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Synchronous slowing down in 
coupled logistic maps via random 
network topology
Sheng-Jun Wang1,2, Ru-Hai Du1,2, Tao Jin1,2, Xing-Sen Wu1,2 & Shi-Xian Qu1,2

The speed and paths of synchronization play a key role in the function of a system, which has not 
received enough attention up to now. In this work, we study the synchronization process of coupled 
logistic maps that reveals the common features of low-dimensional dissipative systems. A slowing 
down of synchronization process is observed, which is a novel phenomenon. The result shows that 
there are two typical kinds of transient process before the system reaches complete synchronization, 
which is demonstrated by both the coupled multiple-period maps and the coupled multiple-band 
chaotic maps. When the coupling is weak, the evolution of the system is governed mainly by the local 
dynamic, i.e., the node states are attracted by the stable orbits or chaotic attractors of the single map 
and evolve toward the synchronized orbit in a less coherent way. When the coupling is strong, the node 
states evolve in a high coherent way toward the stable orbit on the synchronized manifold, where the 
collective dynamics dominates the evolution. In a mediate coupling strength, the interplay between the 
two paths is responsible for the slowing down. The existence of different synchronization paths is also 
proven by the finite-time Lyapunov exponent and its distribution.

Synchronization is a universal phenomenon in physical, biological, chemical, and social systems1–9, and also 
plays an important role in many systems such as secure communication10, coupled lasers11,12, and neuronal net-
works13–15, and so on. During the past decades, there has been a surge of interest in the study of synchronization 
phenomena in coupled oscillators and coupled map lattices7,16–22. However, vast majority of the existing achieve-
ments mainly focus on the condition of the onset of synchronization and the stability of synchronized states23, 
little attention turns to the dynamics of the synchronizing process and the speed of synchronization24 given that 
a network synchronizes in principle. While in realistic systems, it equally matters how fast the units synchronize 
or whether the network interactions fail to coordinate the units’ dynamics on time scales relevant to the system’s 
function24–28. One typical example is that in neuroscience the above issue is related to the speed of the visual pro-
cessing or olfactory discrimination29,30.

Along this line, the study of synchronization process has attracted some attention24,31,32. In a recent work24, the 
effect of network topology on the synchronization time was analyzed. The synchronization time monotonically 
decreases with the topological randomness when the networks have fixed in-degree. Moreover, the synchroniza-
tion time of networks with fixed average path length non-monotonically depends on the topological randomness. 
At the boundary of synchronization parameter region, the critical slowing down of convergence was obtained33. 
For logistic maps on a chain, it was found that the average synchronization time non-monotonically changed with 
the coupling parameter, but this phenomenon only took place when the coupled map lattice size was very small 
(the size N =  5)31. Actually, the question of synchronization speed were far from being understood and currently 
under active investigation as well24.

In this paper, we study the synchronizing process and the synchronization time of coupled logistic maps on 
random networks. The logistic map is widespread concerned34–38 since it has become a prototype for studying 
chaos theory and reflects common features of low-dimensional chaotic dissipative systems. We present a novel 
relation between synchronization time and coupling strength, the synchronization speed slows down at a medi-
ate coupling strength, and the mechanism of this phenomenon roots in the transition of synchronization paths. 
These results may help us to deeply understand the synchronization of coupled nonlinear elements.

The dynamics of coupled maps are described by the following equation,
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where f(x) denotes the map function on the single node in the network, ε (0 <  ε <  1) is the coupling strength, and 
xt

i stands for the state of the i-th node at the t-th step. In this work, the single map f(x) takes the form of the logis-
tic map f (x) =  μx(1 −  x), with the control parameter μ ∈  [0, 4], and the dynamical variable x ∈  [0, 1]. {aij} is the 
adjacency matrix, aij =  1 indicates that node i and node j are connected. If aij =  aji =  0, there is no coupling 
between them. = ∑ =k ai j

N
ij1  indicates the connection degree of the i-th node.

The logistic maps are coupled through a random network topology. To build the random network, we ran-
domly select a pair of nodes and establish a link between them if they are not connected by an existed link. Repeat 
this procedure up to the number of links is N(N −  1)p/2, where N is the network size and p is the connection 
probability of each pair of nodes39. The average degree of nodes is Np. In the present work, the system consists of 
N =  1000 nodes, and the connection probability p =  0.02.

