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Abstract

Each year there are nearly 57 million deaths worldwide, with over 2.7 million in the United 

States. Timely, accurate and complete death reporting is critical for public health, especially 

during the COVID-19 pandemic, as institutions and government agencies rely on death reports to 

formulate responses to communicable diseases. Unfortunately, determining the causes of death is 

challenging even for experienced physicians. The novel coronavirus and its variants may further 

complicate the task, as physicians and experts are still investigating COVID-related complications. 

To assist physicians in accurately reporting causes of death, an advanced Artificial Intelligence 

(AI) approach is presented to determine a chronically ordered sequence of conditions that lead to 

death (named as the causal sequence of death), based on decedent’s last hospital discharge record. 

The key design is to learn the causal relationship among clinical codes and to identify death-
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related conditions. There exist three challenges: different clinical coding systems, medical domain 

knowledge constraint, and data interoperability. First, we apply neural machine translation models 

with various attention mechanisms to generate sequences of causes of death. We use the BLEU 

(BiLingual Evaluation Understudy) score with three accuracy metrics to evaluate the quality 

of generated sequences. Second, we incorporate expert-verified medical domain knowledge as 

constraints when generating the causal sequences of death. Lastly, we develop a Fast Healthcare 

Interoperability Resources (FHIR) interface that demonstrates the usability of this work in clinical 

practice. Our results match the state-of-art reporting and can assist physicians and experts in 

public health crisis such as the COVID-19 pandemic.

Keywords

Cause of death; COVID-19 pandemic; deep learning; fast healthcare interoperability resources 
(FHIR); population health data analytics

I. Introduction

There are more than 2.7 million deaths in the United States [1] and nearly 57 million 

deaths around the world per year.1 As of March 23rd, 2022, coronavirus has taken the lives 

of nearly 6.1 million people among 472 million confirmed cases globally.2 Even though 

COVID-19 is ranked as the third leading cause of death [2][3], detailed information on 

COVID-19 related complications and causes of death are still under investigation [4]–[7]. 

Therefore, accurate death reporting is essential for public health institutions such as the 

U.S. National Center for Health Statistics (NCHS) and the Centers for Disease Control and 

Prevention (CDC) to formulate effective recommendations.

The U.S. death reporting system requires two types of causes of death to be filled on death 

certificates: a single medical condition that is the underlying cause of death, and an ordered 

sequence of medical conditions (a sequence of ordered causes, which is termed “causal 

sequence” in our context) that lead to the death. These sequences of causes of death form the 

basis of the NCHS Multiple Causes of Death data, which is a critically valuable data source 

in public health.

A causal sequence of death consists of one underlying cause of death, and other potential 

immediate causes of death. The immediate causes of death are typically caused by the 

underlying cause of death. An example causal sequence of death is “chronic obstructive 

pulmonary disease, unspecified (ICD10: J44.9) → other disorders of lung (ICD-10: J98.4)”. 

Here ICD-10 stands for “10th revision of the International Statistical Classification of 

Diseases and Related Health Problems,” a common coding system used in death reporting.3

The process of determining causal sequences of death is challenging, even for experienced 

physicians, as this process involves careful reasoning using medical domain knowledge and 

1[Online]. Available: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
2[Online]. Available: https://covid19.who.int/
3[Online]. Available: https://www.cdc.gov/nchs/icd/icd10cm.htm
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experience. In addition, limited electronic health records in cases of sudden death may 

significantly complicate the determination of correct sequences.

Complete and accurate reporting of condition sequence leading to death provides an 

invaluable public health resource for tracking disease prevalence, developing public health 

interventions, and tracking intervention efficacy over time. Thus, it improves both clinical 

care and patient well-being. For physicians and public health experts, frequently reported 

sequences can assist in grouping disease conditions, and discovering underlying causal 

relationships that have not been previously observed. At the patient level, such sequences 

can alert individual patients for early actions before symptoms shown.

To assist in timely, accurate, and complete reporting of deaths and to reduce the subjectivity 

by reporting physicians, we develop a decision support system with deep learning 

approaches that learns the causal relationship between death and available clinical codes, 

and generates the causal sequence of death based on the decedent’s disease histories. Table I 

summarizes three challenges and the proposed solutions.

