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1  | INTRODUC TION

Breast cancer is a heterogeneous disease with multiple molecular 
features. It is a major health burden in the world, which results in 
the leading cause of cancer death among females. Incidence rate of 
breast cancer has been increased for several years, resulting from a 
combination of social and economic factors, including the postpone‐
ment of childbearing, obesity and physical inactivity.1 Molecular 

studies have demonstrated that there were at least four molecular 
subtypes of breast cancer: luminal, basal, human epidermal growth 
factor receptor 2 (HER2)‐enriched and normal‐like. These sub‐
types exhibit different histopathological features and treatment 
sensitivities.2

Luminal A and luminal B are the most two common subtypes of 
breast cancer, which accounts for approximately 70% of all cases. 
They are characterized by the expression of estrogen receptor (ER) 
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Abstract
Quite a few estrogen receptor (ER)‐positive breast cancer patients receiving endo‐
crine therapy are at risk of disease recurrence and death. ER‐related genes are in‐
volved in the progression and chemoresistance of breast cancer. In this study, we 
identified an ER‐related gene signature that can predict the prognosis of ER‐positive 
breast cancer patient receiving endocrine therapy. We collected RNA expression 
profiling from Gene Expression Omnibus database. An ER‐related signature was de‐
veloped to separate patients into high‐risk and low‐risk groups. Patients in the low‐
risk group had significantly better survival than those in the high‐risk group. ROC 
analysis indicated that this signature exhibited good diagnostic efficiency for the 1‐, 
3‐ and 5‐year disease‐relapse events. Moreover, multivariate Cox regression analysis 
demonstrated that the ER‐related signature was an independent risk factor when 
adjusting for several clinical signatures. The prognostic value of this signature was 
validated in the validation sets. In addition, a nomogram was built and the calibration 
plots analysis indicated the good performance of this nomogram. In conclusion, com‐
bining with ER status, our results demonstrated that the ER‐related prognostic signa‐
ture is a promising method for predicting the prognosis of ER‐positive breast cancer 
patients receiving endocrine therapy.
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and progesterone receptor (PR). ER‐related genes are highly ex‐
pressed in luminal A tumours, while expression levels of HER2 and 
some proliferation‐related genes are low. Compared with luminal A 
tumours, luminal B tumours have lower expression levels of ER‐re‐
lated genes, higher expression of the proliferation‐related genes and 
variable expression of HER2 genes. Patients with luminal A breast 
cancer were often considered to have the best prognosis, followed 
by patients with luminal B breast cancer.3 Expression of ER is as‐
sociated with favourable prognosis and can predict the efficacy of 
endocrine therapies including aromatase inhibitors and tamoxifen. 
Previous studies demonstrated that ER‐positive breast cancer pa‐
tients treated with adjuvant tamoxifen treatment resulted in a de‐
creased breast cancer death. Despite most ER‐positive breast cancer 
patients show good prognosis after receiving antiestrogen therapy, 
while some of them can develop acquired resistance after 5 years of 
therapy and suffer from distant metastasis or even death.4

The high‐throughput platforms for genomic analysis provided 
promising tools in medical oncology with great clinical applications. 
Multiple gene prognostic signatures could provide further prognos‐
tic information, and several molecular prognostic profiles have been 
validated and are in clinical use: the Oncotype Dx, the Amsterdam 
70‐gene signature and the PAM50 are the three most commonly 
used. The Oncotype DX calculates a recurrence score and divides 
breast tumours into low‐, intermediate‐ and high‐risk groups to es‐
timate the likelihood of recurrence in tamoxifen‐treated patients 
with (ER)‐positive breast cancer.5,6 The Amsterdam 70‐gene sig‐
nature could accurately grouped patients into low or high risks to 
predict distant metastases and death, which is approved for appli‐
cation in both ER‐positive and ER‐negative tumours.7 The PAM50 
is a 50‐gene test, improving classification of breast cancer patients 
into prognostic groups.8 These signatures assist therapeutic strate‐
gies determination and prognosis predication of patients with breast 
cancer.

Expression of ER‐related genes could provide predictive value 
for predicting the responses to chemotherapy, and may allow to 
identify patients who will either benefit or be resistant to chemo‐
therapy.9 In this study, we constructed an ER‐related gene signature 
and developed a nomogram to predict the relapse‐free survival (RFS) 
of ER‐positive breast cancer patients receiving endocrine therapy. 
Our findings suggested that this ER‐related gene signature could be 
used as an effective prognostic predictor for patients with ER‐posi‐
tive breast cancer patients receiving endocrine therapy.

