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Hepatitis B virus (HBV) co-infection is fairly common in people living with HIV (PLWH) and
affects millions of people worldwide. Identical transmission routes and HIV-induced
immune suppression have been assumed to be the main factors contributing to this
phenomenon. Moreover, convergent evidence has shown that people co-infected with
HIV and HBV are more likely to have long-term serious medical problems, suffer more from
liver-related diseases, and have higher mortality rates, compared to individuals infected
exclusively by either HIV or HBV. However, the precise mechanisms underlying the
comorbid infection of HIV and HBV have not been fully elucidated. In recent times, the
human gastrointestinal microbiome is progressively being recognized as playing a pivotal
role in modulating immune function, and is likely to also contribute significantly to critical
processes involving systemic inflammation. Both antiretroviral therapy (ART)-naïve HIV-
infected subjects and ART-treated individuals are now known to be characterized by
having gut microbiomic dysbiosis, which is associated with a damaged intestinal barrier,
impaired mucosal immunological functioning, increased microbial translocation, and long-
term immune activation. Altered microbiota-related products in PLWH, such as
lipopolysaccharide (LPS) and short-chain fatty acids (SCFA), have been associated with
the development of leaky gut syndrome, favoring microbial translocation, which in turn has
been associated with a chronically activated underlying host immune response and hence
the facilitated pathogenesis of HBV infection. Herein, we critically review the interplay
among gut microbiota, immunity, and HIV and HBV infection, thus laying down the
groundwork with respect to the future development of effective strategies to efficiently
restore normally diversified gut microbiota in PLWH with a dysregulated gut microbiome,
and thus potentially reduce the prevalence of HBV infection in this population.
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INTRODUCTION

Human immunodeficiency virus (HIV) infection and chronic
hepatitis B virus (HBV) infection are major global public health
concerns, and prior studies have shown that interplay can occur
between these viruses (1–3). HIV is a pathogen that causes systemic
CD4+ T-cell destruction and results in impaired cell-mediated
immunity, which leads to the development of various opportunistic
infections and non-AIDS comorbidities (4). Infection by HBV is a
major cause of liver diseases, including chronic hepatitis B, liver
cirrhosis, and hepatocellular carcinoma. Most healthy adults
infected with HBV are able to neutralize the virus during the
acute phase of infection via immunological mechanisms. However,
among infants and young children, chronic HBV infections
frequently eventuate because of their immature immune systems
(5). In people living with HIV (PLWH), co-infection with HBV is
fairly common and contributes significantly to morbidity and
mortality (1, 3, 6–8). There is a significant increase in HBV
DNA levels, higher hepatitis B e antigen (HBeAg) fraction, lower
CD4+ T-cell counts, and poorer liver and coagulation functions
among HBV/HIV co-infected individuals, compared to mono-
infected individuals (7). Immune dysfunction caused by HIV
enhances the likelihood of HBV persistence, and hepatotoxicity
associated with anti-HIV therapy may exacerbate the liver diseases
associated with HBV persistence (9).

Multiple factors have been considered as potential
contributors to the high prevalence of HBV in PLWH, such as
identical transmission routes of the individual HIV and HBV
viruses, HIV-induced immune suppression, poor HBV
vaccination response and reduced liver function. Aside from
these factors, recent research observations indicate that
microbiota-maintained immunity is also involved in HIV and
HBV co-infection (10–14). The human body is a host to over
1014 micro-organisms, including bacteria, fungi, archaea, viruses,
and eukaryotic microbes, which is 1-10 times greater than the
number of endogenous host cells in humans (15, 16). In recent
times, increasing evidence has demonstrated that microbiome
composition, diversity, and microbial products play a pivotal role
in maintaining good health through several metabolic and
immune pathways. Microbiota dysbiosis has been shown to be
involved in the pathogenesis and progression of numerous
inflammatory- and immune-related diseases, including
inflammatory bowel diseases, cancer, HBV infection, and HIV
infection. In this review, we critically discuss advances in the
understanding of the underlying causes of the high prevalence of
HBV infection in PLWH, and hypothesize how microbiota-
meditated immunity abnormalities in PLWH may facilitate
hepatitis B virus co-infection.
HIV INFECTION LEADS TO IMMUNE
IMPAIRMENT AND LONG-TERM
SYSTEMIC INFLAMMATION

