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Abstract

Background: Better blood tests to elucidate the behaviour of metastatic castration-
resistant prostate cancer (mCRPC) are urgently needed to drive therapeutic decisions.
Plasma cell-free DNA (cfDNA) comprises normal and circulating tumour DNA (ctDNA).
Low-pass whole-genome sequencing (lpWGS) of ctDNA can provide information on
mCRPC behaviour.
Objective: To validate and clinically qualify plasma lpWGS for mCRPC.
Design, setting, and participants: Plasma lpWGS data were obtained for mCRPC patients
consenting to optional substudies of two prospective phase 3 trials (FIRSTANA and
PROSELICA). In FIRSTANA, chemotherapy-naïve patients were randomised to treatment
with docetaxel (75 mg/m2) or cabazitaxel (20 or 25 mg/m2). In PROSELICA, patients
previously treated with docetaxel were randomised to 20 or 25 mg/m2 cabazitaxel.
lpWGS data were generated from 540 samples from 188 mCRPC patients acquired at four
different time points (screening, cycle 1, cycle 4, and end of study).
Outcome measurements and statistical analysis: lpWGS data for ctDNA were evaluat-
ed for prognostic, response, and tumour genomic measures. Associations with
response and survival data were determined for tumour fraction. Genomic biomark-
ers including large-scale transition (LST) scores were explored in the context of prior
treatments.
Results and limitations: Plasma tumour fraction was prognostic for overall survival in
univariable and stratified multivariable analyses (hazard ratio 1.75, 95% confidence
interval 1.08–2.85; p = 0.024) and offered added value compared to existing biomarkers
(C index 0.722 vs 0.709; p = 0.021). Longitudinal changes were associated with drug
response. PROSELICA samples were enriched for LSTs (p = 0.029) indicating genomic
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treatment but not taxane or radiation therapy. Higher LSTs were correlated with losses of
RB1/RNASEH2B, independent of BRCA2 loss.
Conclusions: Plasma lpWGS of ctDNA describes CRPC behaviour, providing prognostic
and response data of clinical relevance. The added prognostic value of the ctDNA fraction
over established biomarkers should be studied further.
Patient summary: We studied tumour DNA in blood samples from patients with prostate
cancer. We found that levels of tumour DNA in blood were indicative of disease
prognosis, and that changes after treatment could be detected. We also observed a
“genetic scar” in the results that was associated with certain previous treatments. This
test allows an assessment of tumour activity that can complement existing tests, offer
insights into drug response, and detect clinically relevant genetic changes.
© 2021 The Author(s). Published by Elsevier B.V. on behalf of European Association of
Urology. This is an open access article under the CC BY-NC-ND license (http://creati-

vecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Prostate cancer (PC) remains a major cause of male cancer
deaths [1] despite significant advances in systemic treat-
ment [2]. Taxanes improve overall survival (OS) and provide
symptomatic benefit from metastatic castration-resistant
PC (mCRPC) [3,4] but uncertainty remains regarding how
long to continue treatment, with early prostate-specific
antigen (PSA) changes unable to guide treatment switch
decisions. Better biomarkers of response are needed for
early discontinuation of ineffective treatment. Measure-
ment of total circulating cell-free DNA (cfDNA) in serial
plasma samples is prognostic but is challenged by
nonmalignant circulating DNA. The fraction of cfDNA that
is tumour-derived—circulating tumour DNA (ctDNA)—can
be estimated via next-generation sequencing to generate
quantitative [5] and qualitative data [6], with serial ctDNA
genomics providing important insights into disease behav-
iour and evolution [7].

Low-pass whole-genome sequencing (lpWGS) assesses
genome-wide copy number events [8], allowing rapid, high-
throughput, inexpensive testing of ctDNA and estimation of
cfDNA tumour fraction, ploidy, and whole-genome copy
number alterations (CNAs). lpWGS can characterise the
impact of DNA repair defects and genomic instability by
detailing copy-number fragment size and frequency,
including large-scale transitions (LSTs) and tandem dupli-
cations [9–11]. Homologous repair scores, to which LSTs
contribute, have been linked to PARP inhibitor sensitivity,
and tandem duplication CNA genotypes reflect deleterious
CDK12 alterations that sensitise the individual to immuno-
therapy [10,12].