2  | MATERIAL S AND METHODS

2.1 | Data processing

Three datasets (GSE6532, GSE4922 and GSE9195) containing gene 
expression profiling data of ER‐positive breast cancer patients re‐
ceiving adjuvant hormonal therapy alone and their corresponding 
clinical data were downloaded from the GEO databases. Only ER‐
positive patients with complete clinical information were included 
in our analysis. Three chip platforms, Affymetrix Human Genome 

U133A (GPL96), Affymetrix Human Genome U133B (GPL97) and 
Affymetrix Human Genome Plus 2.0 (GPL570) were used to obtain 
gene expression data. Raw microarray cell intensity files were ob‐
tained, background‐adjusted and normalized using Robust Multichip 
Average. The RNA expression data were scaled with a standard de‐
viation of 1 and a mean of 0. The data under the same chip platform 
were then merged and the ComBat method was used to remove the 
potential internal and external batch effects. We reannotated the 
probe sets of the Affymetrix Human Genome U133A, Affymetrix 
Human Genome U133B and Affymetrix Human Genome Plus 2.0 
platforms by mapping all probes to the Gencode annotation (Version 
29) using SeqMap. We selected the probes that were mapped 
uniquely to the genome with no mismatch. We obtained 256 ER‐
related genes through the Molecular Signature Database v6.2 2 3. 
Only 62 genes mapped to all the three platforms were used for fur‐
ther analysis.

2.2 | Construction of the ER‐related 
prognostic signature

The dataset based on GPL96 was used as the training set, and an‐
other two sets based on GPL97 and GPL570 were used as validation 
sets. GSE12093 and GSE17705 based on platform GPL96 contain‐
ing survival information were also downloaded and combined for 
validation. Univariate Cox regression analysis was first performed 
to identify prognostic genes. P < 0.05 was considered as significant. 
Lasso‐penalized Cox regression was used to further narrow the 
genes for prediction of the RFS. The LASSO Cox regression model 
was analysed using the ‘glmnet’ package. LASSO shrinked all regres‐
sion coefficients towards 0 and set the coefficients of many irrel‐
evant features exactly to 0 based on the regulation weight λ. The 
optimal λ was selected according to minimum cross validation error 
in 10‐fold cross validation. Finally, a multivariate Cox regression 
analysis was conducted to assess the contribution of genes as an in‐
dependent prognostic factor for patient survival. A stepwise method 
was employed to select the best model. A risk score was built, with 
the coefficients weighted by the penalized Cox model in the training 
set. The optimal cut‐off of risk score was obtained using ‘survminer’ 
package in r. All patients were classified into either the high‐risk or 
the low‐risk group based on the optimal cut‐off of risk score.

2.3 | Construction of the nomogram

A nomogram was constructed using the ‘rms’ r package and calibra‐
tion plots were performed to assess the prognostic accuracy of the 
nomogram. The predicted outcomes and observed outcomes of the 
nomogram were presented in the calibrate curve and the 45° line 
represented the best prediction.

2.4 | Statistical analysis

To investigate the prognostic accuracy of ER‐related classifier, we 
performed time‐dependent receiver operating characteristic (ROC) 
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analysis using the ‘survivalROC’ R package. Relapse‐free survival 
was analysed based on Kaplan‐Meier method, and we performed 
the log‐rank test to assess the statistical significance of the differ‐
ences between different groups. Cox regression model was used to 
analyse multivariable survival analysis. Hazard ratios (HRs) with their 
respective 95% confidence intervals were obtained. A P < 0.05 was 
considered statistically significant and all tests were two‐sided. All 
statistical tests were performed with r software (version 3.5.0).

3  | RESULTS

3.1 | Patient characteristics

As shown in Figure 1, a flow chart of the analysis procedure was de‐
veloped to describe our study. We collected breast cancer expression 
datasets and their corresponding clinical data from GEO database. 
Cases from GSE GSE6532, GSE4922 and GSE9195 were assigned to 
three sets: training set (GPL96), validation set I (GPL97) and validation 
set II (GPL570). Clinical information included age, tumour size, grade 
and lymph node status. As GSE12093 and GSE17705 did not have the 
information of age, tumour size, these two datasets containing 434 
ER‐positive patients were combined for validation (validation set III).

