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Abstract 

Background:  Taxonomic classification of genetic markers for microbiome analysis 
is affected by the numerous choices made from sample preparation to bioinformat-
ics analysis. Paired-end read merging is routinely used to capture the entire amplicon 
sequence when the read ends overlap. However, the exclusion of unmerged reads 
from further analysis can result in underestimating the diversity in the sequenced 
microbial community and is influenced by bioinformatic processes such as read trim-
ming and the choice of reference database. A potential solution to overcome this is to 
concatenate (join) reads that do not overlap and keep them for taxonomic classifica-
tion. The use of concatenated reads can outperform taxonomic recovery from single-
end reads, but it remains unclear how their performance compares to merged reads. 
Using various sequenced mock communities with different amplicons, read length, 
read depth, taxonomic composition, and sequence quality, we tested how merging 
and concatenating reads performed for genus recall and precision in bioinformatic 
pipelines combining different parameters for read trimming and taxonomic classifica-
tion using different reference databases.

Results:  The addition of concatenated reads to merged reads always increased pipe-
line performance. The top two performing pipelines both included read concatenation, 
with variable strengths depending on the mock community. The pipeline that com-
bined merged and concatenated reads that were quality-trimmed performed best for 
mock communities with larger amplicons and higher average quality sequences. The 
pipeline that used length-trimmed concatenated reads outperformed quality trimming 
in mock communities with lower quality sequences but lost a significant amount of 
input sequences for taxonomic classification during processing. Genus level classifica-
tion was more accurate using the SILVA reference database compared to Greengenes.

Conclusions:  Merged sequences with the addition of concatenated sequences that 
were unable to be merged increased performance of taxonomic classifications. This 
was especially beneficial in mock communities with larger amplicons. We have shown 
for the first time, using an in-depth comparison of pipelines containing merged vs 
concatenated reads combined with different trimming parameters and reference data-
bases, the potential advantages of concatenating sequences in improving resolution in 
microbiome investigations.

Open Access

© The Author(s), 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH ARTICLE

Dacey and Chain ﻿BMC Bioinformatics          (2021) 22:493  
https://doi.org/10.1186/s12859-021-04410-2

*Correspondence:   
DanielDacey1@gmail.com 
Department of Biological 
Sciences, University 
of Massachusetts Lowell, 
Lowell, MA, USA

http://orcid.org/0000-0002-9900-9288
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-021-04410-2&domain=pdf


Page 2 of 25Dacey and Chain ﻿BMC Bioinformatics          (2021) 22:493 

Keywords:  16S, Joining, QIIME 2, DADA2, Mock, Taxonomic assignment, V1–3, V3–4, V4

Background
Microbial community profiling using 16S rRNA gene amplicon sequence analysis has 
become a powerful procedure to characterize microbiomes, but there exists enormous 
variation in the choice of bioinformatics tools and pipelines that can lead to differ-
ent taxonomic assignments with the same dataset  [1–5]. The performance of differ-
ent analytical approaches is affected by numerous factors including amplicon target  
[6], targeted community  [7–9], DNA extraction methods  [10], PCR polymerase  [11], 
sequencing platform  [12], sequence quality  [13], index hopping  [13, 14], substitution 
errors  [15], and read length  [16]. Post-PCR paired-end sequence processing decisions 
such as how to remove low quality base pairs and merge reads can also influence taxono-
mies reported.

Low quality bases are usually removed by trimming all sequences by the same user-
specified length (length trimming) or by an average quality score per individual sequence 
(quality trimming). Length trimming results in a FASTQ file with all sequences trimmed 
to the same exact size, whereas trimming by a quality threshold allows for each sequence 
to be evaluated independently, leaving sequences within a file to be trimmed at different 
lengths. Length trimming has the advantage that the user determines where sequences 
are trimmed and can ensure sufficient overlap for merging paired reads, but it runs the 
risk of removing high quality base pairs. Trimming 16S rRNA gene sequences by length 
might also be preferable over quality trimming for unbiased clustering operational tax-
onomic units (OTUs)  [17], and it reduces the number of amplicon sequence variants 
(ASVs) by eliminating length variation. In both cases though, trimming might cause a 
loss of informative base pairs necessary for merging paired reads or important for distin-
guishing between closely related taxa.

Paired-end read merging is often performed to reconstitute the full amplicon length 
from overlapping paired reads. This merging process can be hindered if the designed 
primers target amplicons longer than both read pairs combined, if organisms have 
amplicon sequences that are longer than the read lengths, and if sequences with poor 
quality bases, in particular at the ends of reads and in the reverse (R2) reads, result in 
trimming reads to short lengths that prevent read overlap  [18]. In most cases, reads that 
fail to merge are excluded from taxonomic assignment, potentially reducing estimates of 
microbiome diversity. To remedy this data loss of sequences from merging, it is common 
to only use the higher quality forward (R1) reads for taxonomic assignment  [19–22]. 
Though more sequences are retained, the length of the sequence per amplicon is shorter 
than if the R2 reads were included, which may in turn limit taxonomic resolution and 
accuracy. An alternative option is to concatenate (join) the paired reads together without 
requiring sequence overlap, which can introduce redundant data in the middle of the 
sequence if reads overlap but retains both reads for taxonomic assignment (Fig. 1). Tools 
developed to address the problem of non-overlapping reads have found that a combina-
tion of merged-reads and single-end reads  [18] or concatenated (joined) sequences  [17, 
23] lead to improved taxonomic resolution compared to single-end pipelines, but these 
studies have all been tested on OTUs rather than ASVs. OTUs are reads clustered by a 
sequence identity threshold  [24, 25], which is helpful for grouping similar reads together 
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for estimating diversity, especially when taxonomic assignment is not possible due to a 
lack of reference sequences. But OTUs can both inflate diversity estimates and reduce 
taxonomic resolution, while limiting the ability to track OTUs across studies  [26, 27] 
as their identifiers are unique to each sequencing output. ASVs largely overcome these 
limitations, allowing analysis at the single nucleotide level to increase taxonomic resolu-
tion over OTUs and improve reproducibility, thus becoming the preferred approach to 
16S rRNA gene investigations  [25, 28, 29]. It is important to test out the performance of 
read concatenation versus merged reads with ASVs, which to our knowledge has not yet 
been evaluated.

Additional choices made in paired-end sequence processing pipelines that can affect 
the taxonomic assignment include the sequence abundance threshold  [30], reference 
database  [31], and amplicon length  [6], but their influence on the utility of concatenated 
reads is unknown. Here, we conducted an extensive assessment of 17 different pipelines 
(Fig. 2) for processing 16S rRNA gene sequences from ten mock communities (Table 1) 
to determine how genus-level classification accuracy is affected by (1) ASV abundance 
thresholds, (2) reference databases, (3) length and quality trimming, (4) merging and 
concatenating, and (5) single-end reads. All reads were run through DADA2 within 
QIIME 2  [32], and ASVs were taxonomically classified using the Greengenes  [33] and 
SILVA  [34] reference databases.

Methods
Data

The 16S rRNA gene sequences used in this study came from ten bacterial mock com-
munities (herein referred to as ‘mocks’) from four studies and are labelled C1  [35], 
G1-G4  [36], S1-S4  [37], and A1  [38]. These sequenced mocks varied in 16S rRNA gene 
amplicon region, taxonomic composition, read depth, read length, and sequence qual-
ity (Table 1). The raw FASTQ files were already demultiplexed with sequencing adapt-
ers removed. The number of samples, primer sequences, and accessions for each mock 

A

B

Fig. 1  Representation of merged and fully concatenated reads in instances where paired-end sequences A 
do overlap and B do not overlap. Forward reads (R1) and reverse reads (R2) cover variable regions (V) that can 
include parts of conserved regions (C)



Page 4 of 25Dacey and Chain ﻿BMC Bioinformatics          (2021) 22:493 

community are available (Additional file 3: Table S1), as are the bacterial makeup of each 
(Additional file 3: Table S2).