The first challenge is due to the use of different coding systems of clinical conditions. The 

existing causes of death in the U.S. have been using the tenth revision (ICD-10) codes since 

January 1999 [8]. On the other hand, healthcare institutions and practitioners in the U.S. 

were still filing patients’ health record using the ninth revision (ICD-9) codes until October 

2015 [9]. ICD-10 codes are quite different from ICD-9 codes in both coding structure and 

quantity: ICD-10 has nearly five times as many diagnosis codes as ICD-9.4

One solution to this challenge is natural language translation. The input sequence to our 

model is diagnosis codes from the last hospital discharge record of the deceased, and the 

output sequence is the corresponding causes of death for that decedent. Similar to translating 

English sentences to French sentences, we propose a succinct causal sequence of death 

in ICD-10 codes from the priority-based discharge records of ICD-9 codes. The area of 

Natural Language Processing (NLP) contains extensive studies for machine translation, 

such as autoregressive [10]–[13] and autoencoder models [14]–[16]. The former factorizes 

the probability of a given corpus into a series of conditional probabilities while the latter 

generates output through reconstructing corrupted input.

The second challenge is the domain knowledge requirement. As a data-driven approach, 

a deep learning model can sometimes generate confusing sequences to the physicians or 

results contradicting medical domain knowledge. Consequently, the physicians may find 

it difficult to trust the generated results. To solve this problem, we incorporate medical 

domain knowledge in the deep learning framework. Particularly, we use an external source 

of expert-curated rules, which are pairs of causal relationships between clinical condition 

codes. When the deep learning model searches for the next clinical condition in generating 

the output sequence, only clinical conditions following medical domain knowledge can 

serve as candidates.

4[Online]. Available: https://www.cdc.gov/nchs/icd/icd10cm_pcs_faq.htm
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The last challenge is the data interoperability in death reporting. Currently, the U.S. 

National Center for Health Statistics coordinates with 57 reporting jurisdictions across 

the United States to aggregate mortality data [17]. These reporting jurisdictions have 

different regulations and local laws. To streamline the data storage and transmission between 

hospitals and these public health institutions and to make data comprehensive for future Big 

Data analytics, we use Fast Healthcare Interoperability Resources (FHIR) [18] to standardize 

mortality data reporting. We have developed one web-based FHIR application [19] to access 

electronic health records data. The newly developed Android version mobile application 

is FHIR compatible; it can pre-populate different sections of death certificate to extract 

essential information of health history of the decedents. Furthermore, it serves as a graphical 

user interface for physicians that the mobile application can automatically query the deep 

learning models to provide clinical decision support. Implementation details, graphic user 

interface and video demo information are included in the supplementary file.

In this work, we predict the sequence of causes of death from decedent’s last hospital 

discharge record using encoder-decoder models with attention mechanism. We also visualize 

the attention scores to identify death-related conditions from unrelated symptoms. We 

further demonstrate the feasibility of the encoder-decoder models for ICD-10 input data 

by mapping ICD-9 codes to ICD-10 codes to meet current electronic health records (EHRs) 

data. In addition, we learn the expert domain knowledge graph from an ACME (Automatic 

Classification of Medical Entry) decision table to constrain model predictions to known 

relationships. The overall structure is shown in Fig. 1.

In summary, this work has the following contributions:

1. This is the first work to develop encoder-decoder models for predicting causal 

sequences of death based on death reports and decedents’ last hospital visit 

records;

2. This is the first work to identify death-related conditions from available 

health records using attention visualization. Our approach improves model 

interpretation and can potentially benefit physicians in predicting causes of 

death;

3. This is the first work to use the modified BLEU (BiLingual Evaluation 

Understudy) score, a popular score for sequence-to-sequence translation task 

in natural language processing, to evaluate the performance of deep learning 

prediction of causal sequence of death;

4. This work improves data interoperability by implementing a user-friendly, FHIR-

based application to utilize AI solutions.

II. Recent Work

Intelligent death reporting has been a rising research theme in recent years. Jiang et al. 
[20] applied topic modeling on the multiple causes-of-death U.S. mortality data from NCHS 

between 1999 and 2014. The authors successfully grouped comorbidities based on their 

correlation and explore the temporal evolution of these morbidity groups. Unfortunately, 
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due to the nature of unsupervised learning, the author failed to determine the optimal 

number of topic groups, reducing its potential impact on clinical practice. Wu and Wang 

[21] designed a convolutional neural network (CNN) with dynamic computation graph to 

infer the underlying cause of death using the same NCHS mortality data. Using a list of 

relevant medical conditions, the proposed CNN model was able to achieve 75% accuracy in 

predicting the single underlying cause of death. Meanwhile, Hoffman et al. [22] revealed the 

poor quality of death reporting data by showing 20.1% discordance of cause of death. The 

author also proposed validity checking on death reporting data to remove invalid causal pairs 

of death codes. One limitation is that, the author did not validate any downstream tasks, 

such as predicting the single underlying cause of death, to further demonstrate the value of 

validity checking.