CD4+ T-cells play multiple roles in orchestrating the overall
response to viral infections by coordinating the diverse
Frontiers in Immunology | www.frontiersin.org 2
components of the immune system. Their functions include
helping in B-cell-mediated high affinity antibody production,
enhancement of CD8+ T-cell expansion, function, and memory,
and establishment of cellular and humoral antigen-specific
immunity, which is the cornerstone of long-term protection
from a diverse range of microbial infections and is the
fundamental principle behind the effectiveness of most
vaccines (17, 18). However, HIV can specifically bind to T-
lymphocytes expressing the CD4+ receptor, and is able to thus
interact with cellular co-receptors (e.g., chemokine receptor
CCR5 or CXCR4), and subsequently infect and destroy these
T-lymphocytes (19, 20). By progressively destroying HIV-
infected CD4+ T-cells, HIV infection induces profound cellular
immunodeficiency and, hence, an inability of the immune
system to function in a competent manner.

The introduction of combined antiretroviral therapy (ART)
for the treatment of HIV infection has resulted in persistent
suppression of HIV replication and recovery of CD4+ T-cell
counts in the majority of patients, thus leading to large declines
in both mortality and morbidity in PLWH. However, the degree
of immune recovery achieved under ART varies greatly between
individuals. There is a fraction (between 10% to 40%) of HIV-
infected patients on ART whose absolute CD4+ T-cell counts
remain less than 200 cells/ml despite suppression of HIV
replication after even years of ART (21–24). These patients are
considered to be immunological discordants or non-responders
(INRs), in contrast to immunological responders (IRs) whose
CD4+ T-cell counts reach 200 cells/ml or over with suppression
of HIV replication (25). Compared with IRs, INRs have a poorer
overall immune response and a higher risk of clinical progression
to AIDS (24–26).

IRs experience persistent chronic immune activation and
inflammation, leading to an increased risk of the development
of non-AIDS co-morbidities, such as the metabolic syndrome
and certain cancers. Several factors contribute to this ongoing
immunological and inflammatory state, including persistent
antigenic stimulation by the low residual viremia, gut
microbial translocation due to a leaky gut and microbiota
dysbiosis, thymic dysfunction, other opportunistic co-infection,
and ART toxicity (27–29). During the early stages of HIV
infection, intestinal CD4+ T-cells are massively depleted as
these cells express high levels of the CCR5 co-receptor,
permitting the entry of HIV virions into these cells, followed
by eventual destruction of the cells and, in the gut, disruption of
gut mucosal epithelial barrier integrity, and this may not fully
resolve even with early ART initiation (30–32). The disruption of
gut homeostasis leads to increased translocation of microbial
products such as microbial DNA, bacterial lipopolysaccharide
(LPS), and the fungal polysaccharide, (1!3)-b-D-Glucan
(BDG), from the gut to the portal and systemic circulation,
thus promoting and sustaining chronic immune activation (33, 34).
Mehraj et al., reported that plasma BDG levels were elevated during
early and chronic HIV infection and persisted despite long-term
ART, and had an inverse correlation with CD4+ T-cell counts,
Dectin-1 on monocytes, and NKp30 expression on NK cells (34).
The varying and unpredictable degrees of immune impairment and
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the chronic underlying systemic inflammation induced by HIV
have evolved into issues of significant importance for PLWH as
well as for HIV researchers and clinicians in the prevailing
ART era.
HIGH HBV INFECTION PREVALENCE
IN PLWH