Sequence processing

The 16S rRNA gene sequences from each mock community were processed with 17 
bioinformatic pipelines to test the joint effects of different combinations of sequence 
trimming, merging, concatenating, single vs paired reads, and reference databases on 
taxonomic assignment (Fig.  2; Table  2). All bioinformatic processing was performed 
on The Massachusetts Green High Performance Computing Cluster. Depending on 
the pipeline, read trimming was performed with cutadapt version 2.9  [39] or with 
DADA2  [35], merging was performed using PANDAseq version 2.11  [40] or DADA2, 

Fig. 2  16S rRNA gene sequence processing steps for each of the 17 pipelines. All raw sequences began 
with identical adapter/primer removal by cutadapt. Paired-end sequences were then fed into each of the 
four trimming procedures: no trimming (N; red), length trimming by cutadapt (L; orange), quality trimming 
by cutadapt (Q; dark blue), and quality trimming by DADA2 (Qd; light blue). Non-trimmed paired-end 
sequences were piped directly into the merging/concatenating tools after primers were removed. Sequences 
designated for trimming were merged and/or concatenated after trimming by cutadapt or DADA2. 
Paired-end sequences designated for merging by DADA2 (Md) were first passed through DADA2’s quality 
filter and denoising procedures before being merged and chimeras removed. ASV curation immediately 
followed. Sequences run through the only Qd pipeline had all steps from trimming to ASV designations 
performed within DADA2. The majority of pipelines included length and quality trimming of paired-end 
sequences in cutadapt that were then piped into PANDAseq for merging (Mp) or merging and concatenating 
of those sequences unable to merge (Bp). Full concatenation (Cs) of paired-end sequences was done with a 
custom script after cutadapt trimming. Mp, Bp, and Cs sequences were fed into DADA2 as single-end where 
quality filtering, denoising, chimera removal, and ASV curation occurred. Non-trimmed single-end (NR1, 
NR2) and cutadapt length-trimmed single-end (LR1 and LR2) sequences did not go through a merging or 
concatenating procedure, but were submitted in the same manner to DADA2 as Mp, Bp, and Cs. Post-DADA2, 
taxonomic classification of ASVs was identical for all pipelines. ASVs were fed into QIIME 2’s feature-classifier 
classify-sklearn tool which aligned ASVs to one of two designated reference databases separately, Greengenes 
and SILVA. These reference database aligned files were then merged with the appropriate metadata files 
before taxonomic analysis in R
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concatenation was performed using PANDAseq or a custom Python script, and reads 
were assigned taxonomy using either Greengenes version 13_8 or SILVA version 132 
within the tool Quantitative Insights into Microbial Ecology version 2 (QIIME 2) version 
2020.6  [32]. DADA2 was used as a plugin within QIIME 2.

The naming schema for the 17 pipelines is based on the type of trimming (none, 
length, or quality), merging and/or concatenating of paired reads, what tool was used to 
perform the merging, and whether the pipeline contained both paired-end reads or just 
one of the pair (see Fig. 2). Pipelines having paired-end sequences with no further trim-
ming after primer removal were designated as not trimmed (N). If trimming was per-
formed then it was done so in three different manners: length-trimmed by cutadapt (L), 
quality-trimmed by cutadapt (Q), or quality-trimmed by DADA2 (Qd). Merging and/or 
concatenating of paired-end reads followed one of four fashions: merging by PANDAseq 
(Mp); merging by DADA2 (Md); merging by PANDAseq combined with concatenating 

Table 2  Layout of sequence processing parameters per pipeline

Default parameters were used for each tool unless otherwise specified. The first step for all pipelines was to remove 
primers with cutadapt. Paired-end reads were merged by DADA2, or alternatively merged, concatenated, or merged 
and concatenated prior to DADA2 processing (resulting in single-end reads) or treated separately without merging or 
concatenation. After DADA2 processing, taxonomic classification of all sequences was performed by aligning to both the 
Greengenes and SILVA reference databases separately
a DADA2 performed the trimming, with trunc-q set to 20
b Length trimmed: all sequences were trimmed to the same length based on the mean length where the average base 
quality dropped below a Q-score of 20
c Quality trimmed: sequences were individually trimmed based on a PHRED score threshold of 20
d Merged by DADA2: forward and reverse reads merged by DADA2 with default parameters with a minimum 20 bp overlap
e Merged: forward and reverse reads merged by PANDAseq with a minimum 20 bp overlap
f Merged and concatenated: after merging with PANDAseq, sequences unable to be merged were concatenated with 
PANDAseq and added to the merged sequence file
g All concatenated: forward and reverse read pairs were joined together after reverse complementing R2. No merging was 
performed
h DADA2 processing: pipelines with merging and/or concatenating before this step, or that contained just the forward or 
reverse reads, were processed as single-end. Pipelines that had DADA2 performing the merging were processed as paired-
end

Pipeline Cutadapt trimming Merging/Concatenating DADA2 processingh

NMd None Merged by DADA2d Paired-end

LMd Length-trimmed Merged by DADA2 Paired-end

QMd Quality-trimmed Merged by DADA2 Paired-end

QdMd None – Quality-trimmed by 
DADA2a

Merged by DADA2 Paired-end

NMp None Mergede Single-end

LMp Length-trimmedb Merged Single-end

QMp Quality-trimmedc Merged Single-end

NBp None Merged & Concatenatedf Single-end

LBp Length-trimmed Merged & Concatenated Single-end

QBp Quality-trimmed Merged & Concatenated Single-end

NCs None All Concatenatedg Single-end

LCs Length-trimmed All Concatenated Single-end

QCs Quality-trimmed All Concatenated Single-end

NR1 None N/A Single-end

LR1 Quality-trimmed N/A Single-end

NR2 None N/A Single-end

LR2 Quality-trimmed N/A Single-end
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with PANDAseq those reads unable to be merged (both, Bp); and fully concatenating all 
read pairs with a custom Python script (Cs). Concatenation is the process of appending 
the forward and reverse reads together (after reverse complementing the reverse read) 
as a single joined sequence. The names of the 13 paired-end read pipelines are NMp, 
NBp, LMp, LBp, QMp, QBp, NMd, LMd, QMd, QdMd, NCs, LCs, and QCs. The single-
end pipelines used either just the forward reads (R1) or just the reverse reads (R2). These 
pipelines follow the same nomenclature as paired-end pipelines, having either no trim-
ming (N) or length trimming (L), but merging and/or concatenating was not applicable 
to single-end pipelines. Quality trimming on single-end reads was also not performed 
as our investigation revealed paired-end length-trimmed pipelines to outperform their 
quality-trimmed counterparts (Table 3). The four single-end read pipelines are named 
NR1, LR1, NR2, and LR2. Below, we describe in more detail the steps taken for the dif-
ferent pipelines including the parameters used for read trimming (N, L, Q), paired-end 
read preparation (Mp, Md, Bp, Cs), and taxonomic assignment (using Greengenes and 
SILVA reference databases).

Read trimming

Removal of primer sequences was performed with cutadapt using the primer sequences 
corresponding to each mock community (Additional file  3: Table  S1). Primer detec-
tion and removal was performed starting at the 5’ end of all sequences in the forward 
and reverse FASTQ files. When trimming was performed, cutadapt first trimmed from 
3’ ends and then removed primers from the 5’ ends. Default settings and a minimum 
sequence length of 1 were used. All pipelines had primer sequences removed.