For coupled logistic maps on random networks, there is in general a threshold of coupling strength, above 
which the system may approach a stable synchronization state after a transient process of finite time period. In the 
current work, the coupling strength is set above this threshold so that the maps in the network can reach synchro-
nization from arbitrary states. In the simulation, the initial values =x i N{ , 1, }i

0  of the maps are assigned to a set 
of random numbers uniformly distributing in [0, 1]. The time step at which the system reaches synchronization 
is called the synchronization time and denoted by ts.

Synchronization order parameter R is used to determine whether the system achieves synchronization, which 
is defined by the following equation,
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where Rt is the amplitude of Zt at t-th step, ϕt is the corresponding phase. When Rt =  1, all of the nodes have the 
same state, = = = =x x x st t t

N
t

1 2 , i.e., the system is synchronized. Here, st is the synchronized orbit, which is 
the same to that of the single map. In order to describe how far the state of the system is from the complete syn-
chronization state during evolution, the deviation of the synchronization order parameter R from its maximum 
value 1 is employed, which is defined by

∆ = −R R1 (3)t t

where the index t represents the time step.

Results
In the current work, the synchronization time is obtained by the average of tss over 105 realizations for each cou-
pling strength ε ∈  [0.36, 1]. The synchronization criterion is set to ΔR ≤  10−8 since we only concern the transient 
process before the complete synchronization. One might generally expect that, given all the other parameters, ts 
is a decreasing function of the coupling strength since it seems reasonable that larger coupling strength tends to 
accelerate the synchronization. However, the simulation result in this work shows that the synchronization time 
can not be described by a monotonic function of the coupling strength, as shown in Fig. 1, in which the time 
series of the synchronization time for three different control parameters μ of the logistic map are drawn. The 
single map is in period-8 state when μ =  3.56. While when μ =  3.58 and 3.60, the single map is in the 4-band and 

Figure 1. The synchronization time ts versus the coupling strength ε. Where, the ensemble average is done 
for 105 realizations. The control parameters of the logistic maps are respectively μ =  3.56, 3.58, and 3.60. The size 
of the network is N =  1000, and the average degree is 20. The threshold of synchronization is ΔRt <  10−8.
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2-band chaotic state, respectively. Here n-band means that the chaotic attractor consists of n separated ranges in 
the phase space. In each of the plots, there is a peak around the middle of the coupling strength. The synchroniza-
tion speed is slowed down at a mediate coupling strength.

To understand the slowing down of the synchronization speed, a detail analysis of the synchronization pro-
cesses is presented in the follows. First of all, the network of period-8 maps is considered. The evolutions of the 
system dynamics are simulated under three different values of coupling strength, i.e., ε =  0.45 (at the left of the 
peak), ε =  0.50 (around the peak), and ε =  0.60 (at the right of the peak). The time series of the deviation ΔRt are 
plotted in Fig. 2, in which the values of ΔRt are obtained by the ensemble average over 105 realizations. One can 
see that the deviation from the synchronized states decay exponentially before the complete synchronization. 
The slopes of the semi-log plots of ΔRt versus t in Fig. 2 describe the decay rates of the deviation (where, the stair 
like appearance is due to the period-8 structure of the attractor). The slopes for the cases of ε =  0.45, ε =  0.50 
and ε =  0.60 are respectively − 0.243 ±  0.005, − 0.213 ±  0.003 and − 0.370 ±  0.008. As expected by the intuition, 
the decay rate of ΔR in the system with strong coupling is faster than that in the system with weak coupling. 
However, for the system with ε =  0.50, the decay rate is smaller than those in both the weak and the strong cou-
pling strengths, which indicates that the mediate coupled system has different dynamics for converging into the 
stable synchronous states. This is a novel phenomenon.