Globally, the latest data from the World Health Organization
(WHO) indicates that 2.7 million people are co-infected with
HIV and HBV (3). In concordance with these figures, a global
meta-analysis conducted in 2020, which included 475 studies
done in 80 countries, observed that the prevalence of HIV-HBV
co-infection in PLWH was 7.6%, equating to 2.7 million HIV-
HBV co-infections (35). An epidemiological study in the US
conducted over approximately 20 years (1989-2007) observed
that HBV co-infection is relatively common in PLWH.
Specifically, 1078 (39%) of 2769 PLWH had comorbid HBV
infection, among which 117 subjects had chronic hepatitis B (36).
The incidence of HBV infection following HIV diagnosis has
decreased dramatically from 4.0/100 person-years in the pre-
ART era to 1.1/100 person-years in the current ART era, but has
remained constant since the beginning of the 21st century (36). A
systematic review conducted in Europe in 2019 observed that
HBV infection prevalence ranged between 2.9% and 43.4% in
PLWH (37). Konopnicki et al., reported that the prevalence of
HBV co-infection in PLWH was more than 100-fold the
prevalence seen in the general population in the same region,
and that chronic HBV infection significantly increased liver-
related mortality in HIV-infected patients (38). A meta-analysis
in China found that pooled HBV prevalence in PLWH was
13.7% (95% CI 12.3-15.3%), with variations found with respect
to age and geographic region (39). Overall, the findings of these
studies indicate that HBV co-infection is appreciably prevalent
in PLWH.
MAIN FACTORS ASSOCIATED WITH HBV
INFECTION IN PLWH

Several factors contribute to the increased prevalence of HBV co-
infection in PLWH. HIV and HBV infection share identical
transmission routes. Both are transmitted from person to person
through semen, blood, or other bodily fluids. Thus, people at risk
for HIV infection are also at risk for HBV infection, especially in
high-risk groups such as people who have sex without a condom
and those who inject recreational drugs (PWID). However, data
from recent global meta-analyses are not fully concordant with
what has previously been assumed (35, 40). In 2020, one meta-
analysis indicated that the prevalence of HBV among PLWH/
PWID was slightly higher (11.8% IQR 6.0%-16.9%) than that
among PLWH who had not used recreational injectable drugs
(6.1% IQR 4.0%-9.9%) (35). Based on 70 studies, the median
Frontiers in Immunology | www.frontiersin.org 3
HBV prevalence among men who have sex with men (MSM)
with HIV/AIDS was 6.1% (IQR 5.0%‐9.2%) (35). In the same
year as the preceding study was conducted, another global meta-
analysis observed that the prevalence of HBV among PWID with
HIV/AIDS was 8% (95% CI: 5%-13%). Interestingly however, the
prevalence of HBV among female sex workers (FSWs) with HIV/
AIDS was found to be remarkably low, at 2% (95% CI: 0%-
7%) (40).

Moreover, a patient’s inherent ability to clear HBV is now
known to be reduced by HIV-induced immune suppression (41–43).
Most HIV-negative individuals have the ability to spontaneously
clear HBV infection, while PLWH who are exposed to HBV have
an approximately 3-6 fold higher likelihood of developing
chronic HBV infection (9). Cohen Stuart et al., reported that
occult hepatitis B in PLWH is associated with low CD4+ T-cell
counts (42). Compared with HIV-negative and HBV-immune
patients, a reduction in HBV-specific CD8+ T-cell responses in
HIV/HBV patients was observed in a cross-sectional study (41).
The introduction of ART can reconstitute some HBV-specific
CD4+ and CD8+ T-cell responses, in association with increased
restoration of CD4+ T-cell counts (41).

A poor immunological response to HBV vaccination may be
another factor affecting HBV co-infection in PLWH. HBV
vaccination is an important strategy for prevention of HBV
infection and is highly effective in general, with vaccine
response rates greater than 90% (44). However, PLWH,
especially those with low CD4+ T-cell counts, have a
considerably lower response rate to HBV vaccination of
between 18–71%, and more rapid rates of antibody decline
after acquisition of protective anti-HBs Ab titers from
vaccination, compared to HIV negative individuals (45–49). A
study conducted in Taiwan observed that the serological
response rate to HBV revaccination in HIV-positive MSM
patients was modest and that the antibody titers generated by
revaccination was found to wane rapidly, despite initial HBV
vaccination in the neonatal period as part of the childhood
vaccination schedule. Therefore, reinforced HBV vaccination
strategies have been recommended for PLWH (50).

