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Abstract: Sporulosol (1), a new ketal, together with four known compounds, has been isolated
from the liquid fermentation cultures of a wetland-soil-derived fungus, Paraconiothyrium sporulosum.
Its structure was elucidated primarily by NMR experiments, and was further confirmed by X-ray
crystallography. Sporulosol was obtained as a racemic mixture and the resolved two enantiomers
racemized immediately after chiral separation. Sporulosol appears to be the first ketal derived from a
6H-benzo[c]chromen-6-one and a benzofuranone unit. The compound showed modest cytotoxicity
toward the human tumor cell line T24, with an IC50 value of 18.2 µM.
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1. Introduction

Fungi are one of the most important sources of new drugs or lead compounds; many
important medicines have been discovered directly from fungi or developed based on their
secondary metabolites [1], such as the antibiotic penicillin, anti-cholesteremic agent lovastatin,
immuno-suppressant cyclosporin A, and the anti-multiple sclerosis fingolimod. Fungal species
isolated from the wetland environments have attracted increasing attention due to their ability to
produce a variety of bioactive secondary metabolites. Examples include stachybisbins A and B [2],
flaviphenalenones A–C, aspulvinones P and Q, methybutyrolactone III [3,4], 5-hydroxymethylasterric
acid, 3,5-dichlorosulochrin [4], and isocoumarin glycosides [5]. Based on this consideration, we
initiated chemical studies of the wetland-soil-derived fungal species in the genus of Paraconiothyrium,
which was reclassified as a separate genus as Paraconiothyrium by Verkley in 2004 [6]. Prior
to our chemical studies, a variety of bioactive secondary metabolites were reported from this
genus [7–17]. Our chemical investigations of P. brasiliense, and P. hawaiiense grown in solid-substrate
fermentation cultures have also resulted in the isolation of structurally diverse and biologically
active natural products including brasilamides A–N and hawaiinolides A–G [18–22]. During an
ongoing search for new bioactive secondary metabolites from the species of this genus, a strain of
Paraconiothyrium sporulosum, which was collected at Poyang Lake, Jiangxi Province, People’s Republic
of China, was subjected to our chemical investigation. A new ketal, named sporulosol (1), was isolated
from the liquid fermentation cultures of the fungus, together with four known compounds (2–5;
Figure 1). Details of the isolation, structure elucidation, and cytotoxicity of these compounds are
reported herein.
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structural features that were closely related to the known compounds graphislactone A (3) [23] and 
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chemical shift of OH-7 (δH 11.89) and the unsaturation requirement of 1, the carboxylic carbon (δC 
164.4) was connected to C-6, and acylated the C-4a oxygen to form ring B, while C-4 and C-1′ were 
attached to the only remaining oxygen atom to form an ester linkage. Based on these data, the 
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Table 1. NMR data for 1 and 2. 

Pos. 
1 2 

δC a, Mult. δH b (J in Hz) HMBC δC c Mult. δH d (J in Hz) HMBC 
1 134.0, qC   126.6, qC   
2 112.8, CH 6.90, s 1, 3, 4, 4a, 10b 112.8, CH 6.93, s 1, 3, 4, 10a, 10b, 12 
3 153.8, qC   147.8, qC   
4 128.0, qC   140.6, qC   
4a 147.0, qC   138.8, qC   
6 164.4, qC   164.8, qC   
6a 98.9, qC   98.2, qC   
7 165.0, qC   165.0, qC   
8 99.5, CH 6.60, d (2.0) 7, 6a, 10a 101.3, CH 6.46, d (2.0) 6a, 9, 10 
9 166.7, qC   165.3, qC   
10 104.2, CH 7.28, d (2.0) 6a, 9, 10a 104.9, CH 7.37, d (2.0) 6a, 8, 9, 10b 

Figure 1. Structures of compounds 1–5.