The clinicopathologic characteristics of patients in the training set 
are shown in Table 1. The median follow‐up in training set was 9.5 years 
(low‐risk group) and 5.2 years (high‐risk group); in the validation set I, 
median follow‐up was 8.9 years (low‐risk group) and 4.9 years (high‐risk 
group); in the validation set II, median follow‐up was 10.5 years (low‐
risk group) and 7.2 years (high‐risk group); in the validation set III, me‐
dian follow‐up was 8.7 years (low‐risk group) and 6.9 years (high‐risk 

group). Ninety‐three (50%, training set), 92 (54.1%, validation set I), 
25 (39.1%, validation set II) and 74 (28.7%, validation set III) patients in 
high‐risk group developed relapse during the follow‐up period.

3.2 | Identification of an ER‐related signature

We first performed univariate Cox regression analysis to identify 
prognostic genes in the training set. The patients were stratified into 
high expression group and low expression group according to optimal 
cut‐off of each gene. And 28 ER‐related genes significantly associ‐
ated with the RFS were considered as prognostic genes and selected 
for further analysis. Then Lasso‐penalized Cox analysis with 10‐fold 
cross‐validation was performed to narrow the genes for prediction of 
the RFS, 13 ER‐related genes were identified. Subsequently, we con‐
ducted a stepwise multivariate Cox regression analysis, and 10 ER‐re‐
lated genes were finally screened out as prognostic genes to build a 
predictive model. The predictive model was defined as the linear com‐
bination of the expression levels of the 10 ER‐related genes weighted 
by their relative coefficient in the multivariate Cox regression model, 
as risk score = (0.24 × expression of CCNE1) + (0.19 × expression 
of CITED2) + (0.32 × expression of DDX54) + (0.16 × expression 
of EGFR) + (0.26 × expression of MDM2) + (0.23 × expression of 
MED1) + (−0.47 × expression of SFRP1) + (−0.23 × expression of 
CASP9) + (−0.26 × expression of FOXH1) + (−0.22 × expression of 
UBA5). Among the 10 prognostic genes, CCCNE1, CITED2, DDX54, 
EGFR, MDM2 and MED1 showed positive coefficients in the Cox 
regression analysis, indicating that their high expression signified a 
shorter RFS. SFRP1, CASP9, FOXH1 and UBA5 showed negative co‐
efficients, suggesting their high expression was associated with better 

F I G U R E  1   Flow chart and 10‐fold cross‐validation for tuning parameter selection. A, Flow chart indicating the process used to select 
target genes included in the analysis. B, 10‐fold cross‐validation for tuning parameter selection in the Lasso model. C, LASSO coefficient 
profiles of the 28 prognostic genes. A vertical line is drawn at the value chosen by 10‐fold cross‐validation
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RFS. These results were consistent with the previous univariate Cox 
regression analysis (Figure 2).

3.3 | Analysis of the ER‐related signature in the 
training set

In the training set, we performed the time‐dependent ROC curves 
analysis to assess the prognostic accuracy of the ER‐related 

signature. The areas under the ROC curve (AUC) achieved 0.656, 
0.736 and 0.735 at 1, 3 and 5 years of recurrence‐free survival 
(Figure 3A). The risk score for each patient was calculated and we 
classified all breast cancer patients in the training set into high‐risk 
group and low‐risk group by using the optimum cut‐off score (0.1) 
generated by ‘survminer’ package in R via the maximally selected 
rank statistics. We found that patients in the lower‐risk group had 
significantly better RFS than those in high‐risk group (Figure 3B). 

TA B L E  1   Clinicopathologic characteristics of three sets of breast cancer patients according to the ER‐related signature

Variables

Training set GPL96 (n = 357)
Validation set I GPL97 
(n = 421)

Validation set II GPL570 
(n = 128)

Validation set III GPL96 
(n = 434)

Low risk 
(%) High risk (%) Low risk (%) High risk (%) Low risk (%) High risk (%) Low risk (%) High risk (%)

Age at diagnosis (y)

Median 59 63 62 61 63 64

≤50 44 (25.7) 37 (19.9) 54 (21.5) 36 (21.2) 6 (9.4) 3 (4.7)