Additionally, other than hepatitis B, PLWH are also more
susceptible to other liver diseases, such as non-alcoholic fatty
liver disease (NAFLD), fibrosis, and cirrhosis. Compared with
HIV negative individuals, HIV mono-infected patients have a
higher frequency of liver fibrosis, and its prevalence ranges
between 11% and 41% (51–55). These liver diseases may be
induced either by direct hepatocyte destruction due to HIV,
hepatotoxicity from ART drugs, and the heavy burden of
microbial products presented to the liver in these patients (56–58).
As the largest population of resident macrophages in the liver,
Kupffer cells play a key role in liver injury, hepatic inflammation,
and clearance of HBV from the liver. The protective effects of
Kupffer cells are due to their inherent role as innate immune cells
(59–63). However, as these cells also express CD4+, CCR5, and
CXCR4, they are vulnerable and can be productively infected by
HIV, resulting in a dysregulated hepatic innate immune response,
subsequent hepatic inflammation, and fibrosis (56, 64, 65). In
addition, specific ART regimens, especially nevirapine-, efavirenz-,
January 2022 | Volume 12 | Article 755890
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and dolutegravir-containing regimens, have been associated
with potentially lethal hepatotoxicity (66–70). Polo et al.,
observed that hepatic damage induced by efavirenz involved
acute interference with mitochondria, and similar observations
have been made by other investigators (67, 71–73). The hepatic
dysfunction associated with HIV infection and ART is likely to
further accelerate the progression of HBV infection (63, 74). It has
been reported that hepatocytic mitochondrial dysfunction
stimulates HBV gene expression through lipogenic transcription
factor activation (74).

Furthermore, aside from the preceding pathogenic
mechanisms, recent observations suggest that gut microbiota
dysbiosis and the leaky gut phenomenon observed during HIV
infection are additional factors favoring HBV infection
in PLWH.
MICROBIOTA DYSBIOSIS AND LEAKY
GUT IN PLWH INCREASE
SUSCEPTIBILITY TO HBV

HIV Infection Provokes Gut Microbiota
Dysbiosis and Immune System Impairment
Microbial communities residing in the intestines of PLWH have
been shown to significantly differ from those not infected with
HIV, and this difference manifests independently of age, gender,
and sexual practice (75, 76). HIV-1 infection is now recognized
to be characterized by microbial dysbiosis, which is associated
with a damaged intestinal barrier, impaired mucosal
immunological function, increased microbial translocation, and
long-term immune activation in PLWH (14, 75–80). According
to past research data, gut microbiota dysbiosis in PLWH mainly
manifests as changes in microbial diversity, a reduction in
symbiotic beneficial bacteria, and an increase in potentially
pathogenic bacteria (79, 80). The changes in gut microbiota
diversity observed in past studies have not always been found to
be consistent, as different studies have involved different
populations and in varying disease contexts. Most studies have
shown that, in PLWH, the alpha (a-) diversity, which is a
common outcome of interest in microbiome research (81), of
intestinal microbiota is decreased (82–84), while other studies
have found that the a-diversity increased or remained
unchanged (85, 86). With the intention of settling the doubt
created by these divergent observations, a recent meta-analysis
examined 22 studies and concluded that HIV-positive status was
associated with a significant decrease in measures of a-diversity
(87). In addition, it has been reported that in PLWH, gut
microbiota alterations are closely associated with immune
dysfunction, and lower bacterial a-diversity correlates with
lower CD4+ T-cell counts and higher markers of microbial
translocation and monocyte activation (88).

