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Abstract

Bacteria are believed to play an important role in the fitness and biochemistry of sponges (Porifera). Pseudomonas species
(Gammaproteobacteria, Pseudomonadales) are capable of colonizing a broad range of eukaryotic hosts, but knowledge of
their diversity and function in freshwater invertebrates is rudimentary. We assessed the diversity, structure and antimicrobial
activities of Pseudomonas spp. in the freshwater sponge Ephydatia fluviatilis. Polymerase Chain Reaction – Denaturing
Gradient Gel Electrophoresis (PCR-DGGE) fingerprints of the global regulator gene gacA revealed distinct structures
between sponge-associated and free-living Pseudomonas communities, unveiling previously unsuspected diversity of these
assemblages in freshwater. Community structures varied across E. fluviatilis specimens, yet specific gacA phylotypes could
be detected by PCR-DGGE in almost all sponge individuals sampled over two consecutive years. By means of whole-genome
fingerprinting, 39 distinct genotypes were found within 90 fluorescent Pseudomonas isolates retrieved from E. fluviatilis.
High frequency of in vitro antibacterial (49%), antiprotozoan (35%) and anti-oomycetal (32%) activities was found among
these isolates, contrasting less-pronounced basidiomycetal (17%) and ascomycetal (8%) antagonism. Culture extracts of
highly predation-resistant isolates rapidly caused complete immobility or lysis of cells of the protozoan Colpoda steinii.
Isolates tentatively identified as P. jessenii, P. protegens and P. oryzihabitans showed conspicuous inhibitory traits and
correspondence with dominant sponge-associated phylotypes registered by cultivation-independent analysis. Our findings
suggest that E. fluviatilis hosts both transient and persistent Pseudomonas symbionts displaying antimicrobial activities of
potential ecological and biotechnological value.
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Introduction

Sponges (Porifera) are sessile filter-feeding organisms that

primarily lack evasive or behavioural defence strategies [1].

Besides mechanical deterrence enabled by their spicules [2],

sponges seem to mainly rely on chemical defence to prevent

predation (e.g. by fishes and molluscs), avoid microbial biofilm

formation and impede fouling [2–5]. There is increasing evidence

that bacterial symbionts are the actual producers of many sponge-

derived antagonistic metabolites [6–10], and this aspect has

triggered much research interest in the diversity and bioactive

potential of bacteria from marine sponges [9,11,12]. Conversely,

knowledge of microbial communities in freshwater sponges

remains limited. Their ubiquity in continental water bodies [13],

coupled to recent molecular findings on highly selected commu-

nities and specific lineages of bacteria that inhabit them [14] make

freshwater sponges valuable models in symbiosis research.

Although inland water sponges likely synthesize less secondary

metabolites than marine species [15], they are prolific producers of

fatty acids, lipids and sterols. Indeed, more than 100 distinct such

compounds have been recorded for freshwater sponges and some

might be of bacterial origin [16]. Commensal bacterial commu-

nities may therefore fulfil important services required for the

survival of their freshwater sponge host.

Pseudomonas species (Gammaproteobacteria, Pseudomonadales) are one

ubiquitous group of metabolically versatile, eukaryote-associated

bacteria with important effects on host health and survival, where

they display a multitude of behaviours [17]. Often commensalistic,

pseudomonads may act as opportunistic pathogens e.g. in plants

[18,19], fish [20,21] and humans [22,23]. In contrast, they are
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found in synergistic association with arbuscular mycorrhizae [24]

and plant roots where they play beneficial roles in plant growth

promotion and disease control [25,26]. The two-component

regulatory system GacS/GacA mediates the interaction between

Pseudomonas spp. and their hosts. It controls the biosynthesis of

several secondary metabolites and exoenzymes at the post-

transcriptional level [25,27]. Mutations in gacA and gacS genes

induce phenotypic variation in Pseudomonas spp. [28,29], affecting

host colonization and persistence traits such as motility, biofilm

formation, biosurfactant synthesis and protein secretion [28–31].

Previous studies demonstrated that the gacA gene is a high-

resolution phylogenetic marker to the study of Pseudomonas spp.

[32,33].

Pseudomonads co-dominate the culturable fraction of the

freshwater sponge microbiome [34] and have been previously

detected in E. fluviatilis by cultivation-independent means [14].

Recently, Lipko et al. [35] reported on polyketide synthase (PKS)-

encoding genes from a freshwater sponge pseudomonad. It is well

known that Pseudomonas genomes are equipped with a wide range

of secondary metabolite biosynthetic gene clusters, including PKS

clusters [36,37]. However, complete genome sequences from - and

dedicated studies of - freshwater Pseudomonas spp. are scarce and

our understanding of their diversity, secondary metabolite

production capacity and adaptive strategies limited. Here, we

combine culture-dependent and -independent methods to unveil

the structure, diversity, and antimicrobial properties of Pseudomonas

spp. in the freshwater sponge Ephydatia fluviatilis. To this end, PCR-

DGGE fingerprinting of Pseudomonas-specific 16S rRNA and gacA

genes was used to test the hypotheses of selectivity and temporal

stability of Pseudomonas assemblages in the animal host. We further

identify Pseudomonas species cultured from the sponge and

determine their genome-wide diversity, antagonism towards

several microorganisms and distribution/dominance across E.

fluviatilis individuals. We finally address the potential biotechno-

logical value of E. fluviatilis as a promising source of novel

pseudomonads presenting antimicrobial activities.

Materials and Methods

Sampling
Ephydatia fluviatilis specimens were collected in the Vinkeveense

Plassen lake (VP, (52u149N, 4u579E), an artificial lake located in

the northwest of the province of Utrecht in the Netherlands on

June 6, 2007 and June 4, 2008. The specimens were found at a

depth of 9 m along a ,60 m transect on woody material of a

shipwreck scuttled at the diving point (‘zandeiland 4’) of VP and/

or on zebra mussels (Dreissenia polymorpha) attached to wrecks and

hard substrate. Each year, four sponge individuals (2007: SA – SD;

2008: SE – SH, about 10 g wet weight each) were sampled by

scuba diving and placed in 50 mL falcon tubes filled with lake

water. Four bulk water samples (W1–W4) were collected in sterile

500 mL flasks in year 2007 at about 3 m depth. This sampling

scheme enabled us to address the hypothesis of selective shaping of

Pseudomonas assemblages in E. fluviatilis (sponge vs. water compar-

ison, 2007 samples) and to detect Pseudomonas phylotypes

consistently associated with E. fluviatilis through time, if any

(2007 vs. 2008 comparison). Further results on sponge vs. water

comparisons for samples collected in 2008 have been described

elsewhere [14]. Samples were transported to the laboratory

(,2.5 h) in a cooling box and immediately processed for DNA

extraction and culturing. Because sampling involved invertebrate

animals not representing endangered or protected species and did

not occur within privately owned or protected areas, no specific

permits were required for the described field studies. Sampling

procedures were minimally intrusive and preserved sponge

individuals at the field site.

Total community DNA extraction
Total community DNA extraction from sponge and bulk water

samples took place as described before [14]. Briefly, homogenates

were obtained by grinding sponge samples with mortar and pestle.