Non-trimmed reads (NMp, NBp, NMd, NCs, NR1, and NR2) had only primer 
sequences removed with cutadapt and were otherwise full-length. Length-trimmed 
reads (LMp, LBp, LMd, LCs, LR1, and LR2) were trimmed with cutadapt to achieve 
equal read lengths for all reads of a library. This way, identical sequences will be assigned 
the same amplicon sequence variant (ASV) in DADA2 as described below. In contrast 
trimming reads by sequence quality has the chance to trim two identical sequences to 

Table 3  Paired-end pipeline mean metrics across all mocks.*

* Ordered by descending average F-measure using SILVA reference database and ASV abundance threshold cutoff of 0.01%

Pipeline Precision mean Recall mean F-Measure mean

LCs 0.957 0.864 0.897

QBp 0.916 0.852 0.874

LMd 0.938 0.832 0.871

LBp 0.953 0.827 0.858

QMd 0.953 0.803 0.854

LMp 0.940 0.818 0.847

QMp 0.915 0.799 0.831

NBp 0.859 0.809 0.830

QCs 0.962 0.753 0.821

NMp 0.854 0.797 0.820

NMd 0.959 0.694 0.766

NCs 0.960 0.670 0.731

QdMd 0.869 0.478 0.551
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different lengths, increasing the number of ASVs. To determine the trimming length, 
the raw FASTQ files of each mock community were submitted to QIIME 2 for genera-
tion of Phred quality score (Q-score) distribution plots (Additional file 1: Fig. S1). Mock 
communities that had multiple samples were combined so that each mock only had one 
Q-score plot associated with it. Moving in the 5’ to 3’ direction, the first occurrence 
of the median Q-score falling below 20 was the location chosen for length trimming 
(Table 1; Additional file 3: Table S1). For example, mock C1 met this threshold at base 
235 out of 251 for R1 and at 217 out of 251 for R2, so reads were subsequently trimmed 
to these lengths. All base pairs were kept in instances where the Q-score never fell below 
20 (cutadapt trim position = 0 retains all base pairs) except for mocks S1-4, in which R1 
was trimmed to position 240 and R2 to position 220 to align with a previous study  [29]. 
Quality-trimmed reads (QMp, QBp, QMd, QCs) were trimmed with cutadapt using a 
Q-score threshold of 20 from the 3’ end of both R1 and R2 reads, but for each individual 
read, resulting in variable read lengths within a library. Higher quality sequences within 
a library would retain more base pairs with quality trimming than they would when they 
are length-trimmed, as the latter trims an entire library at a specified position based on 
the average quality distribution. For the QdMd pipeline, sequences had primers removed 
with cutadapt first bring submitted to QIIME 2 where DADA2 performed quality trim-
ming (default settings with a Q-score = 20) as opposed to cutadapt.

Merging and concatenating

After trimming, paired-end reads were either merged (Mp or Md), merged and concat-
enated (Bp), only concatenated (Cs), or processed as single-end reads (R1 or R2). Merg-
ing of R1 and R2 reads (NMp, LMp, QMp) was performed with PANDAseq with default 
parameters, which assembles paired reads that have a minimum overlap of 20 base pairs 
(the default minimum overlap in DADA2) and discards unmerged reads. PANDAseq is 
software not included in QIIME 2 but was used here because it also allows concatena-
tion of unmerged paired sequences, which appends R1 and R2 reads together in a single 
contiguous sequence and adds them to the merged reads file. This concatenating feature 
was chosen for merged and concatenated pipelines (NBp, LBp, QBp). Thus, the pipe-
lines NBp, LBp, and QBp have all of the reads that NMp, LMp, and QMp have respec-
tively, but with the addition of the concatenated read pairs. PANDAseq was unable to 
produce files of only concatenated sequences (without merging), so a Python script 
was used to reverse complement R2 reads and concatenate them to their correspond-
ing R1 reads for fully concatenated sequence files (NCs, LCs, QCs). Because there was 
no minimum overlap requirement like merging, no sequence information was lost at 
this step, but repetitive bases are included if R1 and R2 reads overlap (Fig. 1). DADA2-
merged pipelines (NMd, LMd, QMd, QdMd) were the only pipelines that used paired-
end sequence information not processed by PANDAseq or the concatenating Python 
script, since the DADA2 QIIME 2 plugin did not offer read concatenation at the time of 
this study. After cutadapt processing, sequences from DADA2-merged pipelines were 
submitted to DADA2 as paired-end, where DADA2 performed all merging in addition 
to other quality control measures described below. Again, QdMd was the only pipeline 
where reads were trimmed (by quality) and merged within DADA2. Because NR1, LR1, 
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NR2, and LR2 used only single-end sequences, they were not subject to any merging or 
concatenating.

DADA2 for ASV generation

All pipelines used DADA2 within QIIME 2 in one of two ways; single-end or paired-end. 
Reads that were merged and/or concatenated using PANDAseq or the concatenation 
script (NMp, NBp, LMp, LBp, QMp, QBp, NCs, LCs, QCs) were run through DADA2 
as single-end with default parameters. DADA2 performed quality filtering (maxN = 0, 
truncQ = 2, rm.phix = TRUE and maxEE = 2), denoising, and chimera removal. Pipe-
lines containing only R1 reads (NR1 and LR1) or R2 reads (NR2 and LR2) were also 
submitted to DADA2 in this way. For those pipelines where merging was performed in 
DADA2 (NMd, LMd, QMd, QdMd), sequences were submitted to DADA2 as paired-
end. DADA2 performed quality filtering, quality trimming (only for QdMd), denoising, 
merging, and chimera removal on sequences with default parameters. DADA2 gener-
ated output read counts after each step (Additional file 3: Table S3) and assigned reads to 
ASVs that were then used for taxonomic assignment by aligning to a reference database.

Taxonomic assignment

ASVs, which are unique DNA sequences, were assigned taxonomy separately using the 
SILVA and Greengenes (GG) reference databases, generating two taxonomic output files 
per mock/pipeline. Taxonomic assignment of ASVs was performed with the QIIME 2 
plugin feature-classifier classify-sklearn. sklearn is a machine-learning-based classifi-
cation method that requires trained classifiers of desired reference databases. QIIME 
2 provides full-length 16S rRNA gene Naive Bayes trained SILVA and GG classifiers, 
which were used in this study, specifically SILVA 132 99% OTUs full-length sequences  
[41] and GG 13_8 99% OTUs full-length sequences  [42]. The QIIME 2 feature-classifier 
classify-sklearn p-confidence value was set to the default of 0.7, a value thought to pro-
vide a good balance between recall and precision for 16S rRNA gene datasets  [43]. The 
p-read-orientation setting within feature-classifier classify-sklearn specifies the direc-
tion in which the query sequence reads (ASVs) should be aligned against the reference, 
and this differed among mocks. Paired-end pipelines of mocks C1, G1-4, and S1-4 were 
aligned with p-read-orientation ‘same,’ as were mock A1’s single-end pipelines. Paired-
end pipeline A1 and single-end pipelines of mocks C1, G1-4, and S1-4 were aligned with 
p-read-orientation ‘reverse.’

Taxonomic analysis

R version 4.0.3 (2020–10-10)  [44] was used for downstream analysis of taxonomic 
assignments. QIIME 2 outputs taxonomy assignments from feature-classifier classify-
sklearn in BIOM format. R packages (phyloseq, stringr, dplyr, data.table, reshape2, 
ggplot2, gridExtra, VennDiagram, vegan, and gplots) were used for statistical calcu-
lations and for generating tables and figures. BIOM files consist of ASV counts, ASV 
taxonomic classifications, unique MD5 hash identifiers that link back to the original 
sequence, and sample metadata.

Taxonomic filtering was performed to focus on bacterial taxa and to adjust for varia-
tion in nomenclature in reference databases. ASVs having kingdom level classification 
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other than “bacteria” were removed before analysis. There were 8 genera that were 
originally thought to be false positives due to the use of synonymous names that were 
actually true positives (Additional file 3: Table S4), so these taxa names were changed to 
match the naming schema of the mock communities. Some results with ambiguous tax-
onomic resolution were reclassified manually as ‘unknown’: when family level classifica-
tion was the same as the genus level, and when additional numbers (that often related to 
uncultured strains) or words existed in the genus name that prevented pattern matching 
with the mock community dataset (UCG, NK, group, of, soil, clade, env, genus, group, 
candidatus, species, subsp, subgroup, subsec, marine, lineage, metagenome, mitochon-
dria, R1, chloroplast, Incertae, strain numbers, and NA). The original unmodified genus 
names were compared to the modified genus names to ensure no genera were being lost 
due to these fixes in nomenclature. This nomenclature standardization process allowed 
direct comparisons of genus names between GG, SILVA, and each mock community.