2. Results and Discussion

Sporulosol (1) was assigned a molecular formula of C26H22O8 (16 degrees of unsaturation) on the
basis of high-resolution electrospray ionization mass spectrometry (HRESIMS). Analysis of its nuclear
magnetic resonance (NMR) data (Table 1) revealed the presence of an exchangeable proton (δH 11.89),
five methyl groups including two O-methyls, one ketal carbon (δC 105.4), 18 aromatic/olefinic carbons
with six protonated, one carboxylic carbon (δC 164.4), and one α,β-unsaturated ketone carbon (δC 195.9).
These data accounted for all the NMR resonances and suggested that 1 was a pentacyclic metabolite.
The 1H and 13C NMR data of 1 (Table 1) revealed structural features that were closely related to the
known compounds graphislactone A (3) [23] and 2-hydroxy-2,4-dimethyl-3(2H)-benzofuranone [24],
but some chemical shifts for 1 were significantly different from those reported for the known
compounds, warranting detailed 2D NMR analysis. Interpretation of the NMR data revealed a
tetrasubstituted aryl ring (A), with a hydroxy and an O-methyl group attached to C-7 and C-9,
respectively, which was confirmed by the HMBC correlations from H-8 to C-6a, C-7, and C-10a; H-10
to C-6a, C-9, and C-10a; OH-7 to C-7 and C-8; and from H3-11 to C-9. Correlations from H-2 to C-1, C-3,
C-4, C-4a, and C-10b; H3-13 to C-1 and C-2; and from H3-12 to C-3 established the pentasubstituted
aryl ring (C). In turn, the HMBC cross peaks from H-4′ to C-5′, C-6′, and C-7′; H-5′ to C-4′ and C-6′a;
H-6′ to C-2′a and C-5′; and from H3-7′ to C-2′a, C-3′, and C-4′ enabled junction of the trisubstituted
aryl ring (E) with a methyl group attached to C-3′. Additional correlations from H3-8′ to C-1′ and C-2′,
plus the 13C NMR chemical shifts for C-2′a (δC 117.4) and C-6′a (δC 170.0), indicated that these three
carbons form an α,β-unsaturated ketone with C-1′ connected to C-6′a via the C-1′/C-6′a ether linkage.
Considering the 1H NMR chemical shift of OH-7 (δH 11.89) and the unsaturation requirement of 1,
the carboxylic carbon (δC 164.4) was connected to C-6, and acylated the C-4a oxygen to form ring B,
while C-4 and C-1′ were attached to the only remaining oxygen atom to form an ester linkage. Based
on these data, the planar structure of 1 was established.

The proposed structure was confirmed by single-crystal X-ray diffraction analysis using Cu Kα

radiation, and a perspective ORTEP plot is shown in Figure 2. Compound 1 was found to crystallize
as a mixture of 1′S and 1′R enantiomers, which explained the low optical rotation value of +1.0
([α]25

D ; c 0.10, MeOH) measured for 1. Subsequently, the racemic mixture was resolved into two
enantiomers (1a and 1b; 1:1) and decomposition product graphislactone A (3) using chiral stationary
phase (4.6 × 250 mm; 4% 2-propanol in hexanes for 60 min; 0.8 mL/min) (Figure S7). However,
the other decomposition product 2-hydroxy-2,4-dimethyl-3(2H)-benzofuranone was not detected
during resolution. The absolute configuration of C-1′ was assigned by the application of Snatzke’s
chirality rule for cyclopentenones [25], through which the negative or positive Cotton effect for n→ π

* transition in the 330–365 nm region of the CD spectrum was used to assign the 1′S (1a) and 1′R (1b)
absolute configurations by HPLC-CD analysis (Figure 3). Analysis of each collected peak for 1′S (1a)
and 1′R (1b) revealed the presence of both enantiomers, suggesting the occurrence of spontaneous
equilibration. Similarly, the co-isolated known compound, enalin A (5) [26], was also separated into
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two enantiomers 5a and 5b in a ratio of 1:1, and the resolved enantiomers again racemized immediately
after chiral separation (Figure S8). However, subsequent HPLC-CD analysis of 5 was unsuccessful,
possibly due to the poor HPLC and CD behavior of the compound (Figure S9). To our knowledge,
fungal natural products including isopestacin, pestacin, pestalachloride A, fimetarone A, and arugosins
K−M, have been reported as racemic mixtures of the S and R enantiomers [27–31].

Table 1. NMR data for 1 and 2.