These were subjected to differential centrifugation to yield sponge-

derived microbial cell pellets, which were used for DNA extraction

with the Fast DNAH Spin Kit for Soil (Bio101, Q-Biogene,

Heidelberg, Germany). The same kit was applied to extract DNA

from water samples concentrated on a sterile 0.2 mm nitrocellulose

membrane filter (Carl Roth GmbH, Karlsruhe, Germany).

Pseudomonas-specific PCR-DGGE fingerprinting
Cultivation-independent analysis of Pseudomonas diversity in E.

fluviatilis and bulk water DNA samples was carried out using PCR-

DGGE primer systems and cycling conditions as previously

described for the amplification of Pseudomonas-specific 16S rRNA

[38] and gacA [33] gene fragments. All PCRs were performed on a

Verititm thermal cycler (Applied Biosystems, Foster City, CA).

Denaturing gradient gel electrophoresis (DGGE) was performed

with a PhorU-2 gradient system (Ingeny International, Goes, The

Netherlands). Pseudomonas-specific 16S rRNA and gacA gene

amplicons were applied onto polyacrylamide gels containing a

46.5–65% gradient of denaturants (100% denaturants defined as

7M urea and 40% formamide) and a 6–9% gradient of acrylamide

[14]. Mixtures of 16S rRNA PCR products from five bacterial

species (Arthrobacter sp., Burkholderia sp., Enterobacter sp., Listeria sp.

and Rhizobium sp.) were applied at the edges of the 16S rRNA gel

and used as standard to control run quality. The PCR-DGGE

electrophoretic mobility of gacA gene fragments amplified from 36

E. fluviatilis derived Pseudomonas isolates shown to differ in whole

genome content (see ‘‘BOX-PCR fingerprinting’’ below) was

determined. These PCR products were pooled and used as a

reference on the gacA gel to look for band matches in the sponge

metagenomic DNA samples that could be assigned to these

isolates. Electrophoresis was performed in 1x TAE buffer (pH 8.0)

at 58uC and 140 V for 16 h. Gels were silver-stained [39] and air-

dried at room temperature (RT). Processing of the gel images and

multivariate statistical analysis of PCR-DGGE data were accom-

plished following the procedures of Costa et al. [40]. Briefly, the

software package GelCompar 4.5 was used to calculate a ‘‘samples

vs. band abundance’’ contingency table for each gel, which was

then used as input data for multivariate statistics with Canoco for

windows 4.5. Firstly, detrending correspondence analysis was

applied to both 16S rRNA and gacA gene datasets to check the

length of gradient in PCR-DGGE fingerprint variation. The linear

model of distribution fitted both data best and, therefore,

redundancy analysis (RDA) was chosen to estimate the extent to

which the variation in the relative abundance of Pseudomonas

DGGE bands are explained by the independent variables, namely

sample origin and year of sampling.

Isolation of fluorescent Pseudomonas spp. from E.
fluviatilis

One gram of each sponge specimen sampled in year 2008 (SE –

SH) was cut and homogenized in 4 mL sterile 0.85% saline

solution using mortar and pestle. Serial dilutions were prepared

and spread onto Gould’s S1 (GS1) agar [41] plates in triplicate.

Volumes of 1, 10 and 50 mL freshwater were filtered in triplicate

per sample through sterile 0.2 mm nitrocellulose filters (47 mm;

Carl Roth GmbH, Germany). Filters were then placed onto GS1

Pseudomonas spp. in Ephydatia fluviatilis
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agar plates. All plates were incubated at 28uC. Fluorescent colony

forming units (CFU) were counted under UV light after 2 and 5

days of incubation. Ninety colonies from sponge samples (18 to 26

per specimen) were randomly picked and purified with successive

streaks on modified King’s B (KB) agar plates (1.5% agar, 1.0%

peptone, 0.75% glycerol, 0.075% K2HPO4, 0.075% MgSO4).

Purified isolates were stored in KB broth with 20% glycerol at

280uC.

Whole-genome diversity of Pseudomonas isolates
Two millilitre aliquots of cultures shaken overnight were

centrifuged at 16,000 g for 20 min. The supernatant was discarded

and genomic DNA extracted from the resulting cell pellets with the

WizardH Genomic DNA Purification Kit (Promega, Madison, WI,

USA). To determine genotypic diversity within Pseudomonas

isolates, whole-genome BOX-PCR genotyping was performed

with the BOXA1R primer (CTA CGG CAA GGC GAC GCT

GAC G) as previously described [42]. This primer is complemen-

tary to the boxA subunit of the conserved BOX element, a

repetitive DNA sequence present in most gram-negative bacteria,

including pseudomonads. Its selective amplification leads to a

genotypic fingerprint that permits differentiation to the strain level.

BOX-PCR amplicons were resolved by electrophoresis at 80 V on

2% agarose gels. Gels were visualized under UV light (256 nm)

after 30 min staining in ethidium bromide (1 mg mL21). Cluster

analysis of the resulting BOX-PCR profiles was performed using

the GelCompar II software (Applied Maths, Ghent, Belgium) as

described elsewhere [42]. The Shannon measure of diversity

(H’) was applied to estimate genotypic diversity within fluorescent

pseudomonads isolated from each E. fluviatilis specimen.

Identification and phylogeny of Pseudomonas isolates
Isolates displaying singular BOX-PCR profiles (singletons) and

representatives of each BOX-PCR genotypic group determined by

cluster analysis were selected for 16S rRNA and gacA gene

sequencing. 16S rRNA gene fragments (,1500 bp) were amplified

with primers F8 (59-AGA GTT TGA TCM TGG CTC AG-59)

and R1492 (59-GGT TAC CTT GTT ACG ACT T-39) [43] with

56uC annealing temperature in 30 PCR cycles. GacA gene

fragments (575 bp) were amplified using the forward primer

gacA-1F [33] and the reverse primer gacA-2 [32] as explained by

Costa et al. [33]. 16S rRNA and gacA gene PCR products were

sequenced at MACROGEN Inc. (Seoul, South Korea) using

standard Sanger sequencing procedures. Sequences were edited

with the Sequence Scanner Software version 1.0 (Applied

Biosystems, Foster, CA, USA). Closest matches to sequence

queries were identified using the blast algorithm of NCBI (http://

blast.ncbi.nlm.nih.gov/Blast.cgi). Closest type-strain 16S rRNA

gene relatives to each sequenced isolate were determined using the

RDP II sequence match tool (http://rdp.cme.msu.edu/seqmatch)

and served as reference for the tentative identification of the

isolates at the species level. For single gene-based diversity

assessments and phylogeny inference, 16S rRNA gene partial

sequences were aligned using the SINA web aligner tool and

imported into the ARB software. Analysis of gacA gene sequences

succeeded through the construction of a gacA gene database in

ARB with subsequent slow and accurate alignment using

ClustalX. 16S rRNA and gacA gene alignments were manually

corrected using the ARB sequence editor window. Phylip format

alignments were used as input files for the generation of 16S rRNA

and gacA gene sequence similarity matrices with the dnadist

software, applying the Kimura-2 parameter as distance algorithm.

