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Abstract

Magnetic Resonance Imaging-based prostate segmentation is an essential task for adaptive 

radiotherapy and for radiomics studies whose purpose is to identify associations between imaging 

features and patient outcomes. Because manual delineation is a time-consuming task, we present 

three deep-learning (DL) approaches, namely UNet, efficient neural network (ENet), and efficient 

residual factorized convNet (ERFNet), whose aim is to tackle the fully-automated, real-time, and 

3D delineation process of the prostate gland on T2-weighted MRI. While UNet is used in many 

biomedical image delineation applications, ENet and ERFNet are mainly applied in self-driving 

cars to compensate for limited hardware availability while still achieving accurate segmentation. 

We apply these models to a limited set of 85 manual prostate segmentations using the k-fold 

validation strategy and the Tversky loss function and we compare their results. We find that ENet 

and UNet are more accurate than ERFNet, with ENet much faster than UNet. Specifically, ENet 

obtains a dice similarity coefficient of 90.89% and a segmentation time of about 6 s using central 

processing unit (CPU) hardware to simulate real clinical conditions where graphics processing unit 

(GPU) is not always available. In conclusion, ENet could be efficiently applied for prostate 
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delineation even in small image training datasets with potential benefit for patient management 

personalization.
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1. Introduction

In the biomedical imaging field, target delineation is routinely used as the first step in any 

automatized disease diagnosis system (i.e., radiotherapy system) and, in the last few years, 

in radiomics studies [1,2] to obtain a multitude of quantitative parameters from biomedical 

images [3,4]. These parameters are then used as imaging biomarkers to identify any possible 

associations with patient outcome. The first task of a radiomics analysis is the automatic and 

user-independent target (e.g., tumor or organ) delineation to avoid any distortion during the 

feature extraction process [5]. Manual segmentation might seem like the simplest solution to 

obtain target boundaries, but it is a time-consuming and user-dependent process that affects 

the radiomics signature [6]. For this reason, an automatic and operator-independent target 

delineation method is mandatory. Nevertheless, the segmentation process remains a 

challenging field of research. Over the years many different types of segmentation 

techniques have been developed, for example, [7–9]. Some of the previous techniques 

include thresholding [10], k-means clustering [11], watersheds [12], followed by more 

advanced algorithms such as active contour methods [8,13], graph cuts [14], random walks 

[15], conditional and Markov random fields [16] to name a few. In recent years, particularly 

the last decade, the field of Machine Learning (ML) and Deep Learning (DL) has seen 

exponential growth and has produced models that have shown remarkable performance 

across many benchmark datasets and many different problem domains [17,18]. In general, 

an artificial intelligence method learns from examples and makes predictions without prior 

specific programming [19]. In the case of DL, these models implement networked structures 

to mimic the human brain transforming imaging data in feature vectors. Briefly, between the 

input and output, a variable number of hidden layers is implemented and the various nodes 

are connected to others with different weights.

The initial development of DL models was towards image classification problems, followed 

by object detection and finally, image segmentation, which is seen as a pixel level 

classification problem where each pixel is classified with one of many possible label classes. 

For example, in tumor segmentation, every voxel can be classified as either belonging to the 

class label of the object of interest (target) or the background. Since it is a very common task 

across many different problem domains, hundreds of different DL based models have been 

presented for the delineation task over the past several years: fully convolutional [20], 

encoder-decoder [21], multi-scale and pyramid [22–24], attention [25], recurrent neural [26], 

generative and adversarial training [27,28] based networks. Even during the current 

pandemic, DL networks have been widely used to help clinicians diagnose COVID-19 

[29,30]. It is beyond the scope of this paper to discuss and describe all these different types 
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of models. Interested readers are directed to recent comprehensive reviews [31,32] of DL 

based methods/models for image segmentation.