Pipeline performance measures

Pipeline performance was evaluated at the genus level using true positive (TP) 
counts, false positive (FP) counts, false negative (FN) counts, precision, recall, and 
F-measure. A TP was considered when a pipeline reported a genus name identical (or 
synonymous; Additional file 3: Table S4) to a genus name contained in the mock com-
munity (Additional file 3: Table S2). A FP was considered when a pipeline reported a 
genus not found in the mock community (misclassification or contamination). A FN 
was considered when a pipeline did not report a genus contained in the mock com-
munity, and thus was not observed. Counts of TP, FP, and FN were used to calculate 
precision, recall, and F-measure. Precision is the fraction of genera that are classified 
correctly. Recall is the fraction of expected genera that are classified. F-measure is the 
harmonic mean of precision and recall, with the highest possible score being 1 and 
the lowest score being 0  [43]. The calculations are as follows:

•	 Precision = TP / (TP + FP)
•	 Recall = TP / (TP + FN)
•	 F-measure = 2 × precision × recall/(precision + recall)

An ASV percent abundance threshold per mock per pipeline was set as a quality 
control measure for subsequent analyses to remove spurious sequences that increase 
FP. All quality control analyses were performed on paired-end pipelines for each refer-
ence database (GG and SILVA). To determine an appropriate threshold, we calculated 
overall precision, recall, and F-measure for all paired-end pipelines per mock at ASV 
abundance thresholds of 0%, 0.01%, 0.05%, 0.1%, 0.5%, and 1%, where 0.01% means 
that ASVs within a particular pipeline/mock combination that have a proportional 
abundance below 0.01% are excluded. Per reference database, we then calculated the 
precision, recall, and F-measure averages for each pipeline-threshold combination to 
contrast their performance. The ASV abundance threshold of 0.01% and the SILVA 
reference database had the best performing pipelines and highest overall F-measure 
means, and therefore were selected for all subsequent analyses.
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Results
Our goal was to evaluate the performance of read concatenation using different bio-
informatic pipelines for the analysis of 16S rRNA gene sequences to accurately assign 
taxonomy. The 16S rRNA gene sequence data from four previous studies were used  
[35–38] and represented ten mock communities (A1, C1, G1–G4, S1–S4). All mocks 
were sequenced with paired-end reads on MiSeq platforms but differed in the number 
of samples, bacterial makeup, average read quality and read length, and primer sets cov-
ering the 16S rRNA gene variable regions: V1–V3 (A1), V3–V4 (S3–4) or V4 only (C1, 
G1–4, S1–2; Additional file 3: Table S1). Each pipeline generated a list of ASVs for each 
mock, which were then taxonomically identified to the bacterial genus level. Using the 
list of genera detected from each pipeline, the presence and absence of each mock com-
munity bacterial member were used to determine the number of genera that were true 
positives (TPs), false positives (FPs), and false negatives (FNs). These were used to calcu-
late the precision, recall, and F-measure per pipeline per mock community (see “Meth-
ods” section). We compared the taxonomic recovery from different pipelines with regard 
to the influence of the reference database, sequence trimming characteristics, and sin-
gle-end vs paired-end read processing and merging (Fig. 1).

Filtering low‑abundance ASVs improves accuracy

We applied a range of ASV abundance thresholds per mock per paired-end pipeline to 
evaluate the impact of low abundant sequences on taxonomic recovery. As the abun-
dance threshold for filtering ASVs increases, there is generally an increase in precision 
(fewer FPs) but a decrease in recall (fewer TPs). For both GG and SILVA, 0.01% had the 
highest F-measure compared to other thresholds, striking the best balance between pre-
cision and recall (Additional file 2: Fig. S2). SILVA had a higher F-measure average than 
GG at every threshold. For SILVA, 0.01% had the highest F-measure (0.812), followed by 
0.05% (0.804), 0.1% (0.798), 0% (0.774), 0.5% (0.728), and 1% (0.657). For GG, 0.01% also 
had the highest F-measure (0.731), followed by 0.05% (0.717), 0% (0.709), 0.1% (0.707), 
0.5% (0.639), and 1% (0.572). Each threshold affects the total numbers of TPs, FPs, and 
FNs per pipeline, with higher thresholds losing more FPs at the expense of losing TPs 
and gaining FNs (Additional file 2: Fig. S3). Not applying an ASV abundance threshold 
retained more than twice as many FPs as other thresholds and therefore resulted in poor 
precision. A 0.01% threshold was selected for all subsequent analyses.

Reference databases impact taxonomic recovery

The performance of the reference databases GG and SILVA was evaluated using the 
percent of ASVs identified to the bacterial genus level and genus level F-measures. It is 
important to note that all sequence processing steps are the same up until taxonomic 
classification using the reference database, meaning that a pipeline has the same ASVs 
used for taxonomic identification in both GG and SILVA. Pipelines using SILVA were 
consistently able to identify more ASVs to the genus level for all mock communities, 
with on average 10% more ASVs (mean 89.817% vs 78.475% respectively) (Fig.  3A). 
In addition, every pipeline had a higher mean F-measure with SILVA compared to 
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GG (Fig. 3B). SILVA had higher precision than GG and had particularly better recall 
(by 9%), leading to superior mean F-measure by an average of 8% (SILVA had pre-
cision = 0.926, recall = 0.769, and F-measure = 0.812 compared to GG with preci-
sion = 0.875, recall = 0.664, and F-measure = 0.731). Some taxa were not identified 
with either database, despite there being reference sequences for all genera in both 
databases with the exception of Howardella and Herpetosiphon missing from the GG 
database. Overall, SILVA identified 8 genera that GG missed, GG identified 1 genus 
that SILVA missed, and both GG and SILVA shared 15 FPs in total, with GG having an 
additional 7 unique FPs and SILVA having an additional 6 (Additional file 3: Table S5). 
There were occasionally differences between databases of abundant taxa (> 10% abun-
dance) that were identified as confamilial genera (e.g., Dorea vs Coprococcus in mock 
C1), or only classified to the family level with GG (e.g., unknown Enterobacteriaceae 
in mock G3, Escherichia in SILVA). Because SILVA performed better than GG overall, 
all further analyses to contrast pipeline performance are presented using the results 
from taxonomy with SILVA as the reference.
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Read trimming performance depends on read quality

The effects of trimming were evaluated using taxonomic classifications from DADA2-
merged paired-end reads using non-trimmed (NMd), length-trimmed (LMd), and qual-
ity-trimmed data (QMd and QdMd, where QdMd has the same non-trimmed input 
as NMd but undergoes quality trimming directly in DADA2). Because our pipelines 
all used the default read quality filtering in DADA2 to remove reads with maximum 
expected error greater than 2 (maxEE = 2), mock communities with poorer overall read 
quality were left with fewer reads for taxonomic assignment (in particular mocks G1-4, 
Additional file 3: Table S3). The quality trimming parameters used in DADA2 (QdMd) 
generally resulted in fewer reads after filtering including no reads passing filtering for 
one mock community (G2), which had the lowest overall F-measure (mean = 0.551) for 
pipelines that were DADA2 merged. QdMd results were therefore excluded from fur-
ther comparisons. The next lowest F-measure mean was NMd (0.766), followed by QMd 
(0.854), and LMd (0.871) (Table 3; Fig. 4). NMd suffered from low recall in mock com-
munities with lower read quality (A1, C1, and G1-4) indicative of a high rate of FNs due 
to the filtering of reads in DADA2 leaving less than 14,000 reads (5%) for classification 
in each mock (Additional file 3: Table S3). NMd performed better in mocks S1-4 where 
read quality was high throughout the read lengths, having more reads left for taxo-
nomic classification (with more than 350,000 reads for mocks S1-2 and S4, and 77,757 
for mock S3) and sometimes achieving a higher F-measure than even trimmed pipelines 
(e.g., 0.883 and 0.919 compared to 0.706 and 0.861 for LMd in mocks S3 and S4 respec-
tively) (Additional file 3: Table S6). QMd also performed better than LMd in mocks S3-4 
where read quality was high. LMd retained less than half the number of sequences post 
DADA2 in mocks S3 and S4 than both NMd and QMd resulting in fewer TPs and poorer 
performance, but otherwise had higher or equal F-measure when compared to NMd and 