We validated a cfDNA lpWGS assay and tested samples
from mCRPC patients treated in two taxane phase 3 trials,
FIRSTANA (NCT01308567) and PROSELICA (NCT01308580).
In FIRSTANA, chemotherapy-naïve patients were random-
ised to docetaxel (75 mg/m2) or cabazitaxel (20 or 25 mg/
m2); in PROSELICA, docetaxel-pretreated patients were
randomised to 20 or 25 mg/m2 cabazitaxel [13,14]. Here we
present lpWGS data from patients consenting to these extra
analyses and clinical qualification that this biomarker
provides prognostic and response data as well as informa-
tion on evolving progressing disease.
2. Patients and methods

2.1. Patients and sample collection

Supplementary Figure 1 shows an outline of our study, while
Supplementary Figure 2A,B shows overviews of the FIRSTANA and
PROSELICA trials. Both trials have already been reported [13–15]. OS was
defined as the time from randomisation to death from any cause. Patients
who did not have an event were censored at the date of last contact.
Radiographic and PSA progression-free survival (rPFS and PSA-PFS) were
defined as the time from randomisation to the date of tumour
progression.

To determine progression and response status we used Response
Evaluation Criteria in Solid Tumours 1.1 and Prostate Cancer Working
Group 2 Criteria, as previously described in the FIRSTANA and PROSELICA
reports [13–15]. Studies on ctDNA were prospectively included as an
optional exploratory endpoint in both trials. Clinical data included PSA,
lactate dehydrogenase, haemoglobin, serum albumin, alkaline phospha-
tase, and Eastern Cooperative Oncology Group performance status.
Plasma was collected from patients consenting to this substudy at two
baseline time points 1–4 wk apart (at screening [SCR] and cycle 1 day
1 [C1]) and at cycle 4 day 1 (C4) and at the end of the study (EOS). Blood
was collected in lithium heparin tubes (BD Vacutainer; BD Biosciences,
San Jose, CA, USA). Plasma was collected from healthy volunteers (n = 10)
and pooled prior to lpWGS. Biopsies were collected according to a
prospective PC molecular characterisation protocol approved by the
institutional review board [16].

2.2. cfDNA extraction and quantification

cfDNA was isolated from 1–4 ml of plasma using a QIAamp Circulating
Nucleic Acid kit (Qiagen, Hilden, Germany). Of the 60 ml of eluate, 3 ml
was used for quantification via a Quant-IT Picogreen HS DNA kit
(ThermoFisher, Waltham, MA, USA) and concentrations were read on a
BioTek microplate spectrophotometer (excitation 480 nm, emission
520 nm) (BioTek Instruments, Winooski, VT, USA).

2.3. Library preparation and sequencing

Following extraction, samples were treated with heparinase I
(Sigma-Aldrich, St. Louis, MO, USA) [17]. Low-pass whole-genome
library preparation was carried out using a Qiagen QiaSeq FX DNA
library kit (Qiagen). Samples were sequenced on an Illumina
NovaSeq 6000 platform (Illumina, San Diego, CA, USA). Technical
replicates were prepared and sequenced on an Illumina MiSeq
system (Illumina) [18].
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2.4. Bioinformatics processing

lpWGS data were converted to paired-end reads (bcl2fastq2 v.2.17.1.14)
with default settings and subsequently aligned to the human reference
genome (GRCh37) using the BWA-MEM (version 0.7.12) algorithm
[33]. Quality control checks were performed using Picard (Broad
Institute, Cambridge, MA, USA, version 2.8.1) and FASTQC (Babraham
Institute, Babraham, UK, version 0.11.8). Samples were excluded from
analysis if the sequencing depth was less than 0.05� or if they failed the
FASTQC read quality filter. Aligned reads were quantified using
HMMcopy readCounter [35] (version 0.99.0) with the quality filter
and interval width set to 20 and 500 kb, respectively.

Read depth datawere modelled and the tumour fractionwas calculated
using ichorCNA (version 0.1.0) [19]. Transition strength parameters were
set at –txnE = 0.99999 and –txnStrength = 100000; the maximum copy
number (CN) was set to 20 to account for amplifications. The germline DNA
fraction (initial values 40% and 90%), ploidy (initial values 2 and 3), and
subclonality were modelled. The default 500-kb reference coverage data
set supplied with ichorCNA was used.