In this study, we deal with the issue of prostate region delineation on magnetic resonance 

imaging (MRI) studies. Prostatic volume extraction helps in the planning of biopsies, 

surgeries, focal ablative, radiation, and minimally invasive (e.g., intensity focused ultrasound 

[33]) treatments. In addition, benign prostatic hyperplasia, also called prostate enlargement, 

is one of the most common conditions affecting men [34]. A correlation between prostatic 

volume, and the incidence of prostate cancer, where early tumor identification is crucial to 

reduce mortality, has been shown in [35]. Since only part of prostate cancer is clinically 

significant, risk stratification is mandatory to avoid over-diagnosis and over-treatment 

[36,37]. For this reason, radiomics in MRI has acquired a crucial role in the risk 

stratification process [19,36]. MRI allows calculating prostatic volume considering the 

prostate as an ellipsoid. Unfortunately, the shape of the prostate varies and the determination 

of its volume based on the ellipsoid formula is often incorrect [38]. The presence of prostate 

cancer may alter the prostate volume as reported, for example, in the study of [39]: the 

authors reported that shape differences in the prostate gland were consistently observed 

between patients with or without prostate cancer maybe as the result of cancer localized in 

the peripheral zone. For this reason, the manual delineation is more accurate than the 

previously described method but takes time, requires experience, and is highly operator-

dependent as noted above. Consequently, several automatic algorithms have been proposed, 

for example, [40–42]. Due to the lack of large amounts of labeled data for the training 

process, DL is still far from a widespread application in the biomedical environment. So, 

there is a need to develop DL networks to obtain accurate delineations with fewer training 

examples. Then, we explore the efficacy of Efficient Neural Network (ENet) [43] and 

Efficient Residual Factorized ConvNet (ERFNet) [44] that are mainly applied in self-driving 

cars to compensate for limited hardware availability while still achieving accurate 

segmentation, and UNet that is used in many biomedical image delineation applications 

[45]. Using a limited set of 85 manual prostate segmentation training data, we show that 

ENet model can be used to obtain accurate, fast and clinically acceptable prostate 

segmentations.

2. Materials and Methods

2.1. Experimental Setup

To test DL based methods for prostate segmentation, we used prostate studies of patients 

who underwent MRI examinations using the Achieva scanner (Philips Healthcare, Best, The 

Netherlands) with a pelvic phased-array coil (8 channel HD Torso XL). Specifically, from 

September 2019 to May 2020, 202 consecutive patients were referred to our Radiology 

Department to perform a prostate MRI examination. We excluded patients from the study for 

(a) incomplete MRI examination due to intolerance, discomfort, or claustrophobia (n = 11); 

(b) patients with radical prostatectomy (n = 18), subjected to transurethral resection of the 

prostate (TURP) (n = 20), or radiotherapy (n = 17); (c) lack of median lobe enlargement 

defined as intra-vesical prostatic protrusion characterized by overgrowth of the prostatic 

median lobe into the bladder for at least 1 cm (n = 51). So, our final study population 
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consisted of 85 patients (age range 43–75 years, mean age 59 ± 8.4 years) with median lobe 

enlargement. By reviewing radiological reports, no pathological MRI findings were found in 

35 patients (except for median lobe enlargement), while 50 prostate lesions (42 in peripheral 

zone and 8 in transitional zone) suspected for prostate cancer classified using the Prostate 

imaging reporting and data system (PI-RADS) 2.1 [46] were found: 18 PI-RADS 3 score, 28 

PI-RADS 4 score, and 4 PI-RADS 5 score lesions with size ranged between 0.6 and 1.9 cm 

(mean 1.052 ± 0.28). In addition, in our study population, by evaluating capsular 

involvement, 18 patients had capsular abutment and 3 patients had capsular irregularity. It 

means that the presence of suspected prostate cancer lesions, in our study population, can at 

least distend the gland boundaries. Consequently, the determination of prostate volume using 

the above mentioned ellipsoid formula [38] is not suitable, while manual and automatic 

segmentations are not (or less) affected by this issue.

In this study, axial T2-weighted images with parameters shown in Table 1 were used. 