Sequences were assigned operational taxonomic units (OTU)

using DOTUR [44]. The frequency data assigned to a ‘unique’

OTU at 99%, 97% and 95% similarity levels were used to yield

rarefaction curves for each gene. Maximum likelihood phyloge-

netic inference was carried out for the gacA gene dataset with the

general-time reversible (GTR) evolutionary model with a discrete

gamma-distribution of among-site rate variation (C4) and a

proportion of invariant sites (I). This was regarded the best-fit

model of nucleotide substitution for the dataset as determined by

analysis run on MrModelTest version 2.3 [45]. Phylogenetic

analysis and tree construction were conducted with the software

package MEGA version five [46]. Sequences were deposited in the

European Molecular Biology Laboratory database under the

accession numbers HE794891–HE794933 (16S rRNA gene) and

HE794934–HE794974 (gacA gene).

Biofilm formation in static microcosms
An air-liquid (A-L)-interface assay for biofilm formation was

performed using the static microcosm approach developed by Ude

et al. [47]. Briefly, static microcosms consisted of glass tubes

containing 5 mL of liquid KB. Fifty microliter inocula from

overnight shaking cultures were used to start the biofilm formation

assay. Tubes were incubated for 6 days, vibration-free, at 23uC
with lids loosely attached to allow air exchange. Biofilm material, if

present, was taken from the A-L interface with a wire loop and

used to inoculate a second, fresh microcosm. If no biofilm was

observed by naked eye or as material present on the wire loop,

then the microcosm was vortex-shaken for 30 sec and a 50 mL

aliquot was taken for inoculation of a new microcosm. All 90

isolates were tested in triplicate through three successive passages

over a maximum of 18 days. A microcosm was scored as biofilm-

positive if - at least in one replicate - material at the surface could

be observed by eye (score +), or detected using a wire loop (score

+/2). Pseudomonas protegens strain CHA0, which yields a mucilag-

inous biofilm under the tested circumstances, was employed as a

positive control in the assays.

In vitro antimicrobial activity
In vitro antagonistic activity of Pseudomonas spp. isolated from E.

fluviatilis was tested towards the phytopathogenic fungi Rhizoctonia

solani strain AG3 (basidiomycete) and Fusarium moniliforme strain

CBS 218.76 (ascomycete), the phytopathogenic oomycete Pythium

ultimum strain 67-1 and the commensalistic bacterium Bacillus

subtilis F6 Rpr. For both fungi and P. ultimum, tests were performed

in dual-culture assays as described before [48] on modified Potato

Dextrose Agar (1.95% PDA, 0.5% Peptone, 1.5% Agar).

Antagonistic potential against B. subtilis F6 Rpr was tested

following the agar plug assay procedure of Hentschel et al. [49].

All experiments were set up in triplicate and the degree of

antagonism was estimated by measuring the size of the haloes of

inhibition of B. subtilis after 2 days, of P. ultimum and R. solani after

4 days and of F. moniliforme after 7 days of incubation at 28uC. The

growth of the target organisms in the absence of potential

antagonists was monitored and used as blank. The soil-derived,

root-colonizing bio-control strain Pseudomonas protegens CHA0,

which inhibits all tested strains in vitro, was used as a positive

control for antagonism in all trials and replicates.

Resistance against protozoan predation
The resistance of Pseudomonas strains to predation by Colpoda

steinii strain Sp1 was evaluated in a microtiter plate assay adapted

from Jousset et al. [50]. C. steinii culture stocks were maintained in

LB broth diluted 1:10 in sterile amoeba saline (AS) solution [51]

and purified in two centrifugation steps (1000 g, 1 min) prior to the

start of the experiments. Fresh Pseudomonas cultures were incubated

overnight with gentle agitation (50 rpm) at RT in 96-well plates

Pseudomonas spp. in Ephydatia fluviatilis
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containing 150 mL LB broth 1:20 diluted in AS. Twenty

microliters of overnight cultures were transferred to a new 96-

well microtiter plate, each well containing 80 mL AS mixed with

20 mL of washed and active C. steinii suspension (set at final density

of 1,000 cells mL21). Plates were incubated with gentle agitation

(50 rpm) at RT, and bacterial densities (OD600) in the presence

and absence of C. steinii were measured at regular intervals over a

50 h period with an M200 plate photometer (Tecan, Männedorf,

Switzerland). Bacterial sensitivity to predation was defined as the

relative reduction of the OD600 value after its stabilization, usually

at 22 h, in the presence of the protozoan compared to the initial

OD600 value at 0 h readily after protozoan inoculation. Wells

containing only bacterial isolates or protozoan cells were

monitored in parallel to control for vitality and growth of the

tested organisms. Bacteria with less than 40% reduction of the

initial optical density after 22 h of exposure to C. steinii were

counted as ‘‘predation-resistant’’. The objective of this assay was to

Figure 1. PCR-DGGE fingerprints. Pseudomonas 16S rRNA (a) and gacA (c) gene fragments amplified from Ephydatia fluviatilis (2007: SA-SD and
2008: SE-SH) and lake water (2007: W1–W4) and their respective ordination diagrams generated by redundancy analysis (b, d) are shown. 16S rRNA (S)
and gacA (G) gene standards were applied on the corresponding gels to control the DGGE run (see methods for standard compositions). Numbers 1
to 7 show some of the PCR-DGGE gacA gene bands amplified from E. fluviatilis metagenomic DNA (cultivation-independent approach) that matched
gacA gene electrophoretic mobilities from E. fluviatilis-derived Pseudomonas isolates (cultivation-dependent approach). In ordination diagrams, green
squares and triangles correspond to E. fluviatilis samples from 2007 and 2008, respectively; and blue circles to lake water samples. Blue stars: centroid
positions of the independent variables E. Fluviatilis, lake water and year of sampling. Independent variables found to significantly influence PCR-DGGE
band profiling variation are marked with an asterisk.
doi:10.1371/journal.pone.0088429.g001

Pseudomonas spp. in Ephydatia fluviatilis

PLOS ONE | www.plosone.org 4 February 2014 | Volume 9 | Issue 2 | e88429



Pseudomonas spp. in Ephydatia fluviatilis

PLOS ONE | www.plosone.org 5 February 2014 | Volume 9 | Issue 2 | e88429



perform one single screening for resistant isolates to be used in the

short-term toxicity assay against C. steinii (see below).

Short-term toxicity of Pseudomonas spp. extracts toward
Colpoda steinii

Predation-resistant isolates, determined as described above,

were grown for 2.5 days in 20 mL LB broth (10x diluted in AS) at

27uC under shaking at 200 rpm. The cell suspensions were then

transferred to 50 mL Falcon tubes containing 2.2 mL of 1 M HCl

and vortexed, after which 20 mL ethyl acetate was added. Tubes

were then shaken for 90 min at 37uC and centrifuged (1800 g,

10 min). The solvent-phase supernatants (,10 mL) were carefully

transferred to new tubes and dried to air. The dried bacterial

extracts were resuspended in 100 mL methanol and kept at

220uC. One microliter volumes of the respective cell extracts were

added to 100 mL freshly grown C. steinii suspensions in 96-well

microtiter plates, and suspensions were gently homogenized by

shaking. Controls were monitored in parallel, replacing the cell

extracts by 1 mL methanol. The extract of P. protegens CHA0 grown

under the same conditions was included as positive control. The

effect of extracts (and methanol) on C. steinii was evaluated in

duplicate after 5, 15, 30, 60 and 120 min, respectively, using an

inversion microscope (Axiovert 25, Carl Zeiss, Jena, Germany;

magnification 6200 and 6400).