2.5. Data handling and statistical analyses

IchorCNA provides segmented CN data and estimates of tumour fraction
and ploidy. These were further processed to generate both CN calls and
LST values, as described in the Supplementary material [20]. Cox
proportional-hazards models were used for multivariable survival
analysis, and Kaplan-Meier curves for univariable survival comparisons.
Table 1 – Baseline characteristics of the cohorts with castration-resista

Characteristic FIRSTANA (n = 103) 

ECOG PS �2, n (%) b 3 (2.9) 

RECIST-measurable, n (%) b 54 (52) 

Visceral disease, n (%) 20 (19) 

Pain at baseline, n (%) c 69 (67) 

Gleason score <8 at diagnosis, n (%) d 42 (41) 

Prior Abi/Enza treatment, n (%) 2 (1.9) 

Trial arm, n (%)
Cabazitaxel (20 mg/m2) 34 (33) 

Cabazitaxel (25 mg/m2) 28 (27) 

Docetaxel (75 mg/m2) 41 (40) 

Median age, yr (IQR) 68.0 (62.5–72.0) 

Median LDH, U/l (IQR) 267 (204–360) 

Median ALP, U/l (IQR) 129 (81.0–242) 

Median haemoglobin, g/dl (IQR) 121 (111–128) 

Median albumin, g/dl (IQR) 40.2 (37.5–43.4) 

Median PSA, ng/ml (IQR) 60.4 (18.2–188) 

Median PSA doubling time, d (IQR) 62 (36–100) 

Median NLR (IQR) 2.25 (1.53–4.10) 

Outcomes
>50% PSA response at 12 wk, n (%) 55 (53) 

>50% PSA response at any time, n (%) 68 (66) 

Median OS, mo (95% CI) 21.3 (17.2–23.9) 

Median rPFS, mo (95% CI) 11.6 (9.86–13.6) 

Median PSA-PFS, mo (95% CI) 7.43 (6.64–8.94) 

Censored (n) 30 

Median FU for censored patients (mo) 32.0 

Abi = abiraterone; ALP = alkaline phosphatase; ECOG PS = Eastern Cooperative On
interquartile range; LDH = lactate dehydrogenase; NLR = neutrophil/lymphocyte 

specific antigen; RECIST = Response Evaluation Criteria in Solid Tumours; rPFS =
a x2 test.
b Stratification parameters.
c Twenty assessments missing (15 in FIRSTANA and 5 in PROSELICA).
d Twelve assessments missing (5 in FIRSTANA and 7 in PROSELICA).
e Wilcoxon rank-sum test.
f Log-rank test.
The log-likelihood test was used to compare regression models.
Multivariable generalised linear and logistic regressions were used to
study continuous and binary outcomes, respectively. A full listing of the
regression variables is provided in the Supplementary material.
Comparisons of continuous variables (tumour fraction and LST scores)
between groups (study subset, prior treatment, specific CN events) in
violin plots used the Wilcoxon rank-sum (unpaired data) or signed-rank
(paired data) tests. Elastic-net regression was performed using
eNetXplorer (version 1.1.0) [21], for which parameter selections are
presented in the Supplementary material. Following elastic-net regres-
sion, significant (p < 0.05) bins were merged with adjacent highly
correlated (Pearson’s r > 0.9) bins to form merged regions for subsequent
analyses, with the CN values of the most significant overlapping bin
assigned to each final merged region.

3. Results

3.1. FIRSTANA and PROSELICA cohorts providing plasma

samples for lpWGS

lpWGS data were generated from 540 samples acquired at
four time points (SCR and C1, representing baseline, and C4
and EOS). Samples with plasma available after other
preplanned analyses were tested, including 299 FIRSTANA
(104 SCR, 55 C1, 79 C4, and 61 EOS) and 241 PROSELICA
(84 SCR, 34 C1, 59 C4, and 64 EOS) samples. The
nt prostate cancer from the FIRSTANA and PROSELICA studies