However, due to MRI protocol routine update during the study time, datasets had different 

resolution (2 studies with a matrix resolution of 720 × 720; 45 studies with a matrix 

resolution of 672 × 672; 23 studies with a matrix resolution of 576 × 576; 15 studies with a 

matrix resolution of 320 × 320). Consequently, the datasets had different resolutions and 

sizes. Since DL networks require inputs of the same size for the training process, MRI 

images were resampled to the isotropic voxel size of 1 × 1 × 1 mm3 with a matrix resolution 

of 512 × 512 (matrix resolution in the middle between 720 and 320) using linear 

interpolation. A set of trained clinical experts (FV, MP, GC, and GS authors) hand 

segmented the prostate region. The simultaneous ground truth estimation STAPLE tool [47] 

was used to combine the different segmentations from the clinical experts in a consolidated 

reference. Finally, manual delineations were resampled using nearest neighbor interpolation 

and converted to masks with 0 for the background and 1 for the prostate area.

2.2. Deep Learning Models

Three different deep learning models including UNet [45], ENet [43], and ERFNet [44] 

were investigated to account for accurate prostate segmentation, fast training time, low 

hardware requirements for inference, and low training data requirements. Specifically, UNet 

was modified to improve segmentation accuracy, as reported in [48,49]. Briefly, (i) 3 × 3 

convolutions were replaced by 5 × 5 convolutions, (ii) zero padding was used to ensure that 

the size of the output feature maps was the same as the input size, and (iii) an input size of 

512 × 512 with 32 filters was used on the first contraction path layer, with doubling of 

feature maps after each max pool and stopping at 256 feature maps and 2D size of 64 × 64.

Concerning ENet and ERFNet (see Table 1 in [43] and Table 2 in [44] for the description of 

their architecture), they were mainly applied in self-driving cars to compensate for limited 

hardware availability maintaining high accuracy and successfully used in two biomedical 

segmentation issues [48,49], that is, in the segmentation of high resolution computed 

tomography (HRCT) images characterized by a slice thickness much lower than that of the 

T2 weighted images of the prostate studies. This means that the number of slices of each 

patients’ study was much greater than in this study.
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2.3. Training Methodology

Due to a limited amount of data, the k-fold cross-validation strategy was applied by 

randomly dividing the dataset into k sub-datasets of equal size (17 patients, k = 5). For each 

network, we trained k models by combining k-1 folds into the training set and keeping the 

remaining fold as a holdout test set. Despite the fact that 2D models were considered, slices 

from the same study were never used for both training and testing purposes. So, there was no 

cross-contamination between training and test sets.

Moreover, the data augmentation technique was applied in six different modalities to 

increase the statistic. Additionally, data standardization and normalization were adopted to 

prevent the weights from becoming too large, to make the model converge faster, and to 

avoid numerical instability. Regarding loss function, prostate segmentation suffers from the 

imbalanced data problem because there are very few examples of the positive class 

compared to the background or negative class. In terms of image segmentation, the target 

(i.e., the prostatic region) is small compared to the background, which may be composed of 

many different organs or types of tissue exhibiting a wide range of intensity values. Some 

slices may have a very small target area compared to the background. This makes it hard for 

the DL to learn a reliable feature representation of the foreground class. In such cases, the 

networks tend to simply predict most voxels as belonging to the background class. To deal 

with this problem, various loss functions have been proposed over the years. These loss 

functions typically aim to solve the class imbalance problem by providing a larger weight to 

foreground voxels. This translates to a higher penalty in the loss function for foreground 

voxels that are misclassified by the network leading to the network being able to learn the 

foreground object representation more effectively. One such loss function which the authors 

of this paper have experimentally determined to be better suited for the biomedical image 

delineation process is the Tversky loss function [50]. Specifically, the Dice similarity 

coefficient (DSC) between P and G is defined as:

DSC = 2 P ∩ G
P + G (1)

where P and G are the predicted and ground truth labels. DSC measures the overlap between 

P and G and is used as a loss function in many DL approaches. Nevertheless, DSC is the 

harmonic mean of false positives and false negatives and weighs both equally. To modify 

their weights, the Tversky index [51] was proposed as:

S(P, G; αβ) = P ∩ G
P ∩ G + α P ∖ G + β G ∖ P (2)

α and β control the penalty magnitude of false positives and false negatives. Using this 

index, the Tversky loss [50] is defined as:

T(α β) =
∑i = 1

N p0ig0i

∑i = 1
N p0ig0i + α∑i = 1

N p0ig1i + β∑i = 1
N p0ig0i

(3)

Comelli et al. Page 5

Appl Sci (Basel). Author manuscript; available in PMC 2021 March 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Additional information about the study design is shown in Figure 1.

Starting from 16 patients, the best learning rates for each network were determined 

experimentally. We used a learning rate of 0.0001 for ENet, 0.00001 for ERFNet, and UNet 

with Adam optimizer [52]. A batch size of eight slices, α and β of 0.3 and 0.7, respectively 

for the Tversky loss function, were identified. All the models were allowed to train for a 

maximum of 100 epochs with an automatic stopping criteria of ending training when the 

loss did not decrease for 10 epochs continuously. The GEFORCE RTX 2080 Ti with 11GB 

of RAM (NVIDIA) was used to train DL models and run inference. Table 2 and Figure 2 

show the feature representation learned from the first hidden layer in the ENet model.

3. Results

Sensitivity, positive predictive value (PPV), DSC, volume overlap error (VOE), and 

volumetric difference (VD) were used for performance evaluation:

Sensitivity  = TP
TN + FN (4)

PPV = TP
TP + FN (5)

DSC = 2TP
2TP + FP + FN (6)

VOE = 1 − TP
TP + FP + FN (7)

DSC = 2TP
2TP + FP + FN DSC = 2 P ∩ G

P + G (8)

Table 3 shows the performance obtained using ENet, UNet, and ERFNet methods. In 

particular, ENet showed a mean DSC of 90.89 ± 3.87%, UNet of 90.14 ± 4.69%, and 

ERFNet of 87.18 ± 6.44%.

Analysis of variance (ANOVA) based on DSC was calculated to test statistical differences (a 

p-value < 0.05 indicates a significant difference) between methods considering all patients (n 

= 85). Table 4 shows how though ENet and UNet minimized the difference between manual 

and automated segmentation.

Despite the fact that they were statistically identical, they were computationally different. 

ENet is much faster than UNet. Specifically, Table 5 shows the comparison of computational 

complexity and performance of the three models. As both ENet and ERFNet were developed 

for real-time applications, these are relatively smaller and faster than UNet. As shown in the 

table, the ENet model has an order of magnitude with fewer parameters than both ERFNet, 
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and UNet while ERFNet has less than half the number of parameters compared to UNet. 

Consequently, the size of trained ENet is only 6 MB compared to 65 MB for the UNet 

model. To estimate the delineation time, we considered one of the trained models during the 

k-fold strategy for all three architectures and then computed the average. Using a fairly 

advanced GPU device (GEFORCE RTX 2080 Ti, 11 GB VRAM, 4352 CUDA Cores, 

NVIDIA), it takes only 1 s for ENet and about 1.5 s for UNet to generate segmentation on a 

3D dataset (average 40 slices of 512 × 512). However, when GPU hardware is not available 

then computation needs to be done on the CPU. In such a scenario, the size of a model can 

play a big role. On an AMD Ryzen 2950x processor, ENet only takes about 6 s while UNet 

takes about 40 s to delineate a study. Soon, this computational advantage of ENet may make 

it possible to use this model to segment cases on simple hardware like IPads or smartphones 

for faster clinical workflow. Finally, only the ENet model makes use of batch normalization 

layers, which have some parameters which are not trained, that is, gradients are not back-

propagated during the training process.

In Figure 3, we plot the training DSC and Tversky loss function for each DL network for 

one fold. DSC and Tversky loss plots indicate that the ENet model converges much faster 

than both ERFNet and UNet. ENet model reaches a DSC = 0.85 in less than 15 epochs. 