A recent yet interesting work published on Journal of Biomedical and Health Informatics 

[23] is to automatically extract the single cause of death from verbal autopsy questionnaire 

using recurrent neural network (RNN) with attention. The RNN model with attention is 

able to learn the textual representation from the free-text questionnaire data and visualize 

attention scores to improve outcome interpretation. RNN models are also applied to 

mortality prediction. Yu et al. [24] proposed a multi-task RNN model with attention 

mechanisms that predicts patients’ hospital mortality and achieved higher sensitivity than the 

simplified acute physiology score (SAPS-II). The auxiliary task in the proposed multi-task 

RNN model is the reconstruction of patients’ physiological time series data.

III. Causal Sequence of Death

A. Data

In this work, we use last hospital visit discharge records from Michigan Vital Statistics Data 

that covers 181,137 decedents. This dataset was collected by CDC and its collaborators 

before 2017 and contains important demographic information, diagnostic codes and 

procedural codes. However, this dataset does not include decedents’ past medical histories 

(no temporal information; last hospital visits only). As shown in Fig. 2, each decedent 

has exactly one line of last hospital visit essential information, including up to 45 clinical 

diagnosis codes, one underlying cause of death and up to 17 related causes of death. On 

average, each decedent has 18.84 diagnosis codes and 2.25 causes of death (including the 

underlying cause of death). In line with the ICD-9-CM Official Guidelines for Coding and 

Reporting,5 the diagnosis codes are in priority-based sequence of ICD-9 codes. The causes 

of death are in ICD-10 codes. Typically, we have a longer input source sequence around 16 

to 20 codes, and a much shorter output target sequence with roughly two to three codes. 

Such a short sequence of death codes is expected in death reports. We accessed the ten 

years’ (2009 to 2018) NCHS Mortality Multiple Cause Files database6 and calculated that 

the average length of death code sequence among 26,322,220 decedent samples to be 2.95 

codes. (Note that discharge codes on last hospital admission may contain previous admission 

discharge codes.)

5[Online]. Available: https://www.cdc.gov/nchs/data/icd/icd9cm_guidelines_2011.pdf
6[Online]. Available: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm#Mortalit_Multiple
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ACME (Automatic Classification of Medical Entry) is an ontology of medically valid 

causal relationships between ICD-10 codes developed, improved, and promulgated by an 

international team of medical experts [25]. The ACME decision table was used to learn the 

medical domain knowledge constraint [22]. It contains 95,321 lines of causal relationship. 

Specifically, if rules are of length 2, it can be interpreted as F2 → F3 (cause of death code 

F2 leading to cause of death code F3); if rules are of length 3, it can be represented as 

(F1:F2) → F3 (all codes within the subset are cause of death that lead to cause of death code 

F3). The ACME decision table was transformed into a knowledge graph; nodes are diagnosis 

codes and directed edges were pairwise rules.

B. Generating Causal Sequences Through Translation

We can define the generation of causal sequences as follows:

Definition 1: [Generation of Causal sequences] Given a deceased’s medical history 

represented as a collection of clinical codes x = x1,…,xm, the goal of causal sequence 

generation is to identify a list of clinical codes y = y1,…,yn that orders the conditions leading 

to death.

The objective is to generate the causal sequence of death, an ordered sequence of causes of 

death codes in ICD-10. The input is a sequence of diagnosis codes in ICD-9. To generate 

the output sequence from one domain based on the input sequence from another domain, we 

apply the state-of-the-art algorithms from neural machine translation.

Input and output sequence data are split into training, validation and testing set at the ratio of 

7:1:2. We applied five-fold cross validation. We achieved similar results using ten-fold cross 

validation (the split is 8:1:1). More results are in the supplementary file.

IV. Methodology

A. Neural Machine Translation: Encoder and Decoder

The goal of translation is to find a target sentence y = y1,…,yn which maximizes the 

conditional probability p(y|x) given a source sentence x = x1,…,xm. Neural machine 

translation (NMT) aims to maximize this conditional probability of source-target sentence 

pairs by using a parallel training corpus to fit a parameterized model. As shown in Fig. 3, 

there are two basic components of an NMT system:

1. An encoder encodes the input sequence x into representation s

2. A decoder generates the output sequence y

The conditional probability of the decoder is formulated as:

log p(y ∣ x) = ∑
t = 1

n
logp yt ∣ y1, y2, …, yt − 1, s (1)

The probability of the next generated word yi, is jointly decided by the learned 

representation vector s and all previously generated words y1,…,yt−1.
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1) LSTM Encoder - LSTM Decoder: In an long short-term memory (LSTM) Encoder-

Decoder framework [26], [27], the encoder reads and encodes an input sequence of 

embedded vectors x. The encoder will then generate a hidden state ht at time t from the 

current input xt and the previous hidden state ht−1:

ℎt = f xt, ℎt − 1 (2)

The source input representation vector s shall have the form:

s = q ℎ1, …, ℎm (3)

Here f and q are some non-linear functions. For the basic recurrent neural network RNN/

LSTM model, the conditional probability of output sequence y at time t can be written as:

p yt ∣ y1, …, yt − 1, s = g yt − 1, ℎt, s (4)

Here g is a (multi-layered) nonlinear function.