>50 127 (74.3) 149 (80.1) 197 (78.5) 134 (78.8) 58 (90.6) 61 (95.3)

Tumour size

≤2 cm 135 (78.9) 129 (69.4) 160 (63.7) 76 (44.7) 35 (54.7) 25 (39.1)

>2 cm 36 (21.1) 57 (30.6) 91 (36.3) 94 (55.3) 29 (45.3) 39 (60.9)

Lymph node status

Negative 131 (76.6) 111 (59.7) 185 (73.7) 92 (54.1) 26 (40.6) 28 (43.8)

Positive 40 (23.4) 75 (40.3) 66 (26.3) 78 (45.9) 38 (59.4) 36 (56.3)

Grade

I 63 (36.8) 26 (14.0) 86 (34.3) 35 (20.6) 25 (39.1) 6 (9.4)

II 101 (59.1) 127 (68.3) 136 (54.2) 94 (55.3) 22 (34.4) 35 (54.7)

III 7 (4.1) 33 (17.7) 29 (11.6) 41 (24.1) 17 (26.6) 23 (35.9)

Disease‐re‐
lapse event

33 (19.3) 93 (50.0) 55 (21.9) 92 (54.1) 7 (10.9) 25 (39.1) 17 (9.6) 74 (28.7)

Median 
follow‐up (y)

9.5 5.2 8.9 4.9 10.5 7.2 8.7 6.9

F I G U R E  2   Univariate Cox regression analysis of the ten prognostic genes in the signature. A, CCNE1. B, CITED2. C, DDX54. D, EGFR. E, 
MDM2. F, MED1. G, SFRP1. H, CASP9. I, FOXH1. J, UBA5
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Multivariate Cox proportional hazards regression analysis dem‐
onstrated that the ER‐related signature was an independent risk 
factor when adjusting for the classical clinicopathologic factors 
(Table 2). When we stratified the patients by clinicopathological 
risk factors, the ER‐related signature was still a statistically sig‐
nificant prognostic model where patients in high‐risk group had 
poorer prognosis (Figure 4). The same results were found in the 
entire validation set (Figure S1).

3.4 | Validation of the ER‐related signature in 
validation sets

To validate the predictive power of the ER‐related signature for 
breast cancer patients, we tested the signature in three validation 
sets. According to the signature identified above, patients in the 
lower‐risk group had significantly better RFS In validation set I, AUCs 
at 1, 3 and 5 years were 0.686, 0.713 and 0.737. In validation set II, 

AUCs at 1, 3 and 5 years were 0.726, 0.712 and 0.642. In valida‐
tion set III, AUCs at 1, 3 and 5 years were 0.668, 0.696 and 0.711. 
In the three validation sets, Kaplan‐Meier analysis and log‐rank test 
demonstrated that patients in the lower‐risk group had significantly 
better RFS (Figure 5). Multivariate Cox proportional hazards regres‐
sion analysis of validation set I and II also demonstrated that the sig‐
nature was an independent risk factor (Table 2).

3.5 | Nomogram development

To predict the recurrence probability of breast cancer patients using 
a quantitative method, we constructed a nomogram that integrated 
both the ER‐related signature and the conventional clinicopatho‐
logical factors (Figure 6) to predict 3‐ and 5‐year DFS probability. 
Calibration plots indicated that the nomograms had good accuracy 
compared with an ideal model both in training set and validation set 
(Figure 6B‐G).

F I G U R E  3   Validation of prognostic risk score model in training set. A, Time‐dependent ROC curves of the ER‐related signature. B, 
Kaplan‐Meier survival analysis of the ER‐related signature

TA B L E  2   Multivariate Cox proportional hazards regression analysis of the clinicopathologic characteristics and the ER‐related signature 
with RFS

Variable

Training set Validation set I Validation set II

HR (95% CI) P HR (95% CI) P HR (95% CI) P

Age (≦50 vs >50 y) 0.802 (0.520, 1.236) 0.317 0.635 (0.429, 0.941) 0.024 1.005 (0.965, 1.046) 0.816

Tumour size (≦2 cm vs >2 cm) 1.618 (1.092, 2.398) 0.016 2.047 (1.434, 2.922) <0.001 1.551 (0.97, 3.452) 0.282

Lymph node status (Negative 
vs Positive)