Multivariate analysis of antagonistic properties
Multivariate analysis was performed with the objective of

grouping the Pseudomonas isolates based on their profiles of

antagonistic features. These were determined, per isolate, as the

collective scores obtained in antibacterial, antifungal, anti-oomyce-

tal and predation resistance in in vitro assays (semi-quantitative data),

along with biofilm formation tests as described above, in accordance

with the approaches of Costa et al. [33] and Adesina et al. [52].

Thus, the 90 Pseudomonas isolates were introduced in the statistics as

samples, whereas their respective antimicrobial properties served as

descriptors of each sample (dependent variables). The affiliation of

Pseudomonas isolates to a certain E. fluviatilis specimen (i.e. specimens

E, F, G, H) was used as a nominal (i.e. binary), independent

variable. This way, correlations between antimicrobial properties

and their association with each E. fluviatilis specimen could be

explored. Analyses were carried out using the software package

Canoco for Windows 4.5. After preliminary inspection of overall

dataset variation by detrended correspondence analysis (DCA),

principal components analysis (PCA) was selected as the most

appropriate ordination method (linear, unconstrained) to be used in

the analysis [53]. PCA was run with focus on inter-sample distances

and results were illustrated in an ordination diagram.

Results

Cultivation-independent analysis of Pseudomonas
communities

PCR-DGGE analysis of Pseudomonas assemblages using specific

16S rRNA gene primers revealed low levels of band richness in all

samples (Fig. 1a). Two up to three dominant bands in bulk water

fingerprints and a single dominant band in E. fluviatilis profiles

were visible, with fingerprints in general displaying less than 10

detectable bands. All profiles were characterized by low and

statistically similar (p = 0.827; One-Way-ANOVA) Shannon

diversity indices, with values of 1.67360.35, 1.54360.26 and

1.56260.35 (means 6 SD, N = 4) obtained for bulk water (2007)

and E. fluviatilis (2007, 2008) samples, respectively. Regarding

community structure as revealed by 16S rRNA gene fingerprint-

ing, Monte Carlo permutation tests confirmed sample origin as a

significant factor differentiating the profiles (p = 0.048 and

p = 0.044 for the independent variables ‘‘water’’ and ‘‘E. fluviatilis’’,

respectively); however, yearly variation in sponge profiles was not

significant (p = 0.132 and p = 0.142 for the independent variables

‘‘2007’’ and ‘‘2008’’, respectively; Fig. 1b). In contrast with 16S

rRNA gene analyses, the relative abundance of some Pseudomonas

gacA bands from bulk water was enhanced in E. fluviatilis while

several other bulk water gacA bands could not be readily detected

in the sponge samples, resulting in reduced gacA band diversity in

the latter PCR-DGGE fingerprints in comparison with the former

(Fig. 1c). Significantly higher (p,0.001; F2,9 = 19.404; OW-

ANOVA followed by Tukey-test) gacA diversity indices were found

in bulk water (3.21060.13) than in E. fluviatilis profiles from years

2007 (2.54060.146) and 2008 (2.40260.28). Diversity measures

obtained for sponge gacA fingerprints from 2007 and 2008 were

statistically similar. Monte Carlo permutation tests confirmed the

independent variables ‘‘water’’ and ‘‘E. fluviatilis’’ to significantly

differentiate the PCR-DGGE profiles (p = 0.002 and 0.006,

respectively), with samples belonging to these microhabitats clearly

separated along the horizontal axis of the ordination diagram

(Fig. 1d). As opposed to 16S rRNA gene fingerprinting, year of

sampling did contribute significantly to distinguish the gacA

fingerprints of E. fluviatilis specimens (p = 0.03 for both indepen-

dent variables 2007 and 2008, respectively). Overall, PCR-DGGE

fingerprinting data showed statistically higher Pseudomonas gacA

gene diversity than predicted by 16S rRNA gene analysis in both

water (p = 0.003; F1,3 = 77.844; OW-Repeated Measures-ANOVA

followed by Tukey-test) and E. fluviatilis (p = 0.002; Two-Way-RM-

ANOVA followed by Tukey-test) samples.

Isolation of fluorescent Pseudomonas spp. from E.
fluviatilis

Numbers of fluorescent Pseudomonas were low in the VP bulk

water samples, ranging from 3.1–4.16100 CFU mL21. In con-

trast, numbers in E. fluviatilis specimens were in the range of 1.5–

3.66103 CFU g (fresh wt)21, surpassing counts obtained for bulk

water by c. 3 orders of magnitude. In total, 90 isolates were

obtained from E. fluviatilis specimens sampled in 2008 and

thoroughly inspected for diversity, biofilm formation capacity

and antimicrobial activities.

Whole-genome diversity and identity of Pseudomonas
isolates

BOX-PCR genotyping (Fig. 2) revealed 15 fingerprint clusters

(BOX I–XV) containing 2 to 17 isolates next to 24 fingerprints

represented by one isolate (singletons), thus yielding 39 genotypes

among the 90 surveyed isolates. Genotypic diversity of Pseudomonas

isolates varied substantially across the source E. fluviatilis

specimens. Eleven of the 15 BOX-PCR clusters were exclusive

to a given sponge individual. The four remaining genotype clusters

(BOX V, VII, X and XII) contained isolates retrieved from either

2 or 3 different sponge specimens (Fig. 2). Many BOX-PCR

Figure 2. BOX-PCR genotyping of fluorescent Pseudomonas spp. isolated from Ephydatia fluviatilis. All 15 BOX-PCR clusters (BOX I–XV) and
24 singleton (S) profiles identified in this study are shown. Closest type strain 16S rRNA gene relatives (‘‘Closest type’’) present at the RDP database
are given, with their sequence match scores (see Table S1 for definition and comparison with percent similarities) between brackets.
doi:10.1371/journal.pone.0088429.g002
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singletons (10 of 24) were detected in E. fluviatilis specimen SG.

This sponge sample yielded the highest BOX-PCR-based

Shannon diversity index (Table 1). Forty-three representative

isolates covering the 39 observed BOX-PCR profiles were all

identified as members of the genus Pseudomonas by 16S rRNA gene

sequencing (Table S1). Twelve of the 39 BOX-PCR genotypes

shared 100% 16S rRNA gene sequence similarity with type strains

of species such as P. mandelii, P. migulae, P. monteilii, P. reinekei, P.

brenneri and P. cedrina (Table S1). Overall, 40 and 13 isolates

resembled P. jessenii and P. umsongensis based on .99% 16S rRNA

gene similarities between genotype representatives and type strains

of these species (Tables S1 and S2). These isolates encompassed

several BOX-PCR genotypes and antagonistic profiles, represent-

ing the most prominent species tentatively identified in this study

(Table S2). The four BOX-PCR genotypes retrieved from more

than one sponge specimen had highest resemblance to P. koreensis

(BOX V), P. migulae (BOX VII), P. umsongensis (BOX X) and P.

monteilii (BOX XII) type strains (Fig. 2, Table S1). BOX cluster I

comprised five isolates from specimen SH (Fig. 2). The biological

control strains Pf-5 and CHA0 (T), belonging to the recently

described species P. protegens (Ramette et al., 2011), exhibited the

highest genetic similarity to this group (Table S1). Seventeen of the

18 isolates from sponge specimen F belonged to the same BOX-

PCR cluster (VI). P. jessenii CIP 105274 was the closest type strain

to this group (Table S1).