0.7

0.8

0.9

1.0

P
re
ci
si
on

A1 C1 G1 G2 G3 G4 S1 S2 S3 S4

0.7

0.8

0.9

1.0

0.00

0.25

0.50

0.75

1.00

R
ec

al
l

A1 C1 G1 G2 G3 G4 S1 S2 S3 S4

0.00

0.25

0.50

0.75

1.00

0.4

0.6

0.8

1.0

N
M
d

F−
m
ea

su
re

A1 C1 G1 G2 G3 G4 S1 S2 S3 S4

N
M
d

LM
d

Q
M
d

N
M
d

LM
d

Q
M
d

N
M
d

LM
d

Q
M
d

N
M
d

LM
d

Q
M
d

N
M
d

LM
d

Q
M
d

N
M
d

LM
d

Q
M
d

N
M
d

LM
d

Q
M
d

N
M
d

LM
d

Q
M
d

N
M
d

LM
d

Q
M
d

N
M
d

LM
d

Q
M
d

0.4

0.6

0.8

1.0

LM
d

Q
M
d

Fig. 4  DADA2 merged pipeline comparisons showing the precision, recall, and F-measure averages across all 
mocks per pipeline, and all pipelines per mock



Page 14 of 25Dacey and Chain ﻿BMC Bioinformatics          (2021) 22:493 

QMd in all other mocks. LMd also retained more sequences than QMd for the taxo-
nomic classifier in every mock except G2 and S3–4 (Additional file 3: Table S3). Despite 
losing data at the trimming step, both LMd and QMd achieved higher mean F-meas-
ure scores than NMd. The differences in performance between the length-trimmed and 
quality-trimmed pipelines varied by mock community (Additional file 3: Table S6), with 
the former retaining more sequences and having a slightly higher average F-measure.

Because DADA2 was designed to process paired-end reads and perform its 
own read merging, it was unknown how already-merged (or concatenated) reads 
would perform in QIIME 2. Therefore, we tested if sequences merged in PAN-
DAseq (NMp, LMp, and QMp) performed similarly in taxonomic recovery to the 
sequences merged in DADA2 (NMd, LMd, and QMd), before comparing the effects 
of concatenating vs merging with PANDAseq. The average F-measure score for 
NMp (0.820) was higher than NMd (0.766), whereas the trimmed PANDAseq pipe-
lines had lower F-measure (LMp = 0.847 and QMp = 0.831) compared to those 
trimmed in DADA2 (LMd = 0.871 and QMd = 0.854) (Table  3), although this var-
ied by mock community (Fig.  5; Additional file  3: Table  S6). The major difference 
was due to the poor performance of PANDAseq pipelines in mock C1, where they 
had particularly higher FPs and FNs. Although the three PANDAseq merged pipe-
lines retained a higher number of sequences for taxonomic classification in every 
mock community than the DADA2 merged pipelines (Additional file  3: Table  S3), 
the majority of reads in C1 were unable to be identified to the genus level. After 
excluding C1, the PANDAseq pipelines had higher average F-measure scores than 
the DADA2 pipelines (NMp = 0.911 > NMd = 0.803; LMp = 0.907 > LMd = 0.898; 
QMp = 0.882 > QMd = 0.880). As the standard merged PANDAseq pipelines per-
formed comparably well to the DADA2 merged pipelines, we proceeded to analyze 
the performance of concatenating paired-read either in addition to merged reads (Bp) 
or on their own (Cs).
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Concatenating paired‑end reads can improve taxonomic recovery

Trimming reads can result in excluding sequences that have insufficient overlap for 
merging between paired reads. To determine the impact of losing these unmerged reads, 
we implemented pipelines that used the tool PANDAseq to merge R1 and R2 reads in 
addition to adding reads unable to merge as concatenated sequences to the same file 
(Bp), an option currently not available with DADA2. The addition of concatenated 
sequences that would have otherwise been discarded in the merging process have the 
potential to provide better taxonomic recovery than merged reads alone simply by keep-
ing more sequences for taxonomy. This could also apply to fully concatenated (Cs) reads 
as no reads are lost compared to merging non-overlapping reads, provided that con-
catenated sequences are able to be processed by DADA2 and do not hinder taxonomic 
assignment. Since non-trimmed pipelines performed poorly overall with the lowest 
average F-measures (Table 3; Fig. 6), we focus on length-trimmed and quality-trimmed 
pipelines for this analysis.

Compared to merged pipelines (LMp and QMp), merged and concatenated pipe-
lines (LBp and QBp) always resulted in keeping more sequences for taxonomy (Addi-
tional file  3: Table  S3). However, even though fully concatenated pipelines (LCs and 
QCs) started out with the most sequences, the number was dramatically reduced by 
DADA2 that removes reads below a quality threshold (maxEE = 2), often reducing 
the percentage of input reads by more than half in mocks C1, G1–4, and A1 (mean: 
LMp = 67.70% > LCs = 28.593%, QMp = 80.717% > QCs = 22.175%). There was less of 
a difference in mocks S1-4, which have the highest average base quality of all mocks 
(Table  1), though concatenated pipelines still output lower percentages of input reads 
(mean: LMp = 96.182% > LCs = 92.975%, QMp = 95.938% > QCs = 89.368%). Despite this 
loss of data generally resulting in fewer ASVs for concatenated pipelines compared to 
merged and merged-concatenated pipelines, in most cases this did not diminish TPs 
(Fig. 7).

Averaging across all mocks, LCs had the highest overall F-measure (0.897), followed by 
QBp (0.874), LBp (0.858), LMp (0.847), QMp (0.831), and QCs (0.821). Whereas trim-
ming had an impact on the performance of concatenated sequences in the absence of 
merged reads (LCs vs QCs), the addition of concatenated sequences to merged reads 
(Bp) resulted in improved taxonomic recovery compared to merged reads alone (Mp) 
for both length-trimmed and quality-trimmed pipelines: LBp and QBp had the same 
or better F-measure than LMp and QMp respectively in every mock (Additional file 3: 
Table S6). However, the top performing pipeline was not the same for every mock com-
munity. The mocks with the highest average sequence quality (S1–S4 with Q =  > 35 in 
both paired reads; Table 1) tended to show better performance in quality-trimmed vs 
length-trimmed pipelines (Fig. 7). The opposite tended to be true for the other mocks, 
particularly for mocks with lower read qualities (G2, G3, and G4), which had especially 
poor F-measures for QCs. The two pipelines with consistently high F-measures per 
16S rRNA gene variable regions (either the highest or second highest per mock) were 
LCs and QBp, and both had higher F-measure means than all DADA2 merged pipe-
lines (Table 3). The next best performing pipeline overall was LMd, which used DADA2 
merged reads without concatenation, but this pipeline performed poorly in mock com-
munities with large amplicons (S3 and S4), suffering from low precision and low recall.
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V1-3
A1 C1 G1 G2 G3 G4 S1 S2 S3 S4

NMp 1 0 1 1 0.895 1 0.912 0.939 0.875 0.919
NBp 1 0 1 1 0.944 1 0.912 0.939 0.875 0.919
NCs 1 1 1 1 0.929 1 0.939 0.939 0.850 0.944

LMp 1 1 1 1 0.850 1 0.939 0.939 0.811 0.865
LBp 1 1 1 1 0.895 1 0.939 0.939 0.838 0.914
LCs 0.950 1 1 1 0.944 1 0.939 0.939 0.854 0.944