It has been shown, on one hand, that the abundance of
“beneficial” bacteria, including Akkermansia muciniphila,
Bacteroides, Faecalis, Bacteroides vulvae, Diplococcus, and
Arbuscular Roseus, are reduced in PLWH compared with
Frontiers in Immunology | www.frontiersin.org 4
HIV negative individuals (77, 83, 89, 90). On the other hand,
however, a higher proportion of potentially pathogenic
microorganisms such as Proteus, Enterococcus, Klebsiella,
Shigella, and Streptococcus have been reported in PLWH
(83, 89). The specific case of A. muciniphila provides a clearer
picture of the impact of HIV infection on the gut and on an
individual’s immune homeostasis. Past investigations have
recognized that A. muciniphila supports intestinal mucosal
homeostasis by modulating mucus thickness (91). A. muciniphila
has thus been studied by our research team with respect to its
intestinal symbiotic interactions (76), and has emerged as a
potential “sentinel of the gut” due to its relatively recently
recognized beneficial effects, which include (i) stimulation of gut
mucin production, (ii) improvement of enterocyte monolayer
integrity, (iii) counteracting of inflammation, and (iv) induction
of intestinal adaptive immune responses (92–95). A significantly
lower intestinal abundance of A. muciniphila has been observed in
PLWH, regardless of whether or not on ART and of prevailing
CD4+ T- cell counts or viral loads, compared to healthy controls
(77, 90).

The changes to gut microbiota in HIV-infected patients can
impact their immune function via many mechanisms. T-helper
17 (Th17) cytokines, secreted by CD4+ T-cells, CD8+ T-cells,
gamma delta (gd) T-cells, natural killer T-cells (NKT), and
natural killer (NK) cells, play a vital role in modulating
adaptive immune responses through different cellular signaling
pathways (96). These cytokines promote mucosal barrier
function through enhancement of the epithelial release of
antimicrobial peptides, induction of mucus production, and
promotion of wound healing (75, 97). HIV infection disrupts
the intestinal epithelial barrier (Figure 1), resulting in intestinal
cell apoptosis and disruption of tight junctions, which leads to
the leaky gut syndrome, which is manifested by increased
microbial translocation. Additionally, depletion of CD4+ Th17
cells and the high levels of cytokines induced by HIV leads to
persistent activation of immune cells and the production of
increased inflammatory cytokines, including IL-1b, IL-6, and
TNF-a (89, 98).

Changes in microbiota composition may influence the
development, differentiation, and maturation of immune cells.
On the one hand, immune cells are known to be primarily
generated by bone marrow hematopoietic stem cells. The
decreased degree of complexity of gut microbiota, on the other
hand, has been associated with a reduction in myeloid cells in the
bone marrow and a delay in the clearance of systemic bacterial
infections (99). This implies that the formation of hematopoietic
cells in bone marrow occurs under the influence of the gut
microbiome. As such, it has been reported that the gut
microbiota is involved at every step of bone marrow cell
development, influencing (i) the migration and gene expression
of tissue-resident myeloid cells, as well as (ii) the production of
bone marrow and circulating granulocytes by modulating local
metabolites and tissue-specific mediators (100). In addition to
influencing the development of the myeloid arm in the
congenital immune system, gut microbiota has been linked to
the regulation of innate lymphocytes (ILCs). ILCs represent a
January 2022 | Volume 12 | Article 755890
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group of innate immune cell that includes both cytotoxic (NK)
and non-cytotoxic subpopulations (ILC1-3) (101). Sawa et al.,
have concluded that gut microbiological signals undoubtedly
influence normal ILC maturation and acquisition of function
(102). For example, intestinal bacteria can influence ILC3 activity
either (i) via a direct signal through the pattern recognition
receptor (PRR) on ILC3s or (ii) via a regulation of intestinal
myeloid cells and epithelial cells, which in turn affects the
function of ILC3s.