Diversity and phylogeny of Pseudomonas isolates
Nucleotide heterogeneities among partial, high quality 16S

rRNA and gacA gene sequences obtained for 36 Pseudomonas

isolates were compared. These isolates represented all 15 BOX-

PCR clusters and 21 of the 24 single BOX-PCR genotypes found

in our survey (Fig. 2). A plot of observed operational taxonomic

units (OTUs) vs. the number of compared sequences yielded

dissimilar rarefaction curves for the 16S rRNA and gacA genes,

regardless of the cut-off values used to define OTUs (Fig. 3). At

99% similarity, about twice the number of OTUs - 21 vs. 10 - was

observed for the gacA gene sequences in comparison with the 16S

rRNA gene sequences. This difference was more drastic when

OTU numbers were compared at 97 and 95% similarity

thresholds: only 4 and 2 OTUs were found for the 16S rRNA

gene, whereas the gacA curve at these cut-off values yielded 19 and

17 OTUs, respectively (Fig. 3). GacA gene sequencing not only

revealed higher diversity within the studied strains than inferred by

the 16S rRNA gene-based method, with overall mean nucleotide

p-distances of 15.4 and 2.1% registered for both genes, respec-

tively, but also resulted in up to 18 novel, non-redundant gacA gene

sequences added to public databases at a 97% gene similarity

threshold (Fig. 4). Among them are the first gacA gene sequences

assigned to species such as P. migulae (OTU 12), P. mandelii (OTU

2), P. brenneri (OTU 14), P. monteilli (OTU 6) and P. cedrina (OTU

8). Two well-supported phylogenetic clusters contained diverse

and novel gacA genes that moderately resembled those of

uncultured (clones C3 and K10, ‘‘P. jessenii’’ cluster) and cultured

(P. fluorescens Pf0-1; ‘‘P. jessenii, P., reinekei, P. umsongensis’’ cluster)

rhizosphere pseudomonads (Fig. 4). GacA gene phylogenetic

inference was also helpful in discriminating isolate SH-1-10

(BOX I) from its closest relatives P. protegens Pf-5 and CHA0,

and in depicting high nucleotide heterogeneity among several P.

jessenii-like strains (Fig. 4), what could not be achieved by 16S

rRNA gene analysis.

Table 1. Genotypic diversity, biofilm capacity and in vitro antagonistic activity of fluorescent Pseudomonas isolates from Ephydatia
fluviatilis.

Specimen1 N2 H’3 Biofilm4 R. sol. P. ult. F. mon. B. sub. C. stein.

SE 21 2.264 11 6 11 1 9 5

SF 18 0.215 18 6 3 6 13 10

SG 25 2.754 12 2 7 0 11 5

SH 26 2.192 11 1 8 0 11 12

All 90 1.404 52 15 29 7 44 32

1SE, SF, SG, SH – Ephydatia fluviatilis individuals collected in 2008.
2N - total number of isolates per sponge sample.
3H’ - BOX-PCR-based (Fig. 2) genotypic diversity of fluorescent Pseudomonas per sponge sample, estimated with the Shannon diversity index.
4All other values refer to the number of isolates from each sponge individual tested positive for biofilm formation (Biofilm), antagonism towards Rhizoctonia solanii AG3
(R. sol.), Pythium ultimum 67-1 (P. ult.), Fusarium moniliforme CBS 218.76 (F. mon.) and Bacillus subtilis F6 Rpr (B. sub.), and predation resistance towards Colpoda steinii
Sp1 (C. stein.).
doi:10.1371/journal.pone.0088429.t001

Figure 3. Rarefaction curves. Shown are operational taxonomic
units (OTUs) observed at 99%, 97% and 95% similarity levels for partial
16S rRNA (blue) versus gacA (red) gene sequences of E. fluviatilis-
derived, fluorescent Pseudomonas isolates encompassing 36 different
genomes as determined by BOX-PCR fingerprinting (Fig. 2).
doi:10.1371/journal.pone.0088429.g003
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Figure 4. Maximum likelihood phylogenetic tree of Pseudomonas gacA genes. GacA gene sequences of E. fluviatilis-derived Pseudomonas
isolates (bold) and of most (.90%) isolates and clones present in relevant databases are shown. In brackets after the isolates’ entries are their
corresponding gacA operational taxonomic units (OTU) as inferred by rarefaction analysis at 97% similarity threshold (Fig. 3). ‘‘Closest type’’ shows the
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Biofilm formation and in vitro antagonistic activities
Of the 90 isolates examined, 52 (58%) produced observable

biofilms within 15 days of incubation. All isolates of BOX-PCR

groups I (P. protegens-like) and VI (P. jessenii-like) evolved a

detectable biofilm in the first microcosm after 6 days. The

phenotypes of the produced biofilms could be categorized as either

flocculent or mucilaginous (Fig. 5; Table S2). The latter type was

found more frequently, in 40 (77%) of the 52 biofilm-producing

isolates.

In vitro antagonistic activity against R. solani, F. moniliforme, P.

ultimum or B. subtilis was observed for 68 of the 90 Pseudomonas

isolates (75%), although none of them displayed antagonism

towards all target organisms simultaneously (Table S2). The

number of antagonists found was different for each test organism

and sponge sample (Table 1). A higher proportion of isolates

displayed antagonism against P. ultimum (32%) and B. subtilis (49%)

than against the soil fungi R. solani (17%) and F. moniliforme (8%).

Of the 7 isolates antagonistic to F. moniliforme, 6 belonged to BOX-

PCR cluster VI (P. jessenii). Twenty-one isolates (23%) were

strongly inhibitory towards one or more of the model targets

(Table S2). Isolates with conspicuous antagonism were SE-2-03,

SE-2-07 and SF-3-05 against R. solani and SE-2-07, SE-1-01, SE-

1-04 and SG-2-01 against P. ultimum (Fig. 5, Table S2).

Noteworthy was also the strong inhibition showed by all P.

protegens-like isolates towards B. subtilis (Fig. 5; Table S2).

When offered as a prey to the ciliate C. steinii Sp1, 35% of the

isolates (32/90) resisted predation (Table 1, Fig. 6). P. protegens-like

isolates (BOX I, Fig. 2), isolates SG-1-02 and SH-1-06 (P. mandelli)

and isolates SH-1-17 (P. umsongensis) and SH-2-01 (P. jessenii, BOX

XV) were highly efficient in withstanding protozoan predation,

whereas P. jessenii-like isolates of BOX-PCR group VI showed

variable results (Table S2).