1.571 (1.081, 2.282) 0.018 1.300 (0.914, 1.848) 0.144 1.275 (0.578, 2.814) 0.547

Tumor grade (Grade I vs 
Grade II & III)

1.276 (0.777, 2.094) 0.336 1.430 (0.935, 2.187) 0.099 3.366 (0.774, 14.638) 0.106

Integrated RNA signature 
(low risk vs high risk)

2.758 (1.815, 4.189) <0.001 2.653 (1.883, 3.739) <0.001 3.864 (1.632, 9.151) 0.002
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F I G U R E  4   Kaplan‐Meier survival analysis for patients according to the ER‐related‐based signature stratified by clinicopathological risk 
factors. (A,B). Age. (C,D). Tumour size. (E,F). Lymph node status. (G,H). Tumour grade
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F I G U R E  5   Validation of ER‐related signature in validation sets. A, Time‐dependent ROC curves of the ER‐related signature in validation 
set I. B, Kaplan‐Meier survival analysis of the ER‐related signature in validation set I. C, Time‐dependent ROC curves of the ER‐related 
signature in validation set II. D, Kaplan‐Meier survival analysis of the ER‐related signature in validation set II. E, Time‐dependent ROC curves 
of the ER‐related signature in validation set III. F, Kaplan‐Meier survival analysis of the ER‐related signature in validation set III
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4  | DISCUSSION

Recent advances of high‐throughput technologies for genomic anal‐
ysis provide promising tools in medical oncology with great clinical 
applications. However, it is difficult to use such a large number of 
genes for clinical application. The ER‐positive breast cancer is the 
most common molecular subtype of breast cancer. Patients with 
ER‐positive breast cancer are often treated with endocrine therapy 
and are associated with a favourable prognosis. ER‐related genes 
and pathways are involved in the progression and chemoresistance 
of breast cancer. It is a novel and important method that combin‐
ing ER status with ER‐related genes for predicting the response of 
endocrine therapy and prognosis of breast cancer patients.

In our present study, using high‐throughput expression profiling, 
we constructed and validated an ER‐related gene signature (CCNE1, 
CITED2, DDX54, EGFR, MDM2, MED1, SFRP1, CASP9, FOXH1 
and UBA5) to predict RFS for ER‐positive breast cancer patients. 
The training set based on GPL96 platform was used to identify the 
signature. After univariate, Lasso and multivariate Cox analysis, 10 
genes were selected to construct a multi‐gene signature for prog‐
nosis prediction. The ER‐related gene signature was first assessed 
in the training set. Patients in low‐risk group had significantly bet‐
ter survival than those in high‐risk group. Results of ROC analysis 
showed that this signature exhibited excellent diagnostic efficiency 
for the 1‐, 3‐ and 5‐year disease‐relapse event. Moreover, multivar‐
iate Cox regression model indicated this ER‐related gene signature 
as an independent risk factor when adjusting for several clinical fea‐
tures such as age, tumour grade, tumour size and lymph node sta‐
tus. When patients were stratified by clinicopathological features, 
the ER‐related gene signature remained a strong prognostic model. 
Similar results were observed when further validated in validation 
sets. These results demonstrated that this ER‐related gene signature 
could successfully categorize patients into high‐risk and low‐risk 
groups with different RFS and was an effective prognostic indicator 
for breast cancer patients. In addition, a nomogram was developed 
that integrated both the ER‐related gene signature and clinicopath‐
ological risk factors and to accurately predict the likelihood of RFS 
in patients with breast cancer. Calibration plots indicated that the 
actual RFS corresponded closely with predicted RFS, suggesting our 
nomograms had good predictive performance both in training and 
validation sets.

The biological functions of these ER‐related genes have been 
previously studied. CCNE1 encodes a protein which belongs to 
the cyclin family, whose members are characterized by a dramatic 
periodicity in protein abundance through the cell cycle and plays 
a critical role in promoting cell‐cycle progression. Several studies 
have demonstrated that up‐regulation of CCNE1 is associated with 
higher tumour grades and poor prognosis in many tumours.10‐13 In 