Generic RNN or LSTM encoder-decoder framework has to process the sentence word by 

word using fixed length vectors, failing to preserve long-term dependency. Bahdanau et al. 
proposed soft alignment (soft attention) [10] in a bi-directional RNN model that enables 

the model to search for a (sub)set of input words or encoded representation vectors when 

generating each target word. The soft attention score is calculated as:

score st, ℎi = vaT tanh W ast − 1 + Uaℎi (5)

Where st = f(st−1, yt − 1, ct) is the hidden state of output word yt at position t, the context 

vector ct is the weighted sum of hidden states of the input sequence, and Wa, Ua, va are 

trainable matrices.

Luong et al. [12] proposed global attention which predicts the position of alignment for 

the current word before computing the context vector using the window centered around 

that source position. The general attention score, a sub-category of the global attention 

mechanism, is calculated as:

score st, ℎi = stTW aℎi (6)

Here Wa is a trainable weight matrix in the attention layer.

Global attention [12] and soft attention [10] are “similar in spirit,” but there is a major 

difference. Global attention uses hidden states from the top LSTM layers of both encoders 

and decoders, while soft attention uses the concatenation of forward and backward hidden 

states in the bi-directional RNN encoder.

Zhu et al. Page 7

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2022 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Overall, the LSTM encoder-decoder model is easy to understand, and can be applied on 

most sequence-to-sequence tasks. Yet such a model has limited performance, especially on 

long sentences.

2) Bidirectional RNN Encoder - LSTM Decoder: A major disadvantage of the 

traditional encoder-decoder model is that the neural networks compress source sentences 

into fixed-length vectors. This may significantly limit the capability of translating long 

sentences [28]. Bahdanau proposed a bidirectional RNN [10] with soft alignment so that 

the model can learn to align and translate jointly. A bi-directional RNN encoder model can 

better learn the embedding of words, but it is less efficient than the LSTM encoder-decoder 

framework, and has less accurate results than transformer models.

3) Transformer Model: Still, RNN-based encoder-decoder models fail to perform well 

on long sentences. To overcome this problem, Vaswani et al. proposed the transformer 

framework with multi-head self attention module [29] that enables encoding words of the 

same sentence in parallel. As shown in Fig. 4, a transformer consists a stack of encoders and 

the same number of decoders. The embedded input is passed to the encoder at the bottom; 

the output from the encoder on the top will be passed to all decoders. The decoder on the top 

will pass the output to a linear layer and a softmax layer to generate a predicted sentence. 

The encoder has two layers: a multi-head self-attention layer and a feed forward layer. The 

decoder has an extra multi-head attention layer that processes both the output from the 

encoder stack and the output from previous attention layer.

The self attention module is the core component of the transformer model. The attention 

score is a scaled dot-product of matrices Query, Key matrices Q, K, or the weighted sum of 

the Value matrix V.

Attention(Q, K, V ) = softmax QKT

dk
V (7)

The Query, Key and Value matrices are generated through linear transformation Q = XWQ, 

K = XWK, V = XWV, Where WQ, WK, WV are learnable parameters.

The transformer model is more time-consuming to train than RNN-based encoder-decoder 

frameworks, but can achieve far better results [29]. BERT (Bidirectional Encoder 

Representations from Transformers) [14] is a transformer encoder model that has been 

pre-trained on large datasets (BooksCorpus with 800 M words and English Wikipedia 

with 2,500 M words). The pre-trained BERT model can be further fine-tuned to improve 

performance on multiple NLP tasks.

B. Decoding and Translation

A straightforward method of decoding is to predict only one word with the highest score 

based on previous steps. It is efficient and easy to understand; yet a small mistaken output 

might corrupt all remaining predictions. Thus, a better strategy named “beam search” [30] 

is adopted. In each step of the decoding process, the decoder generates multiple candidates 
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based on a previous output, and each of these candidate has a non-zero probability value. 

Beam search keeps the top k candidates for each step, keeps track of all paths of candidate 

outputs, and selects the path of highest overall probability when reaching the end of the 

sequence. Here, k is the beam size. The larger the value of k is, the more robust the decoding 

process is; yet this may require more memory and increase computational time.

We also include medical domain knowledge as constraints during translation. The ACME 

decision table specifies all the “feasible” pairwise causal relationships between ICD 

diagnosis codes [22][25]. Using this decision table, we construct a domain knowledge graph 

on all diagnosis codes from Michigan data before training. With diagnosis codes as nodes, 

we add directed paths between them only if such causal relationship can be found in the 

ACME decision table. When decoding, the networks are required to look up the knowledge 

graph and only include “feasible” codes in the top k hypotheses.