To group the isolates in respect with their antimicrobial traits, a

PCA ordination triplot was created (Fig. 7). The diagram

privileges visualization of highly antagonistic isolates as opposed

to those showing weak or moderate inhibitory scores. The weaker

the antagonistic profile, the closer a given isolate is from the

diagram’s intercept. This way, the coincident and strong

antagonism against C. steinii and B. subtilis exhibited by P.

protegens-like isolates (BOX I) grouped them apart from most other

strains. Five of the 7 isolates clearly antagonistic to F. moniliforme

also inhibited the growth of R. solani, and this trend could be

depicted by exploratory ordination analysis (Fig. 7). Strong B.

subtilis and C. steinii antagonism had low correlation with

pronounced antifungal and anti-oomycetal activities, resolving

highly antagonistic Pseudomonas isolates in two distinct functional

groups (Fig. 7). The arrow representing biofilm formation in the

ordination diagram highlights the positive correlation between

biofilm production capacity and the detection of antagonistic

activity among the studied strains. Indeed, strains presenting no or

rather weak antagonistic profiles, placed next to the diagram’s

intercept (Fig. 7), usually did not produce an observable biofilm

(Table S2). No association between a given antagonistic attribute

and the origin of the isolates (i.e. sponge specimens E, F, G, H) was

found.

Short-term responses of active Colpoda steinii to
Pseudomonas spp. cell extracts

Active Colpoda steinii Sp1 cells were challenged with cell extracts

from selected predation resistant Pseudomonas isolates (n = 20; Table

S2). Cell extracts of P. protegens strain CHA0 (positive control)

caused immobility of all C. steinii cells within 5 min and cell lysis

within 120 min of observation. As negative and blank controls, C.

steinii cultures – either pure or provided with 1 mL methanol,

respectively - were monitored in parallel to each tested isolate. In

most cases, methanol had no effect on the agility of C. steinii cells.

For about 10% of the tested isolates, C. steinii cells with slower

motility were observed in the first 30 min of investigation, but

recovered within the given observation time (2 h). Conversely, C.

steinii cells were rapidly affected by extracts of all Pseudomonas

protegens-like isolates (Fig. 2, BOX I), P. jessenii-like isolates SF-2-02

and SF-3-03 (BOX VI), and isolates SG-1-02, SH-1-17 and SH-2-

01 (Table S2). Within five to 15 min after provision of these

extracts, all C. steinii cells became immotile, contrasting their

observed motility in the controls. After 2 h of treatment, lysis

(Fig. 6) was initiated in C. steinii cells provided with extracts of P.

protegens-like isolates, and 24 h later not a single unbroken C. steinii

cell could be recognized in these treatments. In certain cases (e.g.

cell extracts of isolates SH-1-08 and SH-1-12), the slowing-down

of the cilia-mediated movement was easily traced under the

microscope. Interestingly, extracts of isolates SF-2-02, SH-1-17

and SH-2-01, all causing 100% immobility of C. steinii cells (Table

S2), were not able to initiate lysis, and even 48 h after start of the

experiment, the ciliate cells were intact.

Linking cultivation-independent and -dependent
analyses

We conducted PCR-DGGE gacA gene fingerprinting of an

artificial, culturable Pseudomonas community composed of 36 of the

39 distinct BOX-PCR genotypes observed in Fig. 1. These 36

isolates presented high quality 16S rRNA and gacA gene sequences

for comparative gene heterogeneity analyses (Fig. 3). PCR-DGGE

profiling of their gacA genes revealed at least 16 clearly identifiable

bands (see gacA gene standard - lanes ‘‘G’’ – in Fig. 1), approaching

the number of OTUs determined by gacA gene sequence

rarefaction analyses at 95 and 97% similarity thresholds for the

same group of strains (Fig. 3). Several gacA PCR-DGGE bands

obtained from pure cultures matched the electrophoretic mobility

of bands detected in bulk water and E. fluviatilis metagenomic

DNA profiles (Fig. 1). Seven of these bands are highlighted (Fig. 1),

exemplifying different scenarios regarding (1) their frequency and

dominance across water and sponge profiles, and (2) the

antimicrobial features of Pseudomonas isolates matching their

positions on DG-gels (Table 2). Interestingly, some of the isolates

cultured from E. fluviatilis matched dominant bands from water

profiles that could not be readily detected in the sponge

fingerprints (e.g. bands 1 and 5, Fig. 1, Table 2). Further, PCR-

DGGE bands consistently found in both water and E. fluviatilis

gacA profiles (e.g. bands 2, 3, 4 and 6) corresponded to isolates

identified as P. oryzihabitans, P. jessenii and P. mandelii that,

collectively, displayed manifold antimicrobial activities (see

Table 2 for details). Bands 6 and 7 are examples of Pseudomonas

phylotypes enriched in E. fluviatilis in comparison with bulk water

16S rRNA gene identity of the nearest type strain to relevant tree entries (see Table S1 for a complete list and details). An asterisk indicates 100% 16S
rRNA gene similarity between isolates and closest type strains. ‘‘Phylo group’’ refers to major, super-specific Pseudomonas phylogenetic lineages as
determined by Mulet et al. (2010). Open and close circles on tree nodes correspond to bootstrap values $70% and 90%, respectively. The scale bar
indicates 5% nucleotide substitution per site. The tree was rooted with the gacA gene homologue of Burkholderia pseudomallei strain K96243.
doi:10.1371/journal.pone.0088429.g004
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gacA profiles. The latter phylotype displayed an uneven pattern of

occurrence across E. fluviatilis individuals and matched the gacA

electrophoretic mobility of highly antagonistic and cytotoxic P.

protegens-like strains (Fig. 2, BOX I; Table 2, Table S2).

Discussion

This is the first dedicated study of Pseudomonas symbionts in

freshwater sponges. Our first objective was to explore the diversity,

selectivity and temporal stability of Pseudomonas spp. associated

with Ephydatia fluviatilis. We reveal previously unsuspected com-

plexity of Pseudomonas assemblages in a freshwater ecosystem by

including an alternative phylogenetic marker – the gacA gene – in

our cultivation-independent procedures. In contrast, the conven-

tional 16S rRNA marker gene failed to reflect the multiplicity of

these organisms in their sponge host and in freshwater. This

outcome strengthens observations made for the soil environment

on our biased perception of the diversity of pseudomonads in

nature [33]. Through the parallel use of a cultivation-dependent

approach, we substantiate this notion by examining the rarefied

richness of Pseudomonas spp. isolated from E. fluviatilis. We found a

much higher level of nucleotide diversification within the gacA in

comparison with the 16S rRNA gene, leading to a more accurate,

single gene-based coverage of full genome richness within the

surveyed genotypes. Reversible gacA gene mutations and rear-

rangements underlie phenotypic variation within Pseudomonas spp.,

mediating their interaction with eukaryotic hosts [28]. Phase

variation as a response to environmental stimuli might thus

constitute an overriding force driving Pseudomonas gacA gene

heterogeneities. Nevertheless, gacA gene tree topologies ([32,33];

this study) mirror well the currently proposed phylogenetic

relationships of the species in the genus [54], displaying thereby

a higher resolving power in distinguishing closely related strains

than the 16S rRNA gene.

GacA PCR-DGGE profiling further unveiled lowered diversity

in E. fluviatilis vs. ambient water, resembling the overall trend for

selective structuring of bacterial communities in this host [14].