Pos.
1 2

δC
a, Mult. δH

b (J in Hz) HMBC δC
c Mult. δH

d (J in Hz) HMBC

1 134.0, qC 126.6, qC

2 112.8, CH 6.90, s 1, 3, 4, 4a, 10b 112.8, CH 6.93, s 1, 3, 4, 10a,
10b, 12

3 153.8, qC 147.8, qC
4 128.0, qC 140.6, qC
4a 147.0, qC 138.8, qC
6 164.4, qC 164.8, qC
6a 98.9, qC 98.2, qC
7 165.0, qC 165.0, qC
8 99.5, CH 6.60, d (2.0) 7, 6a, 10a 101.3, CH 6.46, d (2.0) 6a, 9, 10
9 166.7, qC 165.3, qC
10 104.2, CH 7.28, d (2.0) 6a, 9, 10a 104.9, CH 7.37, d (2.0) 6a, 8, 9, 10b

10a 137.9, qC 132.8, qC
10b 111.0, qC 111.2, qC
11 55.4, CH3 3.96, s 9 55.7, CH3 3.67, s 3
12 55.2, CH3 3.67, s 3 24.5, CH3 2.75, s 1, 2, 10, 10a
13 24.8, CH3 2.78, s 1, 2
1′ 105.4, qC
2′ 195.9, qC
2′a 117.4, qC
3′ 139.8, qC
4′ 123.8, CH 6.88, d (7.8) 5′, 6′, 7′

5′ 137.7, CH 7.45, t (7.8) 4′, 6′a
6′ 109.8, CH 6.72, d (7.8) 2′a, 5′

6′a 170.0, qC
7′ 16.7, CH3 2.53, s 2′a, 3′, 4′

8′ 19.4, CH3 1.80, s 1′, 2′

OH-7 11.89, s 7, 8 11.95, s 6a, 7, 8
a Recorded at 100 MHz in acetone-d6; b Recorded at 400 MHz in acetone-d6; c Recorded at 150 MHz in acetone-d6;
d Recorded at 600 MHz in acetone-d6.
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Figure 3. (a) HPLC-CD chromatogram of sporulosol (1) using a CHIRALPAK AD-H column
(4.6 × 250 mm; 10% 2-Propanol in Hexane for 63 min; 1.0 mL/min); (b) HPLC-CD spectra of
(1′S)-sporulosol (1a) and (1′R)-sporulosol (1b).
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The molecular formula of 2 was determined to be C15H12O6 by HRESIMS. Analysis of the
1H and 13C NMR data of 2 (Table 1) revealed structural features similar to the known compound
graphislactone A (3) [23], except that the 9-OMe signal disappeared, which was verified by
interpretation of the 2D NMR data. Compound 2 was the first naturally occurring 4,7,9-trihydroxy-3-
methoxy-1-methyl-6H-benzo[c]chromen-6-one [32], and its NMR data have yet to be reported.
Compounds 3–5 were readily identified as graphislactone A (3) [23], 7,9-dihydroxy-3-methoxy-1-
methyl-6H-benzo[c]chromen-6-one (4) [33], and enalin A (5) [26] by comparison of their NMR and MS
data with those reported.

To verify that 1 was authentic natural product, a portion of the EtOAc extract freshly prepared from
the freeze-dried fermented liquid substrate was subjected to HPLC-MS analysis using HPLC-grade
H2O and CH3CN as solvents. Compound 1 was identified on the HPLC-MS chromatogram of the
crude extract by comparison of its retention time and ESIMS data with an authentic sample (Figure S10),
indicating that 1 is indeed a naturally occurring metabolite.

Compounds 1–4 were tested for cytotoxicity against a panel of five human tumor cell lines: HeLa,
T24, A549, HCT116, and SH-SY5Y (Table 2). Compounds 1 and 4 showed modest cytotoxicity to
T24 cells, with IC50 values of 18.2 and 4.5 µM, respectively (the positive control cisplatin showed an
IC50 value of 10.9 µM). Compound 4 was also cytotoxic to Hela cells, showing an IC50 value of 5.4 µM
(the positive control cisplatin showed an IC50 value of 8.7 µM).

Table 2. Cytotoxicity of compounds 1–4.