C. Evaluation

For quantitative evaluation, we evaluate how well our proposed causal chain 

Y = {Y 1, …, Y M1} aligns with the physicians’ decision, i.e., Y = Y 1, …, Y M2 . Here Yi is 

the individual codes, and M1, M2 are the respective length of the chains. A perfect alignment 

means M1 = M2, and Y i = Y i, for i = 1, …, M1. However, this is rarely the case, thus 

we compute a weighted average precision of our alignment in sub-sequences of variable 

lengths, i.e., the BLEU score [31]. Following natural language processing literature, we call 

sub-sequence of length i “i-grams”. BLEU score ranges from 0 to 1 or (or from 0 to 100 if 

multiplied by 100), and the higher BLEU, the higher we have an alignment with physicians 

clinically.

A simple example follows illustrates the computation of the BLEU score. In our proposed 

candidate sequence, the underlying cause of death, Asphyxia and Hypoxemia (R909) leads 

to Pneumonia, Unspecified Organism (J189) which leads to Respiratory failure, unspecified 
(J969).

Y = R909 J189 J969

The reference sequence, determined by the physician, consists of Asphyxia and Hypoxemia 
(R909), Pneumonia, Unspecified Organism (J189) and then Acute Respiratory Failure 
(J960).

Y = R909 J189 J960

As shown in Table II, we first list 1-grams and 2-grams from Y  and Y, and we compute the 

precision for the two cases. Here the definition of precision is similar in the classification 

setting: among all the predictions we made in candidate sequence Y , the number of 

candidate sequences we get correct in the reference sequence Y. After we compute all 
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the precision metrics, we calculate the geometric average of them as the BLEU metrics, 

approximately 0.47.

In natural language settings, people usually calculate BLEU score for the geometric average 

up to 4-gram precision. In our case, however, we only compute the geometric average 

up to 2-gram precision, and apply clipping to each of the precision. This is due to the 

fact that the average length of causal chain of death in Michigan dataset is 2.25 codes so 

including 3-gram precision will lead to substantially inaccurate evaluation. Furthermore, we 

also include a brevity penalty to penalize sentences that are too short.

According to [31], the modified i-gram precision is defined as:

pi = ∀ i‐grams in Y that appear in Y
∀ i‐grams in Y

(8)

The brevity penalty BP is defined as:

BP = 1, if c > r
exp(1 − r/c), if c ≤ r (9)

Here c is the length of candidate sequence (the number of words in the proposed candidate 

sequence), and r is the length of the reference sequence (the number of words in the 

reference sequence).

Then the BLEU score is defined as:

BLEU = BP ⋅ exp ∑
u = 1

N
wilog pi (10)

In this equation, exp is the natural exponential function; log is the natural logarithm 

function; the weight is wi = 1/i; we set N = 2.

For clinical interpretation, our modified BLEU score indicates how well our proposed 

sub-sequences of causal conditions match the physicians’ results. The 1-gram precision 

emphasizes individual condition codes matching, while 2-gram precision evaluates the 

causal relationship between two neighboring condition codes. Physicians can manually 

check whether the generated causal relationship between any two neighboring condition 

codes fulfills or contradicts their medical domain knowledge; in addition, a data-driven 

algorithm can incorporate ACME decision table as medical domain ground truth to assess 

the validity of two neighboring condition codes.

In Table III, we show an example of different candidate sequences that have perfect 1-gram 

precision but different 2-gram precision. The reference sequence from underlying cause of 

death to immediate cause of death is: I251 (Atherosclerotic heart disease of native coronary 
artery), I38 (Endocarditis, valve unspecified), I429 (Cardiomyopathy, unspecified) and I469 
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(Cardiac arrest, cause unspecified). The 2-gram precision in the modified BLEU score 

favors candidate sequences that have more feasible condition codes with pairwise casual 

relationship.

In addition to our modified BLEU score, we also include three other evaluation criteria: 

the accuracy for predicting the entire output sequence correctly, the accuracy of predicting 

individual codes correctly in the output sequence (sequence order not considered), and the 

accuracy for predicting the underlying cause of death correctly.

V. Experiments

By using OpenNMT package [32], We have trained the LSTM encoder-decoder models and 

bi-directional RNN (BRNN) encoder-decoder models with different attention mechanisms. 

In addition, we also train and evaluate the transformer model with multi-head self attention 

module on the Michigan dataset. All these experiments are evaluated by BLEU score and 

three accuracy metrics.