QMp 1 0.600 1 0.941 0.941 1 0.912 0.939 0.875 0.944
QBp 1 0.600 1 0.944 0.944 1 0.912 0.939 0.875 0.944
QCs 0.947 1 1 1 1 1 0.939 0.939 0.854 0.944

NR1 1 0.714 0.944 1 0.895 1 0.939 0.939 0.850 0.943
NR2 1 1 1 1 0.941 1 0.938 0.938 0.833 0.935
LR1 1 0.714 0.944 1 0.895 1 0.939 0.939 0.842 0.939
LR2 1 1 1 1 0.941 1 0.938 0.938 0.833 0.906

V1-3
A1 C1 G1 G2 G3 G4 S1 S2 S3 S4

NMp 0.842 0 1 0.941 1 0.647 0.838 0.838 0.946 0.919
NBp 0.842 0 1 1 1 0.706 0.838 0.838 0.946 0.919
NCs 0.737 0.455 1 0.176 0.765 0.059 0.838 0.838 0.919 0.919

LMp 1 0.182 1 0.941 1 0.706 0.838 0.838 0.811 0.865
LBp 1 0.182 1 1 1 0.706 0.838 0.838 0.838 0.865
LCs 1 0.455 1 0.941 1 0.706 0.838 0.838 0.946 0.919

QMp 1 0.273 1 0.941 0.941 0.294 0.838 0.838 0.946 0.919
QBp 1 0.273 1 1 1 0.706 0.838 0.838 0.946 0.919
QCs 0.947 0.455 1 0.529 0.706 0.353 0.838 0.838 0.946 0.919

NR1 1 0.455 1 1 1 0.706 0.838 0.838 0.919 0.892
NR2 0.842 0.455 1 0.412 0.941 0.235 0.811 0.811 0.811 0.784
LR1 1 0.455 1 1 1 0.706 0.838 0.838 0.865 0.838
LR2 0.947 0.455 1 0.941 0.941 0.706 0.811 0.811 0.811 0.784

V1-3
A1 C1 G1 G2 G3 G4 S1 S2 S3 S4

NMp 0.914 0 1 0.970 0.944 0.786 0.873 0.886 0.909 0.919
NBp 0.914 0 1 1.000 0.971 0.828 0.873 0.886 0.909 0.919
NCs 0.848 0.625 1 0.300 0.839 0.111 0.886 0.886 0.883 0.932

LMp 1 0.308 1 0.970 0.919 0.828 0.886 0.886 0.811 0.865
LBp 1 0.308 1 1.000 0.944 0.828 0.886 0.886 0.838 0.889
LCs 0.974 0.625 1 0.970 0.971 0.828 0.886 0.886 0.897 0.932

QMp 1 0.375 1 0.941 0.941 0.455 0.873 0.886 0.909 0.932
QBp 1 0.375 1 0.971 0.971 0.828 0.873 0.886 0.909 0.932
QCs 0.947 0.625 1 0.692 0.828 0.522 0.886 0.886 0.897 0.932

NR1 1 0.556 0.971 1 0.944 0.828 0.886 0.886 0.883 0.917
NR2 0.914 0.625 1 0.583 0.941 0.381 0.870 0.870 0.822 0.853
LR1 1 0.556 0.971 1 0.944 0.828 0.886 0.886 0.853 0.886
LR2 0.973 0.625 1 0.970 0.941 0.828 0.870 0.870 0.822 0.841

F-measure
4V-3V4V

Precision

Recall

4V-3V4V
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Fig. 6  Pipeline precision, recall, and F-measure performance per 16S gene region. Color gradient is applied 
to each column where darker green signifies a pipeline having the highest metric for that mock community, 
and white signifies the lowest metric for that mock community
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Pipeline performance varied by amplicon and by mock community

The target amplicon length influenced pipeline performance (Fig.  6). In general, 
length trimming outperformed quality trimming of V4 mocks as indicated by higher 
F-measures. However, quality trimming outperformed length trimming of the V3–4 
mocks. Length trimming and quality trimming gave similar results for the V1–3 mock 
A1, where read merging outperformed pipelines containing just concatenated reads 
regardless of length or quality trimming. Conversely, fully concatenated pipelines had 
the highest F-measure in V4 mocks containing closely related bacteria (C1). The pipe-
line with the highest average F-measure (LCs) had the highest F-measure in seven of 
the ten mock communities (C1, G1, G3, G4, S1, S2, S4) all but one of which were V4 
mocks. QBp, the pipeline with the second highest average F-measure, also had the 
highest F-measure in seven mock communities including the V1–3 mock (A1), both 
V3–4 mocks (S3–S4), and V4 mocks (G1, G3, G4, and S2).

The amplified 16S rRNA gene region V1–3 (mock A1) was best represented by 
LMp, LBp, QMp, and QBp with an F-measure of 1, identifying all 19 mock bacteria 
(Additional file 3: Table S7). LCs captured all these genera but had an additional FP 
(F-measure = 0.974), while QCs had 1 FN and 1 FP (F-measure = 0.947). In contrast, 
LCs had the highest F-measure in every mock with the V4 16S rRNA gene region 
except G2 (QBp = 0.971 > LCs = 0.970). In mock C1, which is made up of closely 
related bacteria, fully concatenated pipelines LCs and QCs had the highest F-meas-
ures (0.625) with just 5 out of 11 TPs but 0 FPs (Additional file 3: Table S7), 2 more 
TPs than the next best pipelines. In mock G1, all the different pipelines had an identi-
cal F-measure of 1, meaning all 17 genera were identified with no FPs. G2, G3, and G4 
mocks were better represented with length-trimmed pipelines than quality-trimmed. 
The exception here was QBp that tied for the highest F-measure scores in mocks G3 
and G4, and performed worse than only LBp in G2 (Fig.  6). In mock S1, pipelines 
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Fig. 7  Distribution of true positives (TPs), false positives (FPs), false negatives (FNs), and F-measure per 
mock for length trimmed (LT) and quality trimmed (QT) pipelines combined with merged (M), merged and 
concatenated (MC), or solely concatenated (C) reads
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LMp, LBp and LCs performed equally well (F-measure = 0.886). QCs also had an 
F-measure of 0.886, outperforming QMp and QBp (0.873) in mock S1. All six of these 
pipelines had an F-measure of 0.886 for mock S2. The V3–4 region (mocks S3–4) was 
best represented by QMp and QBp. Both had F-measures of 0.909 for mock S3 and 
0.932 for mock S4. QCs and LCs performed just as well in mock S4 but slightly worse 
in S3.

Balanced mock communities had better taxonomic recovery than unbalanced mocks

Differences were detected among pipelines between three V4 balanced communities 
and their matching unbalanced communities (where taxa abundances varied within the 
mock community): G1 vs G3, G2 vs G4, and S1 vs S2 respectively (Additional file 2: Fig. 
S4). As expected, balanced communities had a more even spread of relative abundance 
proportions per taxa, which was consistently observed across pipelines (mean Pielou’s 
evenness J for G1, G2 and S1 = 0.89, 0.86, 0.89 respectively, compared to G3, G4, and 
S2 = 0.57, 0.61, 0.83, respectively). Balanced communities also had higher alpha diversity 
than unbalanced communities (mean Shannon’s diversity H for G1, G2 and S1 = 2.57, 
2.21, 3.12 compared to G3, G4, and S2 = 1.63, 1.27, 2.94). This higher diversity in bal-
anced communities was mainly due to more TPs (mean TPs for G1, G2 and S1 = 16.0, 
13.3 and 30.8 compared to G3, G4, and S2 = 15.1, 8.5 and 30.8) than FPs (mean FPs for 
G1, G2 and S1 = 1.7, 1.6 and 3.3 compared to G3, G4, and S2 = 2.7, 1.5 and 3.0). Among 
LMp, LBp, LCs, QMp, QBp, and QCs, the balanced mocks had higher F-measure scores 
in every instance except QMp and QBp in which S2 outperformed S1. Single-end pipe-
lines performed worse in the unbalanced communities as well.