To explain why there appears the non-monotonic relation between the average synchronization time ts and the 
coupling strength ε, the typical time series of the states on nodes = = x x i N( , 1, 2, 3, , )t t

i  for three values of 
coupling strength are shown in Fig. 3, in which the eight states of the period-8 (P-8) cycle are illustrated by the 
horizontal lines and denoted by s1, s2, …, and s8, respectively. For ε =  0.45, Fig. 3(a) shows that the values of states 
are firstly attracted into the neighborhood of the stable orbit of the single map, and then tend to the synchronized 
orbit of the P-8 cycle almost individually as the time goes, exhibiting a less correlated evolution. In contrast, the 
system undergoes a completely different dynamic process when the coupling strength ε =  0.60. In this case, as 
shown in Fig. 3(c), the distribution of the trajectories shrinks into a narrow range very soon, which implies that 
the states of nodes evolve in a more coherent way, or say, they tend to the synchronized orbit in a collective way. 
Therefore it is much easier to reach the synchronized P-8 cycle. To verify this picture, the standard deviation of 
node states and the distance of the mean value of the node states to the stable orbit at time t are respectively 
defined by
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where P is the period and = ∑ =x x N/t i
N
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1  is the mean state. The evolution of them for three ε values are plotted 
in Fig. 4, where the data points are drawn at every 8-step for clearness, considering the P-8 structure of the attrac-
tor. Obviously, both σt and Dt for ε =  0.45 are larger than those for ε =  0.60. On the average, σt of the former is 19 
times larger than that of the latter, and the corresponding ratio for Dt is 2.5. While for ε =  0.50, as shown in 
Fig. 3(b), the individual states do not evolve along the stable orbit of either the single map or the synchronous 
manifold, but spend a pretty longer time to fluctuate violently in the phase space, especially in the regions con-
fined by (s2, s3) and (s6, s7). Here, σt is approximately 3 and 62 times larger than those for ε =  0.45 and ε =  0.60, 
respectively. The corresponding ratios for Dt are approximately 3 and 5. Thus, the synchronous slowing down 
appears in the mediate coupling strengths. To verify whether the above mentioned phenomenon is due to the 
existence of the cluster states, careful analysis on the spatiotemporal amplitude plots for different initial condi-
tions were carried out. The result shows that there is no cluster state appearing before the complete synchroniza-
tion. Thus, there might be other mechanism than the multiple cluster states.

Figure 2. The time series of ΔR for three different coupling strengths. Where, the ensemble average is done 
for 105 realizations. The squares represent the case for ε =  0.45, the circles represents that for ε =  0.50, and the 
triangles for ε =  0.60. The control parameter of the logistic map is μ =  3.56.
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Actually, the phenomenon might be easily understood by considering the basic feature of eq. (1), which shows 
that the dynamics of the coupled systems is governed by the competition between the local dynamics and the 
coupling term. In the case of weak coupling, the local dynamics dominates the evolution of the system and the 
interaction is not strong enough to make the states of nodes evolve in a high coherent way. Thus the trajectories 
of the maps oscillate around the stable P-8 orbit of the single map except the very early age of evolution, and tend 
to synchronization almost individually. While in strong coupling, since the contribution to the system dynamics 
from the interaction term is superior to that from the local ones, the collective dynamics dominates the evolution 
of the system, making the maps to oscillate in a more coherent way around the synchronized orbit. It is clearly 
shown in Fig. 3(c), in which the maps tend to almost the same state before they converge into the stable P-8 orbit. 
In a mediate coupling strength, the contribution of the interaction term is comparable to that due to the local 
dynamics. It is not strong enough to force the node states xt

i evolve in a high coherence way, but is sufficient to 
prevent the states from converging to the stable orbit individually. Thus, at least in the early period, the trajecto-
ries can not evolve around the stable orbit, but fall in the regions between the periodic points, showing strong 
oscillation (as shown by Fig. 3(b)). Then, one may conclude that the competition or interplay between the two 
types of dynamics results in the crossover of the synchronization time, and thus a peak is observed in the ts ~ ε 
curve marked by solid squares in Fig. 1, i.e., the case for ε =  0.50. Moreover, the multiple period and multiple 

Figure 3. The time series of node states xt for three different coupling strengths: (a) ε =  0.45, (b) ε =  0.50, and 
(c) ε =  0.60. The plus (+) indicates the state on each node, the minus (−) indicates the average value of all node 
states. The lines indicates the trajectories of P-8 orbit, marked by s1, s2, ..., and s8, respectively. The control 
parameter of the single map is μ =  3.56.

Figure 4. The time series of the standard deviation of node states (a) and the distance of the mean state to the 
stable orbit (b). Where, the ensemble average is done for 105 realizations. For clearness, the data points are 
drawn at every 8-step, considering the P-8 cycle. The squares represent the case of ε =  0.45, the circles represent 
that of ε =  0.50, and the triangles are for ε =  0.60. The control parameter of the single map is μ =  3.56.
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band structure of the attractor of the single map might have some contribution to the slowing down of synchro-
nization, which will be discussed in the later part of the paper.