To extend the scope of this work, we explore the feasibility of applying encoder-decoder 

frameworks on current EHRs data in ICD-10 codes. As the input sequence of the Michigan 

dataset is coded in ICD-9, we choose to map the input ICD-9 codes into ICD-10 codes 

using General Equivalence Mappings published by Centers for Medicare & Medicaid 

Services (CMS).8 Specifically, we conduct four experiments on ICD-9 input codes (four 

combinations with or without validity check, with or without knowledge constraint) and one 

experiment on ICD-10 input codes without validity check or knowledge constraint.

In addition to OpenNMT, we incorporate the state-of-the-art pretraining model named cross-

lingual language model (XLM) [16] on our data set. Lastly, we visualize the attention scores 

and mapped the relationship between source sequence and output sequence.

A. Opennmt

OpenNMT serializes the training, validation, and vocabulary data into PyTorch files for 

preprocessing. As the Michigan dataset has a relatively small sample size comparing with 

datasets used in similar natural language processing tasks, our models have a small number 

of parameters but similar architecture as the state-of-the-art models. During training, we 

use the 2-layer LSTM model, with 500 hidden units in each layer for the LSTM encoder-

decoder framework (Luong et al. used 4-layer LSTM model with 1000 units [12]). For 

bidirectional RNN encoder, a 2-layer bidirectional LSTM with 500 and 250 hidden units 

is implemented. The transformer has six stacking layers, with 2,048 hidden units in feed 

forward layers and eight heads in multi-head attention layers.

We use one Nvidia GPU Tesla K80 to train and evaluate the models. Typically it takes 

around one hour to train an LSTM or bidirectional RNN model for 10,000 steps, and about 

six hours to train a transformer model. Yet it takes less than five minutes to translate all 

36,000 testing data using any of these models.

8[Online]. Available: https://www.nber.org/research/data/icd-9-cm-and-icd-10-cm-and-icd-10-pcs-crosswalk-or-general-equivalence-
mappings
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B. Optional Preprocessing: Validity Check

In search for better prediction performance, we add an extra pre-processing step, the validity 

check. For training and validation data, we adapt the same algorithm in [22] to remove 

the pairs of sentences that include “invalid” causal relationship between diagnosis codes in 

target sentence. In this way we reduce the number of sentences in the training set from 

136,753 to 107,711 and those in the validation set from 34,385 to 27,009. We then follow 

the same pipeline to train and translate with the same encoder-decoder models.

C. XLM: Pretraining

XLM [16] incorporates masked language modeling (MLM) proposed in BERT 

(Bidirectional Encoder Representations from Transformers) [14] with the transformer model 

to improve translation performance. The preprocessing includes tokenizing and applying 

fastBPE (byte pair encoding) [33] to monolingual and parallel data. MLM is the core 

strategy in monolingual language model pretraining. Training consists of three major steps: 

denosing auto-encoder, parallel data training, and online back-translation.

Due to the limited size of our data set, we concatenate all training, validation, and testing 

data into two corpora for monolingual pre-training. MLM perplexities are used for validation 

during pre-training. We train the cross-lingual model with parallel validation data and 

predict on parallel test data. We set the transformer framework with 512 embedding size and 

4 attention heads. We vary the encoder-decoder stacking size from 6 layers to 1 layer. The 

drop out rate was set to 0.1, attention dropout to 0.1, batch size to 32, and sequence length to 

128. We used GELU for activation and adam as optimizer.

VI. Results

A. Attention Comparison

As shown in Table IV, bi-directional RNN (BRNN) encoder-decoder model with soft 

attention achieves the highest BLEU score, followed by the transformer model and BRNN 

with no attention. When comparing different attention mechanisms, LSTM model with soft 

attention or with general attention has higher BLEU scores than without attention; BRNN 

models with different attention mechanisms have similar BLEU scores. Comparing LSTM 

models against BRNN models, LSTM with no attention or with soft attention has lower 

BLEU scores than BRNN model counterparts, but LSTM model with general attention 

has very close BLEU score to the BRNN model with general attention. The best model 

performance has a BLEU score of 17.87, better than the performance of the state-of-the-art 

in the natural language domain (English-Czech translation task achieving BLEU score 17.7 

with same vocabulary size around 10,000) [13].

In addition, we also include the results for the other three evaluation criteria. BRNN model 

with general attention has the highest accuracy in generating the entire sequence correctly 

and the highest accuracy in generating individual codes correctly. BRNN model with soft 

attention has the highest accuracy in predicting the underlying cause of death correctly.
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One thing to notice is that all these models with different attention mechanism have very 

close performance (less than 5% difference). Comparatively, BRNN models with either soft 

attention or general attention have the best performance among all these frameworks.