Host-driven selection of bacteria is a well-known phenomenon in

marine sponges [55–57] which awaits extensive verification in

freshwater species [14]. We also depicted specimen-to-specimen

and year-to-year variability in the structure of Pseudomonas gacA

gene assemblages associated with E. fluviatilis individuals sampled

in close proximity, along with the persistence of few phylotypes

across all or several of these individuals. Previous molecular

surveys of bacterial communities in freshwater sponges relied on

snapshots of their structure/diversity from a single sampling event

[14,15,58]. The consistent temporal and individual persistence of

some pseudomonads in E. fluviatilis implies either the existence of a

yet unknown mechanism of symbiont maintenance in these hosts

or a highly efficient colonization capacity of specific opportunistic

Figure 5. Biofilm formation and in vitro antifungal, anti-oomycetal and antibacterial activity of Pseudomonas spp. isolated from
Ephydatia fluviatilis. Top-view (a) and lateral view (b) of a flocculent-type biofilm (SG-1-12) and mucilaginous-type biofilms (SF-3-01; SF-3-02) at the
air-liquid interface in a test-tube; (c) example of two fluorescent Pseudomonas isolates under UV-light in liquid King’s B medium. Inhibition of Bacillus
subtilis (d–g), Fusarium moniliforme (h,i), Rhizoctonia solani (j–l) and Pythium ultimum (m–o) was assayed on PDA plates. Pseudomonas protegens strain
CHA0 was used as a positive control in all tests (e.g., e,k,n). To note is the inhibition of R. solani growth by P. jessenii isolates SF-3-03 and SF-3-05 (l) and
of P. ultimum by P. reinekei isolates SE-1-01 and SE-1-04 (o). P. protegens isolates, here represented by isolates SH-1-08 (f) and SH-1-12 (g), displayed
conspicuous antagonism towards B. subtilis.
doi:10.1371/journal.pone.0088429.g005

Figure 6. Predation resistance and toxicity to Colpoda steinii by Pseudomonas spp. isolated from Ephydatia fluviatilis. Predation
resistance assays (a–c) determined the effect of the ciliate predator Colpoda steinii Sp1 on the growth of Pseudomonas cultures, estimated by
measuring OD600 alteration over time. Representative isolates of three categories are shown: (a) no effect of Colpoda steinii, strong resistance of P.
protegens isolate SH-1-10; (b) C. steinii causes slight depletion on a Pseudomonas culture: moderate resistance of P. jessenii isolate SF-2-02; (c) C. steinii
depletes the Pseudomonas culture at the initial stage of the assay: no resistance exhibited by P. monteilii isolate SG-1-16. Colpoda steinii cells were
then challenged with cell extracts from Pseudomonas isolates highly resistant to C. steinii predation (d–h). (d) active C. steinii cell; (e) deformed,
immobile C. steinii cell; (f–h) cell lysis of C. steinii. Light microscopy magnification 6400.
doi:10.1371/journal.pone.0088429.g006
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phylotypes. In contrast with marine species (the exception being

the genus Haliclona), freshwater sponges in the families Metaniidae,

Potamolepidae and Spongillidae (to which E. fluviatilis belongs)

produce internal and asexual resting structures called gemmules

[13] which allow the organism to withstand circumstances of

environmental hardiness such as low temperatures, oxygen

depletion and drought. In North- and central Europe, gemmules

emmerge notably in autumn to resist unfavourable conditions,

disperse and replicate. In spring, totipotent cells creep through

foramina of an outer compact cuticle layer and generate the

juvenile sponge [59]; see [13] for life cycle description at lower

latitudes. Interestingly, Spongilla lacustris produces gemmules

containing a few to large numbers of symbiotic algae [60,61]

which are beneficial to the developing sponge as they supply

carbohydrates and oxygen [62]. Vertical symbiont transmission

through sponge larvae is an important mechanism for the

establishment of sponge-bacterial associations in several marine

species [11,56,63]. However, it is so far not known whether

bacterial symbionts are transmitted to the next freshwater sponge

generation via gemmules and/or larvae, and questions emerge, e.g.

if and how bacteria would be selected and which are the ‘sponge-

specific’ bacteria to be transferred.

The second aim of this study was to assess the potential

biotechnological value of E. fluviatilis as a novel source of

pseudomonads with antimicrobial activity. We found a high

frequency of in vitro antibacterial, antiprotozoan and antioomycetal

activities among sponge-derived Pseudomonas isolates, and even

some strains with the ability to suppress the growth of ravaging

basidiomycetal and ascomycetal pests. Multivariate analysis

discriminated highly antagonistic isolates in two groups, one more

active against phytopathogenic fungi and P. ultimum and the other

presenting toxicity against B. subtilis and C. steinii. This suggests in-

faunal partitioning of antagonistic functions, allowing assumptions

with respect to the bioactivity spectrum within sponge-inhabiting

bacteria and their functional relevance. Metabolites from sponge

symbionts attract considerable research interest due to their

properties of potential pharmaceutical value [6]. Fluorescent

Pseudomonas spp. produce several compounds of different classes

showing strong antimicrobial activities such as glycolipids [64],

cyclic lipopeptides [65], phenazines [66] and polyketides [37].

Antagonists tentatively identified in this study as P. protegens, P.

oryzihabitans and P. jessenii, among others, matched dominant gacA

gene fragments directly amplified from E. fluviatilis metagenomes.

Antimicrobial features have been described for all these three

Figure 7. PCA ordination biplot of Pseudomonas isolates (symbols, n = 90) and their antimicrobial properties (arrows). Ranks of
intensity (semi-quantitative data) were created to register the data on in vitro antagonistic activity towards Rhizoctonia solani (R. sol.), Fusarium
moniliforme (F.mon.), Pythium ultimum (P. ult.), Bacillus subtilis (B. sub.), Colpoda steinii (C. stein.) and the ability of biofilm production in still
microcosms (Biofilm). Arrows pointing in the same direction approximate properties that share positive correlation. Pairs of properties whose arrows
diverge at $90u possess no or negative (linear) correlation. The differences in the frequencies of individual antimicrobial traits across the data are
mirrored by the lengths of their arrows, with dominant traits (that is, scored more often and/or with higher intensity) displaying longer arrows than
those with small score values. Isolates placed next to the tip of any given arrow possess a high score value for the corresponding antimicrobial trait.
Empty diamonds: Pseudomonas isolates of sponge individual E. Solid circles: Pseudomonas isolates of sponge individual F. Empty squares:
Pseudomonas isolates of sponge individual G. Triangles: Pseudomonas isolates of sponge individual H. Grey triangles highlight antagonists belonging
to BOX-PCR group I (Box 1, P. protegens), found to display similar phenotypes. Isolates displaying strong antagonism have their identification codes
placed next to their symbols. Centroid positions for isolates sharing the BOX-PCR types I (P. protegens) and VI (P. jessenii) are shown. Note the
phenotypic variation within some of the isolates belonging to the latter category (black circles labelled with isolates’ codes, see also Table S2).
doi:10.1371/journal.pone.0088429.g007
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species [67–69]. P. protegens strains Pf-5 and CHA0, the closest

relatives of highly antagonistic strains of BOX-PCR cluster I,

synthesize a range of inhibitory compounds such as pyrrolnitrin,

2,4-diacetyl-phloroglucinol, pyoluteorin and hydrogen cyanide

[36,37] which provide them with high competitive and anti-

predatory capabilities in soil [25,50,70]. Notably, the genome of P.

protegens Pf-5 is densely populated with secondary metabolite gene

clusters [36], most of which with presumed horizontal gene

transfer histories [37]. In this context, it is intriguing to note that

the genomic structure underlying the biosynthesis of the antitumor

polyketide onnamide A in the marine sponge Theonella swinhoei

resembles that of a Pseudomonas symbiont of the terrestrial beetle

Padereus fuscipes [7,71], providing evidence for the maintenace of

mobile genetic clusters involved in secondary metabolite biosyn-

thesis across microbial symbiotic consortia. Recently, novel PKS

encoding genes were reported for a Pseudomonas strain isolated

from the freshwater sponge Baikalospongia bacillifera [35]. However,

in spite of their documented co-dominance [72] and biocontrol

capabilities [73,74] in freshwater biomes, little is known about the

genomic architecture and the spread and nature of secondary

metabolite gene clusters of Pseudomonas species in these ecosystems.