HIV infection elicits changes in enteric microbiota and alters
microbial metabolite production. The alteration of microbial
metabolites causes subsequent immune deficiency and
inflammation. Of note, the majority of short-chain fatty-acids
(SCFA) are metabolites produced by intestinal bacteria utilizing
dietary fiber fermentation. Among these, butyric acid is an
important energy source that contributes to the growth of
colonic cells, and plays an important role in maintenance of
the integrity of the intestinal epithelium and protection of the
intestinal barrier. In addition, SCFA promote the production of
host antimicrobial peptides and induce the differentiation of
Treg cells, thus effectively inhibiting the proliferation of pro-
inflammatory bacteria and reducing the occurrence of chronic
inflammation (103). Dillon et al. (104), have observed that the
abundance of these SCFA-producing bacteria significantly
decreases after HIV infection, leading to reduced total SCFA
production, which may promote the activation of intestinal T-
lymphocytes and enhance HIV replication. Besides, LPS is an
integral component of the cell wall of gram-negative bacteria,
and is one of the important markers for microbial translocation.
LPS can induce antigen-presenting cells to secrete pro-
inflammatory cytokines, such as IL-6, IL-8, and TNF-a. In
2006, Brenchley et al. (33), first demonstrated that increased
plasma LPS levels induced systemic immune activation in both
HIV-infected and simian immunodeficiency virus-infected
rhesus monkey models. To further illustrate the role of
metabolites, it is worth noting that Vujkovic-Cvijin et al., have
observed that during HIV infection, dysbiosis of gut microbiota
correlates with activity of the kynurenine pathway of tryptophan
metabolism. These investigators have reported that gut-resident
bacteria with capacity to metabolize tryptophan through the
Frontiers in Immunology | www.frontiersin.org 5
kynurenine pathway are enriched in HIV-infected subjects (14).
Thus, 3-hydroxyanthranilate, a subproduct of the kynurenine
pathway, has been found to accumulate in the gut of HIV
positive individuals (103).

The kynurenine pathway is the main pathway for tryptophan
metabolism. Excessive kynurenine may affect intestinal mucosal
immunity via the binding of kynurenine to the aryl hydrocarbon
receptor, which in turn can inhibit the differentiation of Th17
cells, leading to intestinal barrier dysfunction, intestinal immune
imbalance, and inflammation (75). Subsequent to HIV infection,
gut microbiota enhances the degree of tryptophan catabolism to
kynurenine, resulting in an increase in local and systemic
tryptophan metabolism.

Altogether, the changes subsequent to HIV infection disrupts
the gut microbiome, which is likely, in turn, to enhance the
susceptibility of an HIV-positive individual to developing
HBV infection.

HIV Infection Favors HBV Infection
Establishment
During its lifetime, the human body gradually establishes a stable
intestinal flora composition and diversity, which regulates and
maintains the body’s health. It is recognized that the intestinal
microbiome is under the influence of factors such as the host
genetic make-up, host diet, and the gut environment (105–107).
As preceding evidence suggests, diseases such as HIV exert a
massive impact on the gut microbiome. It has thus been
conclusively established that HIV-infected individuals develop
an impaired immunity combined with a disorganized
intestinal microbiome.

In general, HBV provokes an acute infection in adults.
Although most people with healthy immune systems are able
to clear the virus, in individuals who have impaired immunity,
the initial acute infection may progress to chronic HBV
infection. Additionally, it has been demonstrated that
immature immune systems and unstable intestinal flora are
factors responsible for most chronic HBV cases in infants and
young children (5, 108). Thus, the pre-existing immune function
and the resident intestinal flora of the host should be considered
as critical factors for chronic HBV development, as well as the
A B

FIGURE 1 | HIV is responsible for gut microbiota dysbiosis and the onset of leaky gut syndrome.
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infective viral load, the virulence of the infective strain, and the
invasion pathway of HBV. One study has observed that the
intestinal microbiome is an important mediator of the
interaction between the intestine and the liver. Indeed, the
intestine and the liver share the same embryonic origin, and
are linked by the portal venous system. Therefore, the portal vein
can be considered to be a physical bridge connecting these
structures (109). Knowing that the immunological function
and the intestinal flora of the host are determinant factors for
HBV infection, it is thus appropriate to address the role of HIV
infection in favoring HBV infection establishment.