Single read analysis is rarely better than concatenating paired reads

We evaluated the performance of pipelines using single-end reads compared with 
paired-end analyses following read merging and/or concatenation. We were particularly 
interested in knowing whether concatenation could replace single-end analysis when 
reads do not overlap, therefore keeping longer sequences for increased taxonomic reso-
lution. We focused our analysis on length-trimmed and non-trimmed single-end pro-
cessing because length-trimmed paired-end pipelines on average outperformed their 
quality-trimmed counterparts (Table  3). Similar to paired-end pipelines, single-end 
pipelines that used length-trimmed reads outperformed non-trimmed reads, with the 
same or higher F-measure scores in all mocks except in S3 (NR1 = 0.883 > LR1 = 0.853) 
and S4 (NR1 = 0.917 > LR1 = 0.886; NR2 = 0.853 > LR2 = 0.840; Fig.  6; Additional file  3: 
Table S6). We therefore present the performance of length-trimmed single reads (LR1 
and LR2) with length-trimmed paired-end pipelines (LMp, LBp, and LCs) across mock 
communities. Read concatenation usually yielded greater F-measures than single reads: 
the paired-end pipelines LBp and LCs each outperform or are equal to LR1 in 8 of 10 
mocks and to LR2 in 9 (LBp) or all 10 (LCs) mocks (Fig. 8; Additional file 3: Table S6). 
LR2 had lower overall recall, particularly in the S1–4 mocks (Fig. 6).

The number of reads retained for taxonomic classification in single-end vs paired-end 
pipelines seldom correlated with F-measure performance. For example, the pipelines 
with the highest F-measure in mock C1 (LCs and LR2) had the lowest number of reads 
post-filtering for taxonomic classification (LCs: 863,065 and LR2: 1,064,603 compared 
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to LMp: 1,853,002, LBp: 1,853,336 and LR1: 1,455,823; Additional file  3: Table  S3). In 
mocks G2 and G3, LR2 had the highest number of sequences for taxonomic classifica-
tions (88,998 and 267,098) but had lower F-measure than LR1, which had less than half 
the number of sequences (16,358 and 53,303). LCs had the same F-measure as LR2 in G2 
with only 35,775 sequences and the best F-measure in G3 with 96,227 sequences. For 
mocks S1–2 targeting the V4 region, all pipelines retained over 90% of input reads and 
except for LR2 had an F-measure of 0.886. For mocks S3–4 targeting the V3–4 region, all 
pipelines also retained over 90% of input reads, but there was greater variance in perfor-
mance with greater numbers of FPs (between 2–7) than for mocks S1–2 that comprised 
the same taxa. LCs had the highest F-measure in mocks S3–4, outperforming both sin-
gle-end pipelines (Fig. 8; Additional file 3: Table S6).

Discussion
The loss of data in microbial amplicon sequencing analysis resulting from the inability 
to merge paired reads can hinder species recovery and limit the appropriateness of com-
paring taxonomic profiling results across studies. Successful read pair merging depends 
on numerous technical and biological factors including amplicon and read lengths, 
sequence quality and trimming, and biological sequence (length) variation among target 
community members. Here we use mock communities that vary in these factors to eval-
uate the accuracy of taxonomic recovery among bioinformatic pipelines implemented 
in QIIME 2 that differed in abundance filtering thresholds, reference databases, read 
trimming, and in particular the use of read concatenation instead of or in addition to 
read merging. The performance of individual pipelines varied by mock community, but 
we found that read concatenation was usually advantageous in detecting true positives 
while limiting false positives.

Abundance filtering influences type I and type II errors

Filtering low abundant ASVs or OTUs is typically carried out to reduce the impact of 
spurious sequences and improve diversity estimates. In our study, an ASV abundance 
threshold of 0.01% gave on average the best overall balance between precision and recall. 
Compared to not filtering by abundance, this threshold reduced the number of FPs while 
retaining the majority of TPs. We found an ASV abundance threshold of 0.5% and 1% 
completely eliminated FPs in all conditions but with a significant loss of TPs. There is 
substantial variation in the abundance thresholds applied across other microbial stud-
ies, for example 0.1%  [5], 0.01%  [36], 0.005%  [3] and 0.0005%  [45]. The exact effects 
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of different thresholds on TPs and FPs will depend on the particular sequence library 
characteristics such as the sequencing depth and microbial community diversity as well 
as the bioinformatic pipeline, but our results show consistent trends regarding average 
precision and recall across pipelines used in this study.

Reference databases affect taxonomic recovery

Two of the most commonly used reference databases for taxonomic identification of 16S 
rRNA gene sequences are Greengenes (GG) and SILVA  [5, 31]. Despite both databases 
containing reference sequences for each genus in the mock communities used in this 
study (with the exception of two genera in GG), we found differences in the TPs or FPs 
in every mock community between GG and SILVA, sometimes even using the same bio-
informatics pipeline. This is likely an influence of reference database content on taxo-
nomic resolution – depending on how many closely related sequences a database has to 
the focal sequence, it can create more uncertainty in identifying the correct taxon  [43]. 
It is also possible that the training of the taxonomic classifier in QIIME 2 influenced the 
performance of the different databases.

SILVA performed better than GG in all mocks used in this study. GG has not been 
updated since 2013, is no longer maintained, and has the smallest taxonomic classifica-
tion and thus least diversity out of the major reference databases  [31]. Regardless, GG 
is still commonly used  [19, 26, 36, 43, 45, 46], and it has been shown to have higher 
accuracy than the Ribosomal Database Project (RDP) for characterizing some bacterial 
communities  [3]. Its continued use also has practical reasons; researchers can compare 
their taxonomic results to a previous study that used GG, or they might already have 
an in-house alignment process setup that uses this database. SILVA, on the other hand, 
is actively maintained and releases multiple updated versions every year, making it a 
popular choice for sequence identification. Additionally, SILVA shares more taxonomic 
units with the comprehensive NCBI taxonomy database than both GG and RDP  [31]. 
A recent study comparing microbiomes using two different sequence processing tools 
and taxonomic classification with GG and SILVA found no differences between any tool-
database combination for those taxa abundant at more than 10%, but substantial differ-
ences in reported taxonomy across tools for bacteria with abundance levels under 10% 
with GG  [5]. In our study, taxonomic discrepancies between GG and SILVA classifica-
tions in multiple pipelines were even found in the bacteria abundant at more than 10%, 
demonstrating potentially strong influences of reference databases on taxonomic char-
acterizations depending on the microbial community composition.

Read quality affects pipeline performance rankings

Trimming reads before sequence analysis is important to remove sequencing prim-
ers and poor-quality bases that, when erroneous, can interfere with accurate taxo-
nomic assignment  [30]. However, trimming can itself hinder taxonomic resolution if it 
removes regions of the amplicon necessary to distinguish among closely related organ-
isms, or if paired reads become too short for merging and are discarded entirely. In our 
study, non-trimmed pipelines indeed usually retained more sequences for taxonomic 
classification, but only in mocks with high average read quality. For most mocks, not 
trimming reads was counterproductive because it increased the number of low-quality 
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bases in reads that led to more read filtering at later steps; DADA2 uses a maximum 
expected error (maxEE) of 2 by default, which removes entire reads that have more than 
2 expected errors throughout the read before taxonomic classification. Future stud-
ies might consider relaxing the maxEE filter in DADA2 to retain more sequences and 
potentially improve taxonomic recovery. Although non-trimmed pipelines sometimes 
outperformed trimmed pipelines, there was always at least one length-trimmed or qual-
ity-trimmed pipeline combined with read concatenation that performed just as well or 
better than non-trimmed pipelines (Fig. 6). This indicates that, although trimming may 
not always be required for optimal taxonomic recovery, including concatenated trimmed 
reads helped overcome the shorter reads from trimming.