Since we are interested in the synchronizing process, the finite time Lyapunov exponent (FTLE) and its distri-
bution might be employed to characterize and explain the synchronous slowing down. The FTLE describes the 
amount of stretching and contracting around a trajectory = x x x xx ( , , , , )t t t t t

N1 2 3  over the finite time interval 
[t, t +  τ]. We consider a neighbor trajectory y0 around xt with any small displacement d. After evolving for a finite 
time τ by eq. (1), the two neighbor trajectories move to x and y, respectively. Then the FTLE is calculated by

λ
τ

=
−

.τ
→

t
d

y x( ) lim 1 ln (5)d 0

In our calculation, the displacement is set to d =  10−8, and 105 sets of random initial values distributed uni-
formly in [0, 1] are chosen for ensemble average and the corresponding distribution of the FTLEs is also calcu-
lated. The finite time duration τ is carefully selected for different coupling strengths since the improper choice of 
them may induce wrong result40.

The variation of the FTLE λ8(t) when μ =  3.56 is shown in Fig. 5. Obviously, in a considerable long time 
period, the FTLE for ε =  0.50 is much larger than the maximum Lyapunov exponent λmax =  − 0.0771445 of the 
coupled system (also the Lyapunov exponent of the single map) and even greater than zero in the early age of 
the evolution. This may be explained by Fig. 3(b), in which the state of nodes distributes in the regions between 
pairs of adjacent stable periodic points. In each of these regions, there is an unstable fixed point which makes the 
states of the coupled system jump between different basins of the fixed points and is thus responsible for the larger 
FTLEs. While for ε =  0.45 and 0.60, the FTLEs oscillate around λmax with an amplitude much smaller than the 
deviation of FTLEs when ε =  0.50. For these two cases, Fig. 3(a,c) reveal that the node states evolve in the vicinity 
of the stable orbit. Therefore, we may conclude that the larger FTLE is an intrinsic dynamical reason for the slow-
ing down of the synchronization in a mediate coupling strength.

Now, we turn to discuss the case when μ =  3.58 where the dynamics of the single map is in chaotic state and 
the synchronization time also exhibits a non-monotonic dependence on the coupling strength. The time series of 
ΔRt shows the similar behavior. Here the chaotic attractor consists of four separated regions in the phase space, 
which attracts the trajectories outside them. To illustrate the attraction of the chaotic attractor, we calculate the 
number fraction of the maps whose state falls in the four chaotic bands, which is denoted by na. Figure 6 shows 
the evolution of na for three coupling strengths ε =  0.45, 0.5 and 0.6 which represents the weak, mediate and 
strong couplings, respectively. For the weak coupling, the value of na increases to about 0.4 very soon and stays 
there for several steps. Then the state of more maps is attracted into chaotic bands, and na increases to 1.0 after-
ward. For the strong coupling, the state of maps enters chaotic bands quickly. However, at the mediate coupling 
strength, na goes down to very small value after a very short increasing, and then increases slowly comparing with 
the previous two cases. It spent much longer time to have the state of all the maps falling in the attractor. Thus, the 
variation of na can also somehow demonstrate the synchronous slowing down.

To display the evolution of the system in more detail, shown in Fig. 7 are the typical distributions of node 
states. In both the weak and strong couplings, i.e., Fig. 7(a,c), almost all states fall in the chaotic bands. One may 
find that the peaks in the latter case are sharper than those in the former case, especially after the 6-th time step, 
which implies that the system evolves in a weak coherent way in weak coupling, but in a high coherent way in 
strong coupling. We may call them respectively the weak and high coherent transients of synchronization, respec-
tively. While when ε =  0.50, a very different situation appears, where a major portion of the node states falls in two 
regions out side the chaotic bands in the phase space, one is between band-1 and band-2 and the other between 
band-3 and band-4. Furthermore, the states distribute over more broaden ranges than in previous two cases. In 