Collectively, our data suggest that the freshwater sponge E.

fluviatilis is a promising source of underexplored Pseudomonas strains

possessing a wide range of inhibitory activities whose underlying

gene clusters and metabolites remain to be revealed.

Besides their biotechnological potential, a pertinent question

concerns the ecological importance of inhibitory activities

presented by a sponge-inhabiting pseudomonad. In addition,

what could be the benefit of holding a heterogeneous, persistent

and bioactive Pseudomonas community to the sponge host? In

nature, antibiotics and other secondary metabolites serve multiple

functions [75]. On the inhibitory route, toxic compounds impede

bacteria to be phagocytised by amoebae [76,77] and predated by

ciliates, flagellates and/or nematodes [50,70,78]. They also enable

bacteria to suppress the activity of competitors [26]. In addition, in

vitro antagonistic compounds may in fact participate in bacterial

cell-to-cell signalling and transcription modulation at realistic

concentrations in the natural environment [79,80]. The shape and

dynamics of symbiont communities might therefore be largely

affected by the cocktail of small molecules that are produced.

Here, the ability of sponge-associated Pseudomonas spp. to produce

biofilms in static microcosms was coincident with their antimicro-

bial potential (Fig. 7, Table S2). This is plausible since biofilm and

antibiotic production are often regulated by the same mechanism

and signalling molecules, e.g. homoserine lactones (HSLs). In plant-

beneficial Pseudomonas spp., for instance, the expression of certain

antibiotics depends on quorum sensing (QS) involving various

HSLs [81], whereas in P. aeruginosa QS steered by HSLs is a

premise for biofilm production [82]. A possible function of these

products within the sponge environment could be driving off other

microbes competing for habitat and nutrient availability. In

addition, secondary metabolites might help pseudomonads to

avoid being ingested via phagocytosis by archaeocytes, which are

protist-like cells present in the host sponge responsible for nutrient

uptake [49]. The capability of overcoming protozoan predation

shown for several isolates in this study is indicative of a potential

fitness-enhancing trait assisting the survivability of these microor-

ganisms within the sponge, provided it does not compromise the

viability of host cells. Alternatively, slime capsules, well known for

the opportunistic pathogen P. aeruginosa, could also function as a

structure enabling Pseudomonas spp. to evade engulfment by sponge

cells and persist in this environment as previously suggested in a

broader perspective [9,62]. Tackling a possible benefit of hosting

pseudomonads to the freshwater sponge host is a challenging task

that deserves future research inspection. One possible scenario

could be that the Pseudomonas-derived secondary metabolites might

help the sponge to withstand attacks by bacterial or fungal

pathogens or avoid microbial overgrowth, enhancing host fitness.

Such bio-controlling or host-protecting roles have been widely

described in Pseudomonas-plant symbiosis [25] and usually evoked

Table 2. Matching PCR-DGGE gacA bands from total community and pure culture DNA samples.

Band1 PCR-DGGE feature Matching Isolates BOX2 OTU3 Phenotype Closest type

1 Dominant in all water
profiles; not detected
in E. fluviatilis profiles

SG-1-10; SH-1-16 S; S 13 Biofilm formers, moderate antagonism
and resistance against B. subtilis and C.
steinii

P. umsongensis

2 Present in all water
and several E. fluviatilis
profiles

SE-1-03 S n.a. Antagonistic towards B. subtilis and
resistant against C. steinii

P. oryzihabitans

3 Present in all water and
E. fluviatilis profiles

SG-1-15; SG-2-06 S; XIII 9 Biofilm formers with no conspicuous
antagonistic traits

P. umsongensis

4 Present in all water and
several E. fluviatilis
profiles

SF-1-07 and alike
(n = 17)

VI 7 Biofilm formers antagonistic towards F.
moniliforme, R. solani and B. subtilis

P. jessenii

5 Present in all water
profiles; not detected
in E. fluviatilis

SE-1-02; SG-1-02;
SH-1-06

S; S; S 2 Resistant/cytotoxic to C. steinii;
suppressive towards P. ultimum

P. mandelii

6 Detected in water and
enriched in E. fluviatilis

SH-1-102; SH-1-103 II; II 19 Suppressive towards P. ultimum P. jessenii

7 Not detected in water;
enriched in some
E. fluviatilis profiles

SH-1-10 and alike
(n = 5)

I 17 Biofilm formers strongly antagonistic
towards B. subtilis and resistant/cytotoxic
to C. steinii

P. protegens

1Band numbering as provided in Fig. 1c.
2BOX-PCR grouping as determined in Fig. 2. S, singletons.
3GacA gene operational taxonomic units as shown in Fig. 4.
n.a., not applicable.
doi:10.1371/journal.pone.0088429.t002
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as a likely function of secondary metabolites produced by marine

sponge associated bacteria [11]. Although Pseudomonas spp. did not

rank among the most common bacteria in E. fluviatilis as suggested

by previous molecular analyses [14], their sharply enriched

numbers in this organism, as revealed in this study, and status as

a prevalent member of the culturable freshwater sponge micro-

biome [34] are indicative of a most likely active bacterium

consortium inhabiting these hosts.

In summary, with a complementary cultivation-dependent and -

independent approach, this study gives first insights into the

ecology of pseudomonads in freshwater sponges. It suggests a

distinct and mixed assemblage of both persistent and transient

Pseudomonas spp. inhabiting the model organism E. fluviatilis. The

increased abundance of these symbionts in the sponge host as

compared with bulk water along with their wide genotypic and

phenotypic heterogeneities highlight freshwater sponges as reser-

voirs of diverse Pseudomonas spp. with broad in vitro antimicrobial

activity (Table S2) of potential biotechnological value, e.g. in the

search for novel chemical structures with microbial inhibitory

capacities. Future focus on the temporal stability of a wider range

of microbial symbionts (e.g. the domains Bacteria and Archaea), and

on their occurrence in/on resting structures such as gemmules, will

shed further light on our understanding of the dynamics and

evolution of the freshwater sponge holobiont. Further, ecoge-

nomics of Pseudomonas species arises as a much needed approach to

unveil their roles and adaptive strategies as host-associated and

free-living bacteria in freshwater biomes. As genome sequencing of

Pseudomonas spp. persists heavily biased towards animal and plant

pathogens and soil-borne specimens, the sponge-associated strains

reported here emerge as a promising source for novel bioactive

secondary metabolites and future genome mining endeavours.

Supporting Information

Table S1 Closest 16S rRNA and gacA gene relatives of
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