PROSELICA (n = 85) p value

10 (12) 0.02 a

45 (53) 0.9 a

25 (29) 0.11 a

59 (69) 0.4 a

45 (53) 0.051 a

29 (35) <0.001 a

41 (48)
44 (52)
0 (0)
67 (64.0–71.0) 0.2 e

366 (234–605) 0.003 e

214 (118–413) 0.002 e

112 (105–122) <0.001 e

40.0 (36.0–43.0) 0.2 e

161 (64.9–623) <0.001 e

51 (35–86) 0.3 e

2.79 (1.69–3.89) 0.17 e

23 (27) <0.001 a

33 (39) <0.001 a

13.3 (11.5–15.8) <0.001 f

7.13 (6.11–12.4) 0.003 f

4.86 (4.14–7.29) 0.003 f

6
Insufficient cases

cology Group performance status; Enza = enalutamide; FU = follow-up; IQR =
ratio; OS = overall survival; PFS = progression-free survival; PSA = prostate-

 radiographic PFS.
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Fig. 1 – Cell-free DNA (cfDNA) tumour fraction estimates are prognostic. (A,B) Univariable analysis of overall survival (OS) with cohort stratification by
median baseline tumour fraction (average for the screening and cycle 1 day 1 samples; yellow = high, blue = low) across the (A) FIRSTANA (discovery)
and (B) PROSELICA (validation) cohorts. Kaplan-Meier plots with confidence intervals (CIs) and matching risk tables are shown. Dashed lines indicate
the time to 50% survival. (C) Univariable regression random-effects meta-analysis of OS by cfDNA tumour fraction (continuous variable, log10
transformed) in the FIRSTANA (discovery) and PROSELICA (validation) cohorts. Effect size, hazard ratio (HR), 95% CI, and p values for the overall test
for effect are shown. SE = standard error. (D) Forest plots showing multivariable analysis of OS, radiographic progression-free survival (RPFS) and PSA
progression-free survival (PSAPFS) from Cox proportional-hazards models. Statistical models were stratified by study inclusion (FIRSTANA vs
PROSELICA) because of underlying differences in survival. The median baseline tumour fraction (continuous variable, log10-transformed) and median
baseline cfDNA total concentration (continuous variable, log10-transformed) are included in the model, along with other baseline clinical variables
prognostic for mCRPC.
ECOG = Eastern Cooperative Oncology Group; Mets = metastases; ALB = albumin; HB = haemoglobin; LDH = lactate dehydrogenase; PSA = prostate-
specific antigen; ALP = alkaline phosphatase; NLR = neutrophil/lymphocyte ratio.
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characteristics for the 188 patients involved are presented
in Table 1 (FIRSTANA n = 103 and PROSELICA n = 85;
Supplementary Figs. 1 and 2). PROSELICA substudy patients
had worse prognostic characteristics than the FIRSTANA
group, in keeping with a more heavily pretreated cohort.
Only <2% FIRSTANA substudy patients received abirater-
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Table 1. Maximum follow-up across the two trials was
51 and 48 mo. No differences in response or survival were
noted in the substudy cohorts compared to the overall
populations.

3.2. Validation of lpWGS CNA profile acquisition

lpWGS data were generated from cfDNA samples, with
median sequencing coverage of 1.9X . We identified
mCRPC genomic profiles (Supplementary Fig. 3) with
common events including AR (chromosome Xq) and MYC
(chromosome 8q) loci (Supplementary Fig. 3A). Cases
with frequent large-scale CN changes described in
tumours with BRCA1/2 loss were observed [22] (Supple-
mentary Fig. 3B), as well as focal tandem duplication
patterns linked to CDK12 loss [10] (Supplementary Fig.
3C). The overall CNA profile of our cohort was consistent
with previously published mCRPC biopsy data [23]
(Supplementary Fig. 3D).

To evaluate lpWGS CNA sensitivity, we used a baseline
sample with an estimated tumour fraction of 50% and
serially diluted it with pooled healthy volunteer cfDNA. The
diluted profiles closely matched each other, but estimation
of absolute CNA values was challenging when the tumour
fraction was <5% (Supplementary Fig. 4A) [19]. cfDNA
tumour fractions estimated via lpWGS were consistent with
the expected fractions following dilution (Pearson’s r
= 0.994; Supplementary Fig. 4B). We further studied
technical and biological replicates; ten samples subjected
to duplicate library preparations showed highly correlated
CNA profiles (Pearson’s r = 0.948; Supplementary Fig. 4C).
Biological replicates (same-patient samples taken 1–4 wk
apart at SCR and C1, n = 88) showed reproducible CNAs
(Supplementary Fig. 5A) and tumour fractions (Supplemen-
tary Fig. 5B).