Figure 5. The time series of finite time Lyapunov exponent λ8(t) when μ = 3.56. Where, the ensemble 
average is done for 105 realizations. The squares represent the case of ε =  0.45, the circles represent that of 
ε =  0.50, and the triangles are for ε =  0.60.
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this mediate interaction strength, since the contributions of the single map and the coupling term are comparable, 
the system’s evolution can obey neither the local dynamics nor the collective dynamics. Thus, the states can hardly 
be attracted into the chaotic bands, especially in the early period of the evolution. Therefore, we may conclude 
that the competition between the two tendencies make the system spend a longer time to approach the synchro-
nized state. We have to point out that the distributions of state for all the three coupling strengths collapse into 
one curve with the height of peaks equal to 1 after a pretty long time, e.g., the 49-th time step in the figure, where 
the system reaches the synchronized state.

We would also like to present the ensemble average of the state distributions, which are plotted in Fig. 8. Here, 
in the early time period, the distribution curves become smooth and broaden, because different state distribu-
tions corresponding to a large number of initial conditions are involved in the statistics and the ensemble average 
smooths out the fluctuations due to different types of initial conditions. When ε =  0.45, a major portion of states 
falls within a single band at each time step (see Fig. 8(a)). While when ε =  0.60, almost all states fall in a single 
band at each time step and the peaks become sharper than in previous case (see Fig. 8(c)). As for ε =  0.50, the 
distribution curves extend across two adjacent chaotic bands, and a major portion of states falls outside the bands 
and the peak are positioned in the middle of the gaps between them. The cause is similar to that in the P-8 case, 
i.e., the interplay between the local dynamics and the coupling term makes the trajectories of nodes be attracted 
by neither the attractor of single map, nor the attractor on the synchronized manifold. Another main difference 
is that, at very late time steps, e.g., the 49-th step, there appear multiple sharp peaks in the distribution curves. It 
is because that the system reaches almost synchronized state at this moment and the ensemble average includes 
variety states with different types of initial condition, where each peak is corresponding to the synchronization 
time for a given type of initial condition.

Similarly, we will also take a look at the FTLEs. Here, we present in Fig. 9 the ensemble average of the distribu-
tions of the FTLEs over 105 realizations. One may observe a very good correspondence with Figs 7 and 8. The 

Figure 6. The evolution of the fraction of maps whose trajectories fall in the chaotic attractor. Where, the 
ensemble average is done for 105 realizations. The parameter of the logistic map is μ =  3.58.

Figure 7. The distribution of node states for a typical initial condition when μ = 3.58. In (a–c) the coupling 
strengths are ε =  0.45, 0.50 and 0.60, respectively. Gray background represents the chaotic bands of the logistic 
map.
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distributions of FTLEs for three different coupling strengths ε =  0.45, 0.50 and 0.60 show multiple-peak structure, 
corresponding very well to the multiple peaks in the distributions of node states. Firstly, we focus on the distribu-
tion of the FTLEs when ε =  0.45, i.e., the thin lines in the figures. During time steps 6–9, there are about 4 distinct 
peaks that are due to different types of initial conditions. The principal peak is positioned around 0.11 which is a 
bit larger than the maximum Lyapunov exponent of the system, i.e., λmax =  0.105400, where the distribution of 
node states falls almost inside one chaotic band and the peak position is in the middle of the chaotic band at each 
time step, as shown in Figs 7(a) and 8(a). During time steps 10 to 12, the right shift of the peaks occurs and also 
the strongest peak appears in the far right end, which is due to the fact that the node states are positioned near the 
boundaries of the chaotic bands (see Fig. 8(a)), where the system is very unstable. Secondly, we observe the dis-
tribution of the FTLEs when ε =  0.60, i.e., the dot lines in the figures. At time steps 6 and 7, it also shows multiple 
peaks with the mean peak around λ24 =  0.12 >  λmax. From time step 8 to 11, there also appear the right shift of the 
peaks, and a much strong sub-peak emerges in the far right end where the peaks of the state distribution are posi-
tioned in the vicinity of the boundaries of the chaotic bands (see Figs 7(c) and 8(c)). At step 12, the principal peak 
shifts back to λ =  0.12 since the states of all nodes are distributed within chaotic band-4 (see Fig. 8(c)). Finally, we 
consider the case of ε =  0.50, in which the number of peaks is much more than in the previous two cases and the 
distribution of FTLEs occupies much larger range along the λ24-aixs at almost all time steps. After some late time 
step, e.g., t =  49, the three distributions of FTLEs fall in nearly one curve, which implies that the effect on synchro-
nization time and the FTLEs due to the difference of the coupling strengths reduces considerably in very long 
time of evolution. Therefore, one may say that the difference in the synchronization time due to different coupling 

Figure 8. The ensemble average of the distribution of node states when μ = 3.58. Where, the ensemble 
average is done for 105 realizations. In (a–c) the coupling strengths are ε =  0.45, 0.50 and 0.60, respectively. Gray 
background represents the chaotic bands of the logistic map.