Compound
IC50 (µM)

HeLa T24 A549 HCT116 SH-SY5Y

1 31.8 ± 0.2 18.2 ±5.3 23.1 ± 2.9 50.1 ± 7.0 >50
2 11.7 ± 0.7 22.8 ± 1.7 25.1 ± 1.8 81.5 ± 3.4 41.5 ± 2.0
3 >50 77.8 ± 8.0 >50 >50 71.7 ± 3.2
4 5.4 ± 0.1 4.5 ± 0.4 93.7 ± 5.6 20.9 ± 2.6 38.8 ± 4.9

cisplatin 8.7 ± 0.3 10.9 ± 0.7 17.0 ± 0.5 19.9 ± 0.7 11.2 ± 2.0

Although sporulosol (1) is a ketal derived from two known metabolites, it is the first example of
such a ketal originating from the 6H-benzo[c]chromen-6-one and benzofuranone moieties, representing
a new type of chemical structure. The presence of such a ketal moiety generated two enantiomers
racemized constantly even right after chiral resolution. In addition, the plausible biosynthetic precursor
was identified as a racemic mixture, too. The proposed precursors and the reaction cascades leading to
the generation of 1 are illustrated in Scheme 1.
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3. Materials and Methods

3.1. General Experimental Procedures

An Analytical Automatic Polarimeter (Rodolph Research) was used to record optical rotations
of the isolated compounds, and a Shimadzu Biospec-1601 spectrophotometer was used to measure
the ultraviolet (UV) spectra. A Nicolet Magna-IR 750 spectrophotometer was used to record the
infrared (IR) spectra. Nuclear magnetic resonance (NMR) spectra were recorded on Inova-400 and
Inova-600 spectrometers using TMS as an internal standard. The HMBC and HMQC experiments
were optimized for 8.0 and 145.0 Hz, respectively. Electrospray ionization mass spectrometry
(ESIMS) and high-resolution mass spectrometry (HRMS) data were measured on an Agilent
accurate mass quadrupole time-of-flight LC/MS G6550 instrument. High-performance liquid
chromatography–circular dichroism (HPLC-CD) chromatograms were recorded on a JASCO LC
2000-CD 2095 instrument. All HPLC analysis and separation were performed using an Agilent 1260
instrument (Agilent, Santa Clara, CA, USA) equipped with a variable-wavelength UV detector.

3.2. Fungal Material

The strain P. sporulosum Verkley was isolated from the soil samples that were collected at Poyang
Lake, Jiangxi Province, P. R. China, in December 2010. The fungus was identified by morphological
observation and sequence (Genbank Accession No. JX077030) analyses of the ITS region of the rDNA.
The identified P. sporulosum strain was cultured on Potato Dextrose Agar (PDA) at room temperature
for 10 days, and the resulting agar plugs were cut into small pieces (0.5 × 0.5 × 0.5 cm3) under aseptic
conditions. Fifteen pieces were inoculated into three 250 mL Erlenmeyer flasks, each containing
50 mL medium (0.4% glucose, 1% malt extract, and 0.4% yeast extract; pH 6.5), which were then
incubated at room temperature on an orbital shaker at 170 rpm for 5 days to prepare the seed culture.
The fermentation was carried out in 24 Fernbach flasks of 500 mL, each containing 5.0 mL seed culture
and 200 mL synthetic dropout medium (2% malt extract, 6% dextrin, 0.7% peptone form fish, 0.7%
cottonseed flour, 0.25% MgSO4·7H2O, 0.25% CaCO3, 0.1% FeSO4·7H2O, and 0.001% ZnSO4·7H2O),
and incubated at 25 ◦C on a rotary shaker at 170 rpm for 30 days.

3.3. Extraction and Isolation

The fermented culture was extracted repeatedly with ethyl acetate (EtOAc; 4 × 4.8 L), yielding
5.0 g crude extract upon removal of the organic solvent under vacuum. Subsequently, the crude extract
was fractionated by vacuum liquid chromatography on silica gel with gradient elution of petroleum
ether (PE)–EtOAc. The fractions eluted with 88:12–82:18 PE–EtOAc were combined (338.4 mg) and
separated by Sephadex LH-20 column chromatography (CC; 1:1 MeOH–CH2Cl2). The subfraction
(119.5 mg) was purified by reversed-phase HPLC (Agilent Zorbax SB-C18 column; 5 µm; 9.4 × 250 mm;
45% MeOH in H2O for 38 min; 2 mL/min) to afford 5 (4.0 mg, tR 21.0 min), and the resulting fraction
eluted with 100% MeOH was further purified by RP HPLC (74% MeOH in H2O for 25 min; 2 mL/min)
to afford 4 (1.0 mg, tR 22.0 min). The fractions eluted with 80:20–78:22 PE–EtOAc were combined
(445.0 mg) and separated by medium-pressure C18 RP silica gel CC using MeOH–H2O gradient
elution (20–100%). Purification of the subfraction (68.9 mg) eluted with 80:20 MeOH–H2O by HPLC
(70% MeOH in H2O for 15 min, followed by 82% MeOH in H2O for 30 min; 2 mL/min) yielded 3
(3.0 mg, tR 16.5 min) and 1 (4.0 mg, tR 41.0 min). The fractions eluted with 67:33–60:40 PE–EtOAc were
combined (1.0 g) and further separated by C18 RP silica gel CC eluting with 20–100% MeOH–H2O. The
subfractions eluted with 25:75–35:65 MeOH–H2O were combined (430.2 mg), separated by Sephadex
LH-20 CC (1:1 MeOH–CH2Cl2), and purified by RP HPLC (55% MeOH in H2O for 40 min; 2 mL/min)
to afford 2 (3.0 mg, tR 37.0 min).