During HIV infection, gut bacterial diversity is diminished
while the proportion of potentially pathogenic bacteria is
increased (110), and an increased permeability of the intestinal
tract is promoted. Consequently, harmful bacteria and their
products (LPS for instance) can activate the liver’s innate
immune system (via their passage through the portal vein into
the liver) by recognition of Toll-like receptors (TLRs, especially
TLR2 and TLR4) (111). This natural immune response elicited
by pathogen-associated molecular patterns (PAMPs) produced
by intestinal microbes could account for the injury to
hepatocytes (12). It is known that HBV, upon entering the
circulatory system, possesses an extraordinary capacity to
specifically infect hepatocytes. The infection of hepatocytes by
HBV occurs as follows: (i) HBV attaches to heparan sulfate
proteoglycans (HSPGs) that extend from the space of Disse,
which separates hepatocytes from liver sinusoidal endothelial
cells (LSECs) (112, 113), via the engagement of specific loops in
the envelope protein, then (ii) the virus penetrates the hepatocyte
Frontiers in Immunology | www.frontiersin.org 6
via the interaction of a specific domain of HBV L envelope
protein with the sodium taurocholate co-transporting
polypeptide (NTCP) (114) on the surface of the hepatocyte. In
a context of HIV infection, which causes microbial product
translocation and induces hepatocyte injury, the ‘gate is widely
open’, so to speak, for HBV to penetrate hepatocytes and initiate
the process of viral replication (with an estimated doubling time
of 2-4 days) (115, 116) (See Figure 2).

It has been reported that the outcome of HBV infection does
not strictly depend on the infective viral dose, meaning that even
inoculation with a very low HBV dose combined with associated
host immunopathology can still result in chronic HBV infection.
In the context of HIV, characterized by chronic inflammation and
translocated gut microbiota which potentially increases the risk of
injury to the liver, active HBV infection has an increased
likelihood to eventuate. HBV infection ultimately depends on
the relationship between the kinetics of viral spread and the
priming of the adaptive immunity, particularly that of HBV-
specific CD4+ T-cells (115), which represent essential facilitators
of the induction and maintenance of both CD8+ T-cells and
antibody responses (117). In addition, HBV-specific CD8+ T-cells
can be considered as the ultimate effectors of viral clearance since
they are involved in the killing of infected hepatocytes and the
local production of cytokines. It has been reported that depletion
of CD8+ and/or CD4+ T-cells during acute HBV infection
prevents both viral clearance and the onset of liver disease (115,
118). During HIV infection, CD4+ T-cells are depleted, which
suggests that finding and recruiting enough CD4+ T-cells to
specifically target HBV to prevent subsequent infection
FIGURE 2 | HIV infection facilitates HBV infection via the triggering of the leaky gut syndrome. During HIV infection, immune cell (CD4+ T-cells, Th17, and Th22)
depletion and bacterial diversity reduction in favor of potentially pathogenic microbe augmentation progressively allows microbes (including pathogenic bacteria) and
their products to be translocated (1) into the circulatory system. Here, the translocated microbial products cause further depletion of CD4+ T-cells. Once in the portal
vein, the translocated microbes and their products are able to reach hepatocytes (2) and activate the liver’s innate immune system (red points). Consequently,
hepatocytes are damaged (3) by pathogen-associated molecular patterns (PAMPs) produced by intestinal microbes, and become vulnerable (red vertical arrows) to
HBV incursion and infection (4).
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represents an onerous task for the immune system. More
importantly, studies in chimpanzee (119–121) and human models
(122) have revealed that HBV is highly efficient at avoiding
recognition by the innate immune system, and seems not to elicit a
detectable innate immune response in the chronic HBV context. It is
thus valid to hypothesize that HIV infection does greatly favor the
establishment of HBV infection via its ability to detrimentally
modulate both gut microbiota and immune homeostasis.
CONCLUSION

HBV infection is recognized to be prevalent among PLWH, and
causes poor clinical outcomes in these patients. Based on recent
evidence, we speculate that altered gut microbiome composition
and diversity, and microbial products (e.g., LPS and SCFA) are
involved in systemic immunological impairment in PLWH, and
facilitate the subsequent pathogenesis of HBV infection in
PLWH. However, more investigations are warranted in the
future to precisely elucidate the relationships between
microbiota, immunity, HIV, and HBV infection. Collaborative
efforts encompassing immunology, microbiology, epidemiology,
pharmacology, pathology, and clinical medicine are likely to
Frontiers in Immunology | www.frontiersin.org 7
develop potentia l strategies (e .g . , fecal microbiota
transplantation, probiotics, and metformin) to optimize gut
microbiota populations and diversity, and to maintain gut
homeostasis, thus potentially improving immunological
function and preventing secondary viral infections in PLWH.
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