Figure 9. The distribution of finite-time Lyapunov exponent λ24(t) when μ = 3.58. Where, the ensemble 
average is done for 105 realizations. The thin lines denotes the distribution when ε =  0.45, the thick lines 
denotes that when ε =  0.50, the dot lines are for ε =  0.60, and the dash lines mark the position of the maximum 
Lyapunov exponents of the system.
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strengths emerges mainly at the early period of the evolution. This is the reason why we are interested in the tran-
sient process of synchronization.

For the coupled maps at 2-band chaotic state when μ =  3.60, the distributions of node states and FTLEs are 
also calculated, which are shown in Figs 10 and 11, respectively. The plots show similar behaviors to those in 
Figs 8 and 9. However, the main difference is that the coupling strength has no effect on the ranges of the distri-
butions. They are always within one chaotic band at each time step. This implies that the synchronization time in 
the mediate coupling strength is not necessarily longer than that in the weak and strong coupling cases. Therefore, 
there is only an indistinct peak in the ts ~ ε curve around ε =  0.50 for μ =  3.60 in Fig. 1.

Considering this situation, we may suggest that, besides the competition between the local dynamics and 
the coupling term, the multiple-period or the multiple-band structure of the single map also contribute to the 
slowing down of the synchronous process. Actually, the basins of the P-8 fixed points or the chaotic bands are 
interweaved. A small perturbation may sometimes cause the trajectories jump from one basin of the P-8 fixed 
points or a chaotic band to another, and thus results in different ability to synchronize. The interaction term in 
the system of coupled maps provides this perturbation and thus induces the competition among the attractions 
from different periodic points or chaotic bands. In weak couplings, the system’s behavior is governed mainly by 
the local dynamics and a small coupling term can not induce frequently violent jumping between different basins. 
In strong couplings, the system evolves according to the collective dynamics, and the strong coherence make 
the node states not easy to jump individually and thus also inhibits the competition among different periodic 
points or chaotic bands even though the contribution of the coupling term is bigger. While in a mediate coupling, 
the effect of this kind of competition becomes obvious since the interplay between the local dynamics and the 

Figure 10. The ensemble average of the distribution of node states when μ = 3.60. Where, the ensemble 
average is done for 105 realizations. The thin lines denote the distribution when ε =  0.45, the thick lines denote 
that when ε =  0.50, and the dot lines are for ε =  0.60.

Figure 11. The distribution of finite-time Lyapunov exponent when μ = 3.60. Where, the ensemble average 
is done for 105 realizations. The thin lines denote the distribution when ε =  0.45, the thick lines denote that 
when ε =  0.50, the dot lines are for ε =  0.60, and the dash lines mark the position of the maximum Lyapunov 
exponent of the system.
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collective dynamics is important, and thus enhances the contribution to the slowing down. Hence the synchro-
nization speed depends not only on the coupling strength, but also on the inherent structure of the attractor, 
especially in the early age of the evolution.

To further prove this, we re-calculate the synchronization time of the system for μ =  3.58 and set the random 
initial states just within individual chaotic bands instead of interval [0, 1]. The result shows that the synchro-
nization times decay monotonically as the coupling strength increases (see Fig. 12(a)), except the tiny peak at 
ε =  0.405 in the case where the initial states are selected in band-1. In addition, we set the control parameter of 
the single maps to μ =  3.88 where the chaotic attractor has only one band in phase space, and estimate the corre-
sponding synchronization times at different tolerances. The results are plotted in Fig. 12(b). It is found that the 
synchronization times decay non-monotonically as ε increases, except the case of ΔR =  10−4 where there is an 
indistinct peak around ε =  0.765 (here, the threshold of the coupling strength for the stable synchronous orbit is 
εm =  0.6500). In these cases, there is only one band and no competition among attractions from different peri-
odic points or chaotic bands. Therefore, the two exceptions occurred in Fig. 12(a,b) are only due to the interplay 
between the local dynamics and the coupling term. This answers the question why the non-monotonic coupling 
strength dependence of the synchronization time was seldom reported since in most of the previous works there 
is only one chaotic band in the phase space of the single map.