Concatenating paired reads increases performance over merged and single reads

Trimming raw FASTQ sequences by length at user-specified positions can be advanta-
geous over quality trimming for OTU clustering  [17], as well as for reducing the num-
ber of ASVs that would come from trimming the same variant to different lengths. We 
found the average F-measure of merged length-trimmed (LMp) to be higher than qual-
ity-trimmed (QMp), even though the majority of quality-trimmed pipelines had more 
merged sequences than their length-trimmed counterparts. When adding concatenated 
reads to merged reads, this always resulted in more sequences for taxonomic classifi-
cation and the same, if not better, F-measure scores than just merged pipelines. Qual-
ity trimming (QBp) retained more sequences for taxonomy in most mocks and resulted 
in a higher mean F-measure than length trimming (LBp). QBp had the second highest 
average F-measure of all pipelines including QMp and LMp, indicating that the loss of 
sequence information during merging was largely recovered with the addition of concat-
enated sequences. On the other hand, fully concatenated pipelines like QCs had fewer 
sequences left for taxonomy following DADA2 compared to pipelines with merged 
reads (QMp and QBp) in most mock communities, despite starting with more ASVs. 
Similar to non-trimmed reads, the act of concatenating reads instead of merging them 
at their ends increases the number of bases in the sequence, particularly those that 
have lower Phred scores (at the 3′ end of reads). Concatenated reads therefore are more 
prone to filtering by the default maxEE threshold in DADA2 unless average base qual-
ity is high throughout the read. The large number of sequences filtered diminished the 
performance of QCs. Conversely, length-trimmed concatenation (LCs) outperformed all 
other pipelines with the highest overall mean F-measure, despite undergoing high lev-
els of sequence filtering before taxonomy. An important caveat is that the taxonomic 
classifier needs to accommodate for concatenated sequences that do not represent the 
exact amplicon sequence, with either missing sequence between the joined read ends or 
duplicated sequence where read pairs overlap that would otherwise have been merged. 
Our results show that the performance of different combinations of trimming and con-
catenation are affected by overall sequencing quality, and that read retention does not 
necessarily lead to better taxonomic resolution, at least with microbial communities of 
relatively low diversity as used in this study.

That the fully concatenated pipeline LCs had the highest mean F-measure shows 
that concatenating even overlapping paired-end reads can provide taxonomically 
useful information that would otherwise be lost when only considering merged or 
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single-end sequences. In studies using long amplicons where paired-end sequences 
do not overlap, R2 reads are often discarded and just the R1 reads are used for analy-
sis, even though concatenating these sequences is advantageous as long as the taxo-
nomic classifier can handle these artificially contiguous sequences: IM-TORNADO  
[23], hybrid-denovo  [18], JTax  [17], and MeFiT  [47] are tools able to process non-
overlapping paired-end reads that concatenate R1 and R2 sequences, increasing taxo-
nomic accuracy over R1 or R2 alone. Our findings support these earlier results, in 
addition to showing that concatenation often outperforms merged reads based on 
taxonomic classification of ASVs in QIIME 2. Cascabel  [48] is a comprehensive tool 
allowing the user to select between either OTU or ASV pipelines and that also allows 
sequences to be concatenated instead of merged, but the accuracy of concatenation 
in this tool has not been validated. Here, we demonstrate the advantage of read con-
catenation over merged reads alone, R1 alone, and R2 alone for the analysis of ASVs. 
Because DADA2 performs denoising on the R1 and R2 reads independently before 
merging, paired-end reads are normally merged within DADA2  [35], but our results 
suggest that merging and concatenating reads prior to processing reads in DADA2 
within QIIME 2 outperforms DADA2-merging under various scenarios. We expect 
that future tools will include read concatenation in addition to read merging to fully 
make use of paired-end reads, in particular when sequencing long amplicons.

Conclusion
Correct taxonomic assignments and recovery in microbial amplicon sequence analy-
ses are important to generate accurate estimates of diversity and community compo-
sition. Identification of taxa can be influenced by the parameters used for sequence 
processing and alignment, areas where consistency is lacking among researchers. 
This presents significant challenges in comparing results across studies. We tested 
the performance of sequence processing pipelines to determine, among other things, 
whether read concatenation instead of or in addition to read merging could improve 
taxonomic recovery of ASVs using a diverse set of publicly available 16S rRNA gene 
sequence data from mock communities. Our investigation shows that a proper mini-
mum abundance threshold per taxa improves F-measure scores by removing very 
low abundant taxa (contaminants, noise, ASVs aligned with low confidence values), 
that an up-to-date SILVA reference database is superior to the Greengenes data-
base, and that concatenation of sequences improves taxonomic recovery. Addition-
ally, length trimming combined with concatenating sequences outperforms sequence 
merging even in 16 s rRNA gene variable regions that have a high degree of overlap 
between the forward and reverse reads (e.g.,V4), whereas quality trimming performs 
well with longer amplicons (e.g., V1-3 and V3-4). However, when sequence quality is 
low, length trimming preserves more sequences for taxonomic identification and thus 
remains an appropriate option even for longer amplicon. We have shown for the first 
time that inclusion of concatenated paired-end reads consistently improves accurate 
taxonomic assignment of ASVs across a variety of samples that differed in sequence 
quality, amplicon region, and read length, suggesting robust performance under vari-
ous contexts of gene marker-based studies.
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Additional file 1. Figure S1. Phred quality plots of raw sequences for each mock community.

Additional file 2. Figure S2. Precision, recall, and F-measure statistic comparisons averaged across mocks for each 
paired-end pipeline at different ASV percent abundance thresholds. Pipelines with taxonomy performed using SILVA 
had a higher F-measure mean at every threshold compared to Greengenes. Figure S3. ASV percent abundance 
threshold comparison of true positives (TPs), false positives (FPs), and false negatives (FNs) among paired-end pipe-
lines using the SILVA references database. The unique number of genera identified for each of the ten mock commu-
nities per pipelines are summer together per pipeline per threshold. Genus counts do not consider ASV abundances. 
Figure S4. Heatmaps comparing balanced (G1, G2, S1) versus unbalanced (G3, G4, S2) mock communities with the 
same genera compositions. A) G1 vs G3, B) G2 vs G4, and C) S1 vs S2. Color scale shows proportional abundance of 
taxa within each mock / pipeline. Taxa are categorized by False Positives (blue) and True Positives (red). Relative abun-
dance scale goes from dark blue (low) to red (high).

Additional file 3. Table S1. Mock community sequence information and trimmed length positions. Primer 
information includes the name of each primer in the literature and the associated sequence, read lengths of paired 
reads, length of the reads after length-trimming by median Q20 score, SRA and Bioproject accessions, and citation. 
Table S2. Bacteria present within each mock community. Table S3. DADA2 statistics for each pipeline per mock 
community. Input represents the number of reads used after the trimming and merging/concatenating steps; Fil-
tered is the amount of sequences remaining after DADA2 filtering based on a maxee=2; Denoised is the number of 
sequences remaining after DADA2 denoising; Merged and % of input merged applies only to pipelines with merging 
by DADA2 (NMd, LMd , QMd and QdMd); Non-chimeric output sequences were passed into the taxonomic classifier; 
% output is the percent of sequences from the input left for taxonomic classification. Table S4. Genera that were 
originally determined as false positives (FP) but have synonyms of taxa from mock communities, and therefore were 
renamed to match taxa from mock communities (modified names now represent true positives – TPs). Table S5. 
True positive (TP), false positive (FP), and false negative (FN) genera that are shared and unique between GG and 
SILVA reference databases. Mocks are grouped per study. Table S6. TP, FP, and FN counts for each pipeline per mock 
along with the calculated precision, recall, and F-measure. SILVA reference database and an ASV abundance thresh-
old of 0.01% was used to filter out low abundant ASVs before these calculations were performed. Pipelines arranged 
by descending F-measure score per mock. Table S7. True positive (TP), false positive (FP), and false negative (FN) 
bacterial genera found in each mock per pipeline with SILVA database.
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