B. Validity Check, Domain Knowledge Constraint and ICD-10 Input Sequence

As shown in Table V, we calculate the average BLEU score and its standard deviation 

(in parenthesis) for each encoder-decoder framework across five folds. For Experiment 1 
(no validity check in training/ validation data and no knowledge constraint in decoding), 

the transformer model achieves the highest BLEU score. Comparing Experiment 1 and 

Experiment 2, validity check, the preprocessing step on training and validation data 

increases the average BLEU score for LSTM and BRNN models, but decreases the 

performance of the transformer model. This indicates that validity check has mixed impact 

on average performance of different models.

It is worth noticing that in Experiment 3 and Experiment 4, the average BLEU score 

drops significantly for LSTM and BRNN models, while their standard deviation increases 

significantly. As for the transformer models, knowledge constraint decreases the average 

BLEU score. Consequently, we show that the encoder-decoder frameworks can learn the 

causal relationship between diagnosis codes well enough that it is not necessary to learn and 

incorporate the medical domain knowledge constraint from the ACME decision table during 

the decoding process.

In addition, it is interesting to compare the results in Experiment 1 and Experiment 5. 

After mapping the input ICD-9 codes into ICD-10 codes, LSTM, BRNN and transformer 

models have similar average BLEU scores with those in Experiment 1. These results are 

significant: 1) the encoder-decoder frameworks are promising and stable in generating the 

causal sequence of death, no matter whether we have input and output data in the same or 

different coding systems. 2) When having no access or limited access to the newest EHRs 

data, we can use data before 2015 to train the models and generate the causal sequence of 

death.

C. Attention Visualization: A Case Study

To better understand the causal relationship between clinical conditions on the discharge 

records, we visualize the attention scores generated by the bi-directional RNN model. In 

this case, there are ten diagnosis codes in ICD-9 on the decedent’s discharge record. The 

generated causal sequence of death is exactly the same as the ground truth (annotated by 

physicians). We map the attention scores for all diagnosis codes in the input sequence 

(x-axis) against the causes of death codes in the output sequence (y-axis). As shown in 

part (A) of Fig. 5, a higher attention score is painted in darker blue, indicating that the 

input diagnosis code is more related with the code in causal sequence of death. If we 

empirically set a threshold of 0.1, we can identify five diagnosis codes as death-related 

conditions (shown in part (B) of Fig. 5). Four of five are severe cardiac conditions, aligned 

with the causes of death. The other five diagnosis codes are not considered as death-related 

conditions due to lower attention scores.
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The attention scores improve model interpretation by showing the relationship between 

diagnosis codes and causes of death. Attention visualization also helps the researchers and 

clinicians identify death-related conditions from available symptoms on discharge records.

D. XLM

To our surprise, the state-of-the-art algorithm XLM performs much worse than the other 

encoder-decoder frameworks. All BLEU scores are less than 1 after trying different 

combinations of hyper-parameters.

The core algorithm behind BERT and XLM, masked language model, may not work on our 

data set. The idea of masked language modeling is to randomly mask a few words in the 

sentence (either source or target sentence) during the training stage and then to recover these 

masked words based on surrounding context. Since, on average, our target sentence has 2.25 

words, masking one word can make it extremely difficult to recover. Even worse, over 31% 

of our target sentences consist of only one word: masking the only word makes it impossible 

to recover.

VII. Discussion

According to [13], larger vocabulary size tends to allow models to achieve higher BLEU 

scores. Their proposed hybrid NMT model achieved 17.7 BLEU score with 10,000 

vocabulary size on English-Czech translation task. Our vocabulary size in source set is 7616 

and that in target set is 2649. Thus, our results are better than the state-of-the-art results in 

natural language processing with similar vocabulary size. Even compared with other neural 

machine translation models [10] [33] with larger vocabulary size (except English-French 

translation), our results are very similar. A possible extension to the causal relationship is 

to apply causal inference algorithms [34][35] on causes of death codes and evaluate the 

average treatment effect.

Wu et al. [21] sought to predict the underlying causes of death achieves higher accuracy 

(75%), but our accuracy in generating individual codes is higher (81%). Blanco’s recent 

publication on Journal of Biomedical and Health Informatics [23] used similar RNN model 

to predict the single cause of death codes from verbal autopsy questionnaire data. Their 

work achieved accuracy of 45.6% and 53.3% for adult and children groups correspondingly, 

similar to our accuracy for predicting the underlying cause of death. We argue that our 

models are able to generate most of the individual causes of death codes while covering the 

underlying cause of death.

Meanwhile, medical domain knowledge as constraint is incorporated when generating 

output sequence. Even though domain knowledge constraint has a negative impact on 

the encoder-decoder models, we show that the encoder-decoder frameworks can learn the 

causal relationship between diagnosis codes from the data. Meanwhile, we demonstrate that 

validity check can be a critical step in the pipeline which may slightly improve results.