The results presented previously suggest that the synchronous slowing down is induced by the competition 
between the local dynamics and the common evolution, where the multiple period or multiple band structure 
of maps plays a key role in the appearing of the phenomenon. To verify the generality of the mechanism, we 
have also studied other types of network structures and maps as shown in Fig. 13. For regular lattice of coupled 
logistic maps, synchronization is difficult. When the connection radius is large enough so that synchrony can be 
achieved, the non-monotonic variance of synchrony speed with respect to the coupling strength is also obtained 
(Fig. 13(a)). The same phenomenon is found in the coupled logistic maps with the same parameters by scale-free 
topologies (see Fig. 13(b)).

Besides the logistic map, the coupled systems of both discontinuous and invertible piece-wise linear maps 
(DIPWLM)42 and the coupled two-piece linear maps with a gap (TPLMG) are also studied. The DIPWLM is a 
simplified model for a relaxation oscillator43, which can describe many realistic systems including cardiopathy, 
relaxation and impact oscillators, relay control systems, and DC-DC converters. It is described by the following 
equations:

= = ++x f x k x b( ) (6)t i t i t i1

where i =  1, 2, 3, 4 and
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with yb =  b1 −  μ, where μ is selected as the control parameter. The values of the parameters are selected as 
yA =  0.0203921, yC =  0.46, yG =  yA, xb =  0.107663, xg =  0.35, xF =  0.497121, k3 =  3.07055, b3 =  −0.530165, 

Figure 12. The synchronization times versus ε. Where, the ensemble average is done for 105 realizations.  
(a) For μ =  3.58 with the initial states randomly distributed in the four chaotic bands, respectively. The threshold 
of synchronization is ΔRt <  10−8. (b) For μ =  3.88 with the initial states randomly selected in (0, 1). Different 
thresholds of synchronization are used.
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k4 =  0.405507, and b4 =  − 0.201586. The TPLMG was used to describe the period-adding bifurcation scenario of 
rat’s neuron41. The dynamics is like

=






= + <

= ≥+x
f x ax b if x x
f x c if x x

( ) ,
( ) , (8)

t
l t t t g

r t t g
1

where a and b are the slope and intercept of the left map, and c stands for a constant. a =  3.83 ×  10−4 μ +  0.9749, 
b =  5.628 ×  10−5 μ +  0.0054, xg =  − 6.3865 ×  10−5 μ +  0.2198, and c =  1.38 ×  10−4 μ +  0.1962. Here, μ is the 
control parameter. In the coupled systems of these two maps, we also find the synchronous slowing down. 
Figure 13(c,d) show the results of these coupled maps on random networks and scale-free networks, respectively, 
where DIPWLM is in the 2-bands chaotic state and TPLMG is in the 2-period state. For the control parameters 
selected in the calculations, a common feature of the above mentioned local maps is that their attractors show 
multiple-period or multiple-band structures. Therefore, we may conclude that the phenomenon observed in the 
coupled logistic maps is generic for the coupled systems consisting of maps whose attractors show multiple-period 
or multiple-band structures.

In the previous discussion, we have verified that the synchronous slowing down is generic in coupled maps. 
Another question we concern about is whether the same phenomenon can exist in continuous time systems. We 
present two examples of low-dimensional continuous time systems. The first example is the coupled Kuramoto 
models. Its dynamics is described by,

∑ω ε
= + − .