3.3. Baseline cfDNA tumour fraction and prognosis

To explore univariable associations, we split the entire
FIRSTANA + PROSELICA lpWGS cohort according to the
overall median baseline ctDNA fraction, which was 9.6%
(Fig. 1A). High baseline ctDNA fraction was correlated with
shorter OS in the FIRSTANA and PROSELICA trials, with 10-
mo-shorter median OS (Fig. 1A,B). Analysis of the tumour
fraction as a continuous variable in FIRSTANA and
PROSELICA independently and collectively confirmed these
findings (Cox proportional-hazard models, p < 0.001 and
p = 0.004; meta-analysis test for overall effect, p < 0.001;
Fig. 1C). The baseline ctDNA fraction was also significantly
associated with rPFS and PSA-PFS (Supplementary Fig. 6).
The relationship between detectable ctDNA fraction (pres-
ent/absent) on treatment and OS is shown in Supplemen-
tary Figure 7. Furthermore, the baseline ctDNA fraction was
associated with several other clinical variables (Supple-
mentary Fig. 8).

We applied a multivariable Cox proportional-hazards
model, as described in the Supplementary material, to
investigate OS, rPFS, and PSA-PFS (n = 184 of 188 patients
with complete data) and, importantly, stratified by study
inclusion (Fig. 1D) [5]. The baseline ctDNA fraction was
independently associated with worse outcomes for all
three endpoints; the hazard ratio was 1.75 (95% confidence
interval [CI] 1.08–2.85; p = 0.024) for OS, 3.29 (95% CI 1.65–
6.59; p < 0.001) for rPFS, and 1.62 (95% CI 0.98–2.68; p
= 0.061) for PSA-PFS. We found that inclusion of the
tumour fraction in multivariable survival models led to a
significant improvement (OS, C index 0.722 vs 0.709;
likelihood-ratio test, p = 0.021; Supplementary Table 2).
These data indicate that the ctDNA fraction provides
independent information in the context of established
clinical biomarkers.

3.4. ctDNA fraction and response to taxane treatment

There was no statistically significant difference in baseline
ctDNA fraction between the FIRSTANA and PROSELICA
cohorts (median 9.5% vs 10%; Wilcoxon rank-sum test, p
= 0.2; Fig. 2A). The ctDNA fraction among nonresponding
FIRSTANA patients (determined via serial radiological and
PSA analyses) was relatively stable throughout treatment
(median 11% at baseline, 7.5% on treatment, and 10% at EOS).
By contrast, the ctDNA fraction among responders exhibited
large decreases on treatment (median 8.5% at baseline, 0%
on treatment, and 3.7% at EOS). These observations were
replicated in the PROSELICA cohort (Fig. 2B). In keeping with
these findings, CNAs became undetectable in responders
while on treatment (Supplementary Fig. 9). We further
evaluated the ctDNA fraction in longitudinal same-patient
samples (n = 252 samples from 84 patients; Fig. 2C). Among
responders, the ctDNA fraction significantly decreased on
treatment (Wilcoxon signed-rank test, p < 0.001) and
increased at EOS (median 8.7% at baseline, 0% on treatment,
and 7.2% at EOS); this was not observed for nonresponders
(median 9.7% at baseline, 9.1% on treatment, and 11.3% at
EOS).

3.5. lpWGS provides insights into PC genomic instability

We next explored LST as a measure of genomic instability
[22]. PROSELICA baseline samples exhibited a significantly
higher LST score compared with FIRSTANA baseline samples
(Wilcoxon rank-sum test, p = 0.029; Fig. 3A); however,
there was no correlation between LST score and estimated
tumour fraction (Supplementary Fig. 10A). We hypothesised
that LST score differences could be explained by prior
treatment, and found that patients who had received
abiraterone or enzalutamide had significantly higher LST
scores (median LST score: 18 untreated vs 26 treated;
Wilcoxon rank-sum test, p = 0.003; Fig. 3B and Supplemen-
tary Fig. 10B). Examples of CN profiles of samples with high,
intermediate, and low LST scores are shown in Supplemen-
tary Figure 10C.