Consequently, it is much faster to train a new ENet model compared to the other two if more 

training data become available in the future. Another noticeable feature is that the UNet 

training loss is much less compared to ENet and ERFNet, indicating the presence of 

overfitting. It can be concluded that even though ENet and UNet models are not statistically 

different, it may be advantageous to prefer ENet over UNet. Finally, 2D and 3D 

segmentation examples of three patient studies are shown in Figures 4 and 5, respectively.

4. Discussion

In this paper, we investigate the prostatic region segmentation in MRI studies using three 

different DL networks (namely UNet, ENet, and ERFNet). The aim is to reduce patient 

mortality being only a part of prostate cancer that is clinically significant. An accurate and 

operator-independent segmentation process is needed to obtain a relevant texture-based 

prediction model. So, the aim of this work was not only just to test the segmentation results 

of the proposed models, but to evaluate if these models can yield a practical benefit in 

obtaining accurate and reproducible results. The inclusion of DL models in radiomics 

analyses will be reserved for a forthcoming paper. The first model considered in this study 

was UNet, which has been adopted in several image delineation processes [45]. ENet [43], 

and ERFNet [44] have been implemented for the segmentation process in self-driving cars, 

and successfully used in lung and aorta segmentation tasks [48,49]. Specifically, they were 

used for the segmentation of HRCT images characterized by a very high number of slices 

for each study (about 600 and 450 slices for the lung and aorta studies, respectively). 

Authors used 32 patients’ studies for the parenchyma extraction process [49], and 72 studies 

for the aorta segmentation process [48]. In this study, only 85 studies were used considering 

that each patients’ image dataset consists of about 40 slices. In addition, to our knowledge, 

these DL models have never been applied to prostate segmentation before.
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In general, a DL approach requires a multitude of labeled data for training and validation 

purposes. For this reason, DL models are not widely used in clinical practice. As already 

reported in the Introduction section, there is a need to develop DL networks capable of 

obtaining accurate segmentations with few training examples. This issue is addressed in 

some studies, that is, the one-shot learning approach [53], which eliminates the need for 

iterative sample selection and annotation and the contrastive learning method [29] for the 

automated diagnosis of COVID-19 with few samples for training. In our study, we applied 

all three DL models to a small dataset of 85 studies provided with manual prostate 

segmentation adopting (i) a data augmentation strategy to reduce overfitting, (ii) a data 

standardization and normalization to prevent too large weights, to make the model converge 

faster, and to avoid numerical instability, (iii) the five-fold cross-validation strategy to obtain 

good results despite the few training examples, and (iv) the Tversky loss function [50] to 

avoid to predict most voxels as belonging to the background class. In the last case, starting 

from the consideration that DL methods suffer from the imbalanced data problem because 

the target (i.e., the prostate) is very small compared to the background, we provided a larger 

weight to target voxels to learn the foreground object representation more effectively. 

Finally, we compared the obtained performances showing that accurate and clinically 

acceptable prostate segmentations with few training examples were obtained using 

indifferently the three DL models (DSC > 87%).

Specifically, results showed that ENet and UNet had better performance in minimizing the 

difference between automated and manual segmentations than ERFNet. Substantially, ENet 

and UNet were statistically identical but computationally different; ENet was much faster 

than UNet (see Figure 3). Also, the training Tversky loss of the UNet was much less 

compared to ENet. For these reasons, though UNet and ENet were not statistically different, 

ENet seems to be the best solution. This could justify the time required to include DL 

networks in radiomics analyses by removing the user-dependence and achieving accurate 

prostate segmentations (DSC = 90.89%) using a few training examples. In this way, our 

model can be used to improve prognosis evaluation and prediction of patient outcomes, 

allowing the personalization of patient management. However, the results presented in this 

study derive from the performance of DL networks on proprietary imaging datasets; for 

routine clinical application, it should be mandatory to test and validate the proposed methods 

in multicenter studies and/or on a large set of publicly released representative training data, 

such as PROMISE12 [42