Still, there are a few limitations with this work. First, the medical domain knowledge 

constraint has a negative impact on generating causal sequence of death. As the causal 
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relationship learned from ACME decision table was only applied on beam search process 

during decoding, domain knowledge constraint failed to influence the model performance 

in a positive direction. Alignment or attention mechanism, the core component of encoder-

decoder framework, did not use with the domain knowledge constraint. Furthermore, even 

though that XLM has proven its efficacy in natural language translation, it fails on our task. 

One potential cause is that the masked language modeling might not work on extremely 

short sentences (average 2.25 words per sentence).

One potential solution is to apply more recent models and pretrained embeddings. 

Specifically, Med-BERT [36] is a pretrained embedding of the BERT model on diagnosis 

codes from structured electronic health records of over 28 million patients. Med-BERT is 

pretrained on in-hospital length of stay (LOS) prediction tasks and fine tuned with disease 

prediction tasks. This pretrained embedding of a more advanced model may potentially 

improve the performance of generating the causal sequence of death.

One unsolvable problem is the one-word target sentence. Rarely do we see sentences 

consisting just one word in natural language processing tasks; yet 31.77% of our training 

data, 31.68% of validation data and 31.27% of testing data are one-word target sentences. 

These samples significantly undermine the perceived efficacy of neural machine translation 

models.

VIII. Conclusion

In this paper, we are the first to successfully predict the causal sequence of death using 

neural machine translation frameworks to support the timely, accurate, and complete 

death reporting. We also evaluate the model performance using three different accuracy 

scores, achieving 81.68% accuracy in generating the individual codes in output sequence. 

Furthermore, we visualize the attention scores to interpret the causal relationship of 

diagnosis codes from the discharge records. Specifically, we identify the death-related 

conditions from available symptoms by mapping all diagnosis codes in the input sequence 

against all causes of death codes in the output sequence. Lastly, we demonstrate a FHIR-

based mobile app to retrieve, modify, and upload cause of death data to improve clinical 

integration.

There are multiple potential directions for future work. 1) The clinical domain knowledge 

constraint may be implemented to interact with the attention scores in order to constrain 

the casual relationship during the model learning stage. 2) Using more recent models or 

pretrained embeddings, such as Med-BERT. 3) As our dataset does not include temporal 

diagnosis codes, future work may find data with time-stamped information. 4) Our dataset 

was collected before 2017 and thus has no COVID-related death. Future collaboration 

will include discharge records and death certificate records collected during and after the 

pandemic. In this way we can test our approach to identify COVID-related severe symptoms 

and causes of death.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Overall Structure of this paper. The encoder-decoder model is the main framework for 

generating sequences of causes of death. Validity check is an optional preprocessing step 

and domain knowledge constraint is an optional step in decoding.
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Fig. 2. 
Sample data from the Michigan data set. The casual sequence of death in ICD-10 for this 

decedent is I500 > R688 (Heart failure > Other general symptoms and signs), outlined in 

green. This decedent had a total of 30 ICD-9 diagnostic codes assigned during the last visit 

to hospital, outlined in blue.
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Fig. 3. 
Neural machine translation consists of an encoder (stacked recurrent networks in blue) and a 

decoder (stacked recurrent networks in red). The symbol < eos > is a special token referring 

to the end of a sentence. Adapted from [13].
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Fig. 4. 
Overall structure of a transformer. Here we have five identical encoders and five identical 

decoders in this transformer.7

7Adapted from https://towardsdatascience.com/transformers-141e32e69591
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Fig. 5. 
Attention visualization and explanation. In part (a), the attention score matrix is visualized. 

From top to bottom are the underlying cause of death and immediately causes of death. 

Darker blue color indicates higher attention scores (the input code is more related with the 

output code). In part (b), we provide human-readable description to all ICD codes. The 

identified causes of death for this decedents are cardiovascular diseases.
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TABLE I

Summary of Challenges in Generating the Causal Sequence of Death and Proposed Solutions

Challenge Solution

Different coding versions Machine translation between input and output sequences

Domain knowledge conflict Incorporate medical domain knowledge as constraint

Data interoperability FHIR compatible platform
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TABLE II

An Example of 1-Gram Precision and 2-Gram Precision in BLEU Score

Grams From Candidate Y Appear in Y Precision

1-gram (R909), (J189), (J969) (R909), (J189) 2/3

2-gram (R909, J189), (J189, J969) (R909, J189) 1/2
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TABLE III

Our Modified BLEU Score for Different Candidate Sequences

Sequence BLEU

Reference I251 → I38 → I429 → I469

Candidate 1 I429 → I38 → I469 → I251 0.0

Candidate 2 I38 → I429 → I251 → I469 57.7

Candidate 3 I429 → I469 → I251 → I38 81.6

Candidate 4 I38 → I429 → I469 → I251 81.6

Candidate 5 I251 → I38 → I429 → I469 100.0
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