This was maintained in multivariable logistic regression
analysis that included other known prognostic factors
(including ctDNA tumour fraction) with the LST score (odds
ratio 17.2, 95% CI 1.98–223; p = 0.018; Fig. 3C). However,
there was no significant difference in LST score between
individuals pretreated with radical radiotherapy and
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Fig. 3 – Genomic copy number burden and large-scale transition (LST) in metastatic castration-resistant prostate cancer (mCRPC). (A) Violin plot
comparison of LST scores between baseline (BL) and end of study (EOS) for the FIRSTANA (FIRS) and PROSELICA (PROS) cohorts. Samples with a tumour
fraction >5% were assessed; in cases with multiple BL data, the highest-fraction sample was used. Values for the median (white point), interquartile
range (IQR; black rectangle) and 1.5 T IQR (black lines) LST scores are also shown. Unpaired Wilcoxon rank-sum tests yielded the following results:
FIRS BL (median 18, IQR 11-24.5) versus FIRS EOS (median 18, IQR 9-29), p = 0.5; FIRS BL (median 18, IQR 11-24.5) versus PROS BL (median 20, IQR 14-
31), p = 0.029; PROS BL (median 20, IQR 14-31) versus PROS EOS (median 22, IQR 15-33), p = 0.7. (B) Comparison of baseline LST scores between patients
with prior abiraterone (Abi) or enzalutamide (Enza) exposure and untreated patients (n = 152). FIRSTANA patients are shown in green and PROSELICA
patients in purple; after removal of cases with a low tumour fraction, no FIRSTANA patients had received Abi/Enza and a significant proportion of
PROSELICA patients had received Abi/Enza. Median, IQR, and 1.5 T IQR LST scores shown as for A. Unpaired Wilcoxon rank-sum tests yielded the
following results: untreated FIRS (median 18, IQR 11-24.5) versus untreated PROS (median 18, IQR 13-27.5), p = 0.3; overall untreated (median 18, IQR
11.2-25) versus overall treated (median 26, IQR 15.2-36.8), p = 0.003. (C) Forest plot of the multivariable logistic regression model for association of LST
with prior Abi/Enza treatment, depicting ability of LST score to predict Abi/Enza status in the context of tumour fraction and other clinical biomarkers.
(D) Comparison of baseline LST values between patients who had received prior radical radiotherapy and those who had not. FIRSTANA patients are
shown in green and PROSELICA patients in purple (n = 152). Median, IQR, and 1.5 T IQR LST scores shown as for A. Unpaired Wilcoxon rank-sum tests
yielded the following results: untreated FIRS (median 18, IQR 12-25) versus untreated PROS (median 19.5, IQR 14-31), p = 0.10; treated FIRS (median 17,
IQR 8.25-24) versus treated PROS (median 20, IQR 14-35), p = 0.11; overall untreated (median 18, IQR 12-26) versus overall treated (median 19, IQR 12.5-
27.5), p = 0.8. (E) Violin plot comparison of baseline LST scores in FIRSTANA and PROSELICA by taxane treatment response (n = 152). Median, IQR, and
1.5 T IQR LST scores shown as for A. A Wilcoxon rank-sum test for nonresponders (median 18, IQR 12-28) versus responders (median 19, IQR 12-25)
yielded p = 0.6. (F) Comparison of LST scores in the validation cohort of same-patient samples (44 patients, 88 samples) between primary hormone-
sensitive prostate cancer (HSPC) and mCRPC sample pairs. Median, IQR, and 1.5 T IQR LST scores shown as for A. A paired Wilcoxon rank-sum test for
HSPC (median 18, IQR 12-22) versus mCRPC (median 22.5, IQR 17.8-30.8) yielded p < 0.001.
ECOG = Eastern Cooperative Oncology Group; Mets = metastases; OR = odds ratio; CI = confidence interval.
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untreated individuals (Fig. 3D), or between taxane re-
sponders and nonresponders (Fig. 3E).

We confirmed these findings using same-patient sam-
ples from hormone-sensitive PC (diagnostic, primary
tumours) and CRPC (metastatic) biopsies (n = 88) [16], all
of whom had received abiraterone or enzalutamide before
CRPC biopsy (Supplementary Table 3). LST scores increased
significantly (median scores 18 and 22.5; Wilcoxon rank-
sum test, p < 0.001) after exposure to abiraterone or
enzalutamide in this cohort (Fig. 3F).
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3.6. Association of LST score with tumour CNAs

To explore CNAs associated with LST scores, we performed
elastic-net regression, which avoids false positives due to
multiple testing. Among baseline samples, several CNAs
were associated with high LST values (p < 0.05), the most
significant of which was chromosome 13 loss (Fig. 4A). We
then applied a multivariable generalised linear model to
assess the association of these regions with LST score and
found that loss of two regions on chromosomes 13 and 17,
and gain of two regions on chromosomes 1 and 20 remained
the most strongly associated with high LST scores (Fig. 4B).