=
x

k
a x xsin( )

(9)
i i

i j

N

ij j i
1

Identical with the result of the coupled logistic maps shown in Fig. 12(b), the synchronization time in this system 
decreases monotonically with the increase of coupling strength (see Fig. 14 (a)). The reason is that the single 
Kuramoto model has only period-1 trajectory in phase space. While in the networks of coupled Duffing oscilla-
tors, different scenes are observed. The Duffing oscillator reads,

Figure 13. The synchronization times versus coupling strength ε. (a) Logistic maps are coupled via regular 
networks. The average degree is 640. (b) Logistic maps are coupled via scale-free networks. The average degree 
is 〈 k〉  =  20. (c) The DIPWLMs are coupled by the random network (squares) and scale-free networks (circles). 
The average degree is 20. The 2-bands chaotic states (μ =  0.062) are used in simulations. (d) The TPLMGs are 
coupled by the random network (squares) and scale-free networks (circles) with the average degree 〈 k〉  =  20. 
The 2-periodic states (vc =  110) are used in simulations. The network size is N =  1000. The results are averaged 
over 10000 realizations. The threshold of synchronization is ΔRt <  10−8.
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Here the parameters are h =  0.3, κ =  1, and ς =  1. With these values of parameters, the single Duffing oscillator 
exhibits the period-doubling bifurcations as F increases. We simulate the coupled Duffing oscillators in 1-period 
(F =  0.26), 2-period (F =  0.28) and 4-period states (F =  0.29). The variations of the synchronization time with 
respect to the coupling strength are shown in Fig. 14(b–d), respectively. Here, the monotonic behavior of the 
synchronization time is observed again for the 1-period state of the oscillators, but the non-monotonic ones are 
displayed for the multi-period cases. This example suggests that the slowing down of synchrony may also exist in 
the coupled continuous-time systems when they are in the multi-period state.

Discussion
In summary, we have studied the synchronization process of coupled logistic maps. It is unveiled that the syn-
chronization time non-monotonically changes with the coupling strength in the networks of maps that are in 
the multiple periodic or multiple bands chaotic states. We also present the mechanism of this phenomenon. The 
result shows that there are two typical kinds of transient process before the system reaches complete synchroniza-
tion. The synchronization processes are very different in weak and strong couplings. When the coupling is weak, 
the node states are attracted to the stable orbits or chaotic attractors of the maps and evolves toward the synchro-
nized orbit almost individually, i.e., in a less coherent way. When the coupling is strong, the collective dynamics 
dominates the evolution of the system. The node states evolve as a whole, or in a high coherent way, toward the 
stable orbit on the synchronized manifold. In a mediate coupling strength, the interplay between the two paths 
is responsible for the slowing down of the synchronization. The competition among attractions from different 
periodic points of a multiple-period cycle or different chaotic bands of a multiple-band attractor enhances this 
slowing down. This behavior is a novel phenomenon, which is different from the critical slowing down at the 
boundary of the synchronization region33. The existence of different synchronization paths is also proven by the 
finite-time Lyapunov exponent and its distribution.

Figure 14. (a) The synchronization time of coupled Kuramoto models versus coupling strength ε. (b–d) The 
synchronization time of coupled Duffing oscillators versus coupling strength ε. The Duffing oscillators are in 
the 1-period states (F =  0.26), the 2-period states (F =  0.28), and the 4-period states (F =  0.29), respectively. The 
random network (squares) and scale-free networks (circles) are used. The average degree of networks is 20. The 
network size is N =  1000. The results are averaged over 2000 realizations. The threshold of synchronization is 
ΔRt <  10−8.
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The results in this work can shed light on the effect of phase space structure on the synchronization process. 
The new observations of different synchronization paths and the slowing down of the synchronization process at 
the mediate coupling strength may be useful for optimizing the synchronization process. It can also find applica-
tions in explaining and controlling the process of some practical systems and neuron systems. The possibility can 
be revealed by the following fact. In the functioning of olfactory discrimination, a group of neurons synchronize 
on a fast time scale (30–100 Hz), then neurons lock into a specific phase on an intermediate time scale (4–8 Hz). 
Olfactory representation could be elaborated across sniffing cycles (hundreds of milliseconds)29. In human 
visual system, visual processing can be achieved in under 150 ms30, and the processing is based on feed-forward 
propagation of synchronous spiking44. In these systems where synchrony speed is important, synchronization is 
achieved quickly. Slightly slowing down may impact the functioning. In our results, the synchronization speed 
is high and the slowing down in the coupled systems with their local dynamics in multi-period and multi-band 
states is significant. It would be an interesting problem on how the slowing down affects the function of realistic 
systems. The application of our results in real systems will be a different type of work for future investigation. In 
addition, we would like to point out that the results in the current work may suggest that the synchronous slowing 
down is generic in both the coupled map systems and the coupled low dimensional continuous time systems.
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