Molecules 2018, 23, 1263 7 of 9

3.4. Sporulosol (1)

Sporulosol (1), colorless needles; [α]25
D +1.0 (c 0.10, MeOH); m.p. 130–132 ◦C; UV (MeOH) λmax

(log ε) 340 (3.57) nm; IR (neat) νmax 3555, 2997, 2848, 1726, 1673, 1444, 1233, 1203, 1134 1078, 929,
795 cm−1; for 1H, 13C, and HMBC NMR data, see Table 1; HRESIMS m/z 463.1385 [M + H]+ (calcd. for
C26H22O8, 463.1387).

X-ray Structure Analysis of 1 [34]. X-ray diffraction intensities were recorded with an Oxford
Diffraction Gemini E diffractometer using Cu Kα radiation, λ = 1.5418, Ǻ at 99(6) K. All calculations
were carried out using SHELXL-97 [35] and refined using full-matrix least-squares difference Fourier
techniques. The Siemens Area Detector Absorption Program (SADABS) [36] was used to determine
absorption corrections. The colorless crystal of 1 was obtained in acetone–H2O (30:1). Altogether,
4128 independent reflections were collected from the 10,139 measurements, yielding R1 = 0.0482
and wR2 = 0.1208 [I > 2σ(I)]. Crystal data: colorless crystal (0.20 × 0.18 × 0.04 mm); C26H22O8,
M = 471.00, space group C2/c; monoclinic crystal; unit cell dimensions a = 32.3086(15) Ǻ, b = 8.9000(4)
Ǻ, c = 15.4083(7) Ǻ, V = 4350.5(3) Ǻ3, Z = 8, Dcalcd = 1.438 mg/mm3, µ = 0.906 mm−1, F(000) = 1974.

3.5. 4,7,9-Trihydroxy-3-methoxy-1-methyl-6H-benzo[c]chromen-6-one (2)

4,7,9-trihydroxy-3-methoxy-1-methyl-6H-benzo[c]chromen-6-one (2), white powder; UV (acetone)
λmax (log ε) 340 (2.20) nm; IR (neat) νmax 3458, 2980, 2848, 2158, 1673, 1604, 1397, 1230, 1197, 1120,
798 cm−1; for 1H and 13C NMR data, see Table 1; HRESIMS m/z 289.0705 [M + H]+ (calcd. for
C15H12O6, 289.0707).

3.6. MTT Assay

The cytotoxicity of compounds 1–4 was evaluated with the MTT assay [37]. The cell lines at
a density of (2–5) × 103 cells/well were seeded in 96-well plates and allowed to adhere for 24 h.
Subsequently, compounds 1–4 and cisplatin were added at appropriate concentrations and incubated
with cells at 37 ◦C for 48 h in a 5% CO2-containing incubator. Finally, 20 µL of MTS (Promega) was
added to each well in the dark to assess the proliferation after 90 min incubation at 37 ◦C. The optical
density was recorded on a microplate reader at 490 nm. All tests were run in triplicate.

Supplementary Materials: The supplementary materials are available online. NMR spectra of Compounds 1
and 2 (Figures S1–S6), Figure S7: HPLC chromatogram of sporulosol (1) using a CHIRALPAK AD-H column;
Figure S8: HPLC chromatogram of enalin A (5) using a CHIRALPAK AD-H column title; Figure S9: HPLC-CD
chromatogram of enalin A (5) using a CHIRALPAK AD-H column title; Figure S10: HPLC-MS analysis of the
crude extract.
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