breast cancer, CCNE1 is the immediate downstream effector of es‐
trogen‐related receptor α.14 Overexpression of cyclin E contributes 
to the antiestrogen resistance.15 And up‐regulation of CCNE1 can 
abrogate the tamoxifen‐mediated growth arrest via the modifica‐
tion of RB/E2F pathway.14 CITED2 has been reported to play a role 
in tumourigenesis, including that of the colon, lung and skin.16‐18 
In a murine mammary cancer model, CITED2 is identified as a po‐
tential facilitator of breast cancer bone metastasis.19 Compared 
with primary tumours, expression of CITED2 is significantly up‐
regulated in metastatic lesions, with the highest levels in bone 
metastasis.20 Overexpression of CITED2 could cause tamoxifen 
resistance in breast cancer cell lines.21 And studies demonstrated 
that CITED2 can elevate ER transcriptional activity, thus reducing 
the response to antiestrogen therapy.22 DDX54 acts as a corepres‐
sor of the ligand ER, which can dampen stimulation and intensify 
repression of estradiol‐ER‐regulated genes.23 Accumulating studies 
demonstrated that EGFR overexpression is associated with poor 
prognosis of breast cancer, and targeting EGFR therapy can en‐
hance the sensitivity of breast cancer cells to chemotherapy.24‐26 
EGF can promote phosphorylation of serine and tyrosine residues 
in ER, and direct interaction is observed between ER and EGFR. 
Communication between EGFR and ER can enhance proliferation 
and reduce the apoptosis of breast cancer cells.27 MDM2 is overex‐
pressed in a variety of malignancies, including sarcomas, leukaemias 
and solid tumours, which plays a crucial role in the development 
and progression of tumour. Overexpression of MDM2 is associated 
with drug resistance and poor clinical prognosis.28,29 Chromatin 
immunoprecipitation assay has indicated the recruitment of ER to 
the MDM2 promoter, suggesting the regulatory role of ER in the 
MDM2 expression.30 MDM2 can also regulate ER stability and tran‐
scriptional activity in human cancer cells.31 ER coactivator protein 
MED1 is reported as a novel biomarker which plays role in co‐ac‐
tivating ER and results in tamoxifen resistance.32,33 SFRP genes 
are antagonists of Wnt pathway, and they are potential tumour 
suppressors in gastric, colon, ovarian, lung and breast cancers.34 
Compared with ER‐negative breast cancers, expression of SFRP1 
is reduced in ER‐positive breast cancers. Loss of SFRP1 may lead to 
enhanced estrogen‐mediated proliferation.35 In the mitochondrial 
cell death pathway, the CASP9 protein acts as an initiator caspase 
of apoptosis, up‐regulation of CASP9 reduces the viability of breast 
cancer cells due to apoptosis induction.36 FOXH1 has been found 
to inhibit the transcriptional activities of ER, knockdown of FOXH1 
increased estrogen‐dependent cell growth in breast cancer cells.37 
UBA5 plays a crucial role in involved in ASC1 ufmylation, which is 
required for ERα transactivation and tumour formation.38 The bi‐
ological roles of these ER‐related genes remain largely unclear in 
breast cancer, further studies are required to investigate the under‐
lying molecular mechanisms.

F I G U R E  6   Nomogram to predict risk of cancer recurrence. A, Nomograms to predict risk of cancer recurrence. B, 3‐year nomogram 
calibration curves of training set. C, 5‐year nomogram calibration curves of training set. D, 3‐year nomogram calibration curves of validation 
set I. E, 5‐year nomogram calibration curves of validation set I. F, 3‐year nomogram calibration curves of validation set II. G, 5‐year 
nomogram calibration curves of validation set II
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In this study, we developed a prognostic signature based on 10 ER‐
related genes and constructed a novel nomogram to predict the RFS. 
These findings might lead to the development of a cheap molecular test 
and suitable in the clinical routine. Although the nomogram demon‐
strated an accurate survival prediction, several limitations should not be 
ignored. The sample size of our study was limited, and large‐scale cohort 
studies are performed to investigate the prognostic value of this ER‐re‐
lated signature. As only the patients who had complete information were 
included in present study, there might be a selection bias in the primary 
cohort. Several predictors, such as radiotherapy and Ki‐67 index, were 
not analysed. Further, in vivo and in vitro studies are required to confirm 
the exact molecular mechanisms of these diagnostic genes.

In conclusion, combining with ER status, our results demon‐
strated that the ER‐related prognostic signature is a novel and 
important method for predicting the prognosis of breast cancer pa‐
tients. Thereby, it may be a useful predictive tool with a good pros‐
pect of clinical application for ER‐positive breast cancer patients 
receiving endocrine therapy.
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