Genes within these loci, with an overlap of publicly
available PARP inhibitor CRISPR screen data, are detailed in
the Supplementary material. Interestingly, when ranked by
LST score, co-occurrence of several of the genomic loci most
associated with a high LST score was evident (Fig. 4C).
However, we surprisingly observed that the key loci
highlighted by this multivariable approach did not point
to BRCA2, but instead focused on the RB1/RNASEH2B region,
although these analyses are limited by sample size and
require further validation (Fig. 5A,B). Overall, these data
indicate that an increase in LST score and genomic
instability emerge following treatment with abiraterone
or enzalutamide, but not taxane, and this is associated with
RB1 genomic locus loss with and without BRCA2 genomic
loss, with possible implication of concurrent RNASEH2B
genomic loss.

4. Discussion

Our data show that the ctDNA fraction obtained via lpWGS
provides information regarding prognosis, with serial
analyses identifying responding disease. Critically, these
assays provide genomic information that can serve as
biomarkers of treatment response and detect genomic
aberrations and signatures of DNA repair defects [10]. ctDNA
lpWGS provides information on emerging mCRPC genomics
and can be performed frequently, yielding data for multiple
metastatic sites. However, ctDNA assays do have limitations
and cannot fully elucidate intrapatient disease heterogene-
ity; this may be more feasible with analysis of single
circulating tumour cells [24].

Interestingly, our study also shows that treatment with
abiraterone or enzalutamide is associated with increases in
CNAs and LST scores; this was not seen following taxane
treatment or radical radiotherapy, and was maintained in
the presence of other markers of tumour burden. This
suggests differential, therapy-induced, genomic alterations
following treatment with next-generation hormonal
agents, but not taxanes. Other studies have shown that
high LST scores are associated with genomic instability and
may be biomarkers for PARP inhibitor sensitivity [12]. We
show here that the increase in LST score following
treatment with abiraterone or enzalutamide is most
associated with loss of loci on chromosome 13, which
usually contains the RB1 and RNASEH2B genes, among
others. Tumours with loss of RNASEH2B have been linked to
impaired misincorporated RNA excision from DNA and can
sensitise to PARP inhibition [25].

A limitation of ctDNA lpWGS is the fact that plasma
samples containing low tumour fractions make precise
detection of CNAs, especially subclonal events, challenging
[19,26]. A low ctDNA fraction is nevertheless of clinical
significance and indicates lower tumour burden and better
outcomes. The variation in ctDNA values observed over time
may reflect disease behaviour [27]. The ctDNA fraction
estimated via lpWGS, unlike cfDNA concentrations [14], is
highly correlated with disease response and treatment
outcome, probably because a significant proportion of



E U R O P E A N U R O L O G Y 8 0 ( 2 0 2 1 ) 2 4 3 – 2 5 3252
cfDNA arises from nontumour sources [28,29]. Our obser-
vations support the proposal that changes in the ctDNA
fraction can track treatment response, and we welcome
further exploration of this phenomenon [30,31].

This study may be biased by sample selection; not all
patients consented to blood sample donation for these
analyses and our analyses focused on patients with
available plasma with higher ctDNA levels, which may
represent a poor-prognosis cohort. However, there were no
statistically significant differences in the response rate or
survival between our cohort and the overall trial popula-
tions. mCRPCs overall do have some of the highest
quantities of cfDNA among adult solid tumour types,
making these studies especially useful [32]. This study
supports complementary research on ctDNA lpWGS and
targeted next-generation sequencing, which together can
transform disease management. Further studies to critically
validate the prognostic capability of the ctDNA fraction in
mCRPC are now necessary, especially in the context of
existing validated biomarkers.

5. Conclusions

In conclusion, we demonstrated that cfDNA lpWGS can
describe CRPC behaviour, provide prognostic and response
data of clinical relevance, and identify emerging genomic
alterations that might serve as therapeutic targets.
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