH/97/HN/China/2011 (GenBank code:

AHH92824.1) and other SGn homologous proteins were aligned using the ClustalW program

and visualized using Genedoc. The SFTSV strains selected were representative of eight genetic

lineages: C1 (China, ADZ04477.1), C2 (China, AOO85597.1; South Korea, AGT98506.1), C3

(China, AHE38391.1), C4 (China, AGI97040.1), C5 (Japan, BAQ59257.1), J1 (Japan,

BAQ59263.1; South Korea, APT42346.1), J2 (China, ANC60451.1; Japan, BAQ59261.1) and J3

(Japan, BAN58187.1; China, AMK05828.1). The comparison of the 13 SGn sequences indi-

cated that epitopes E1, E2, E3, E4 and E5 were fully conserved (Fig 8). Therefore, these five epi-

topes can be used as candidate antigen peptides in SFTSV general diagnostic studies.

Discussion

SFTSV is a severe emerging hemorrhagic fever virus that causes thousands of people to be hos-

pitalized each year [2]. No vaccines or effective drugs against SFTSV have yet been developed.

Understanding the life cycles of the viral infection may inform the development of important

antiviral strategies. The SFTSV glycoprotein Gn/Gc mediates virus entry by binding to cellular

receptors and inducing the fusion of the virus to the cell membrane during endocytosis [35].

Gn/Gc may function as an inducer that elicits the production of neutralizing antibodies [16].

Sun and colleagues showed that recombinant SFTSV-Gn bound to susceptible cell lines, Gn

might act as a membrane anchoring protein during viral entry into target cells [17, 36].

Classification by protein topology, SFTSV-Gn was a type I transmembrane protein [37]

that contained the N-terminal ectodomain dominated the cell surface binding capability. The

SFTSV-Gn structure can be divided into the head and stem domains, the head domain corre-

sponds to Gn 20–337, and the stem domain corresponds to Gn 338–452. The stem domain

was responsible for the dimerization of SFTSV-Gn via disulfide bonds [23, 38]. However, the

structure of the Gn stem domain remains unknown. Gn was also the target for neutralization

antibodies, indicates that it is an important protein for prevention and vaccine design, as well

as the study of viral infection mechanism of SFTSV. Recently, Wu et al. [23] reported the crys-

tal structures of Gn head domains from SFTSV, and indicated that SFTSV-Gn can be reacted

with mAb 4–5, a neutralizing monoclonal single chain fragment variable (ScFv) antibody

Fig 6. Western blot of five 8/10mer peptides containing identified epitopes performed using positive sera from

sheep with a confirmed history of SFTSV infection. (A) A positive serum sample from sheep with a confirmed

history of SFTSV infection. (B) A serum sample from sheep with no history of SFTSV infection was used as a negative

control. NC, negative control (MBP protein expressed by pMAL-c2x). PC, positive control (16mer peptide P1

recognized by sheep positive serum).

https://doi.org/10.1371/journal.pone.0248005.g006
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Fig 7. Position of the minimal motifs of the mapped epitopes on the predicted 3D and secondary structure SFTSV-Gn.

The surface (A) and cartoon (B) modeling shows the overall 3D structure of SFTSV-Gn from strain WCH/97/HN/China/

2011 (PDB code: 5Y11). The five minimal epitopes are located on the SFTSV-Gn domain II (brown) and III (orange), but not

domain I (purple). The molecular surfaces of the five minimal epitopes are shown in different colors (E1, blue; E2, yellow; E3,

red; E4, hotpink; E5, paleyellow). The figures were generated using the PyMOLTM molecular graphics system. (C) The
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cloned from SFTS recovered patient [22]. The structure of the Gn head domain, which was

composed of three subdomains including domain I, II and III. MAb 4–5 binds to domain III

of SFTSV-Gn. The neutralizing effect of mAb4-5 has been shown only in vitro. However, it’s

in vivo efficacy remains to be investigated. Kim et al. [21] reported that mAb 10 binding to Gn

was predicted to be affected by domain II and the stem region of SFTSV-Gn. Unlike the

mAb4-5, the mAb10 showed a potent neutralizing effect in vitro and protective effect in vivo.

In the present study, we applied the modified BSP method to identify the immunodomi-

nant BCEs in the SGn from SFTSV. The SFTSV strain WCH/97/HN/China/2011 was selected

for fine epitopes mapping. Several outstanding merits of BSP/MBP method are summarized as

follows: i) using the truncated MBP as a carrier, it makes the expressed 16/8/10mer peptides

fusion proteins in the weak antigenic area of bacterial proteins, and thus permits using them to

map the BCEs of target protein; ii) it is simple, cost-effective and cheaper compared with other

epitope mapping methods [24, 25]. Five linear epitopes were identified using rabbit pAb α-

SGn. The epitopes comprised are listed as E1 (196FSQSEFPD203), E2 (232GHSHKII238), and E5

(316SYGGM320) on domain II, E3 (256VCYKEGTGPC265) and E4 (285FCKVAG290) on domain

III of SFTSV-Gn. As described above, mAb4-5 and mAb 10 bind to domain III and II, respec-

tively, indicating that these subdomains were highly antigenic regions on the SFTSV-Gn. It is

antigenic index and hydrophilicity plot prediction for aa residues189-321 of the Gn sequence of SFTSV using DNAStar

Protean software. Epitopes were highlighted in blue rectangles.

https://doi.org/10.1371/journal.pone.0248005.g007

Fig 8. Sequence alignment of the homologous SGn segments from SFTSV strains. The GenBank codes and sources are shown on the left. The five

minimal epitopes E1, E2, E3, E4 and E5 recognized by rabbit pAb α-SGn are highlighted in yellow. Dots (.) indicate identical aa residues within all 13

strains.

https://doi.org/10.1371/journal.pone.0248005.g008
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worth noting that, the epitopes recognized by mAb 4–5 or mAb 10 were conformational and

not linear to the paratope [21, 23].

The sequences of 13 strains of SFTSV from different countries and lineages were being ana-

lyzed. The results showed that five epitopes (E1, E2, E3, E4 and E5) were fully conserved

among the 13 SFTSV strains (Fig 8). Therefore, these five BCEs can be used as a selectable can-

didate for general diagnostic studies. The SFTSV-Gn 3D structure and the distribution of the

five epitope motifs of SGn were analyzed using PyMOLTM software. The results showed that

five epitopes were exposed on the surface of the 3D structure, contained in the flexible helix-

loop-helix region (Fig 7), indicating that they could easily bind to the antibodies. The epitopes

located on the surface of the target protein play an important role in the future development of

drugs that interact with target antigens. It is generally believed that the multi-epitope based

recombinant vaccines offer numerous advantages compared to the protein-based vaccine.

These advantages are including multi-valency cost- effectiveness, economical production and

stability under different ambient conditions. Moreover, the efficacy of multi-epitope vaccines

can be further improved by combining helper T cells and promiscuous epitopes, and adopting

toll-like receptor ligands as an adjuvant [39, 40]. However, we have not yet known that the

identified five BCEs of SGn in this study will obtain the neutralizing activity. Further study in

this direction is needed for verification.

In conclusion, the five high conserved linear BCEs (E1, E2, E3, E4 and E5) were recognized

with rabbit pAb α-SGn. All the five epitopes interacted with the sheep serum infected naturally

with SFTSV. Our results will escalate the understanding of the epitope distribution and func-

tion of SFTSV-Gn, and provide fundamental information for the elucidation of the design and

development of a SFTSV multi-epitope peptide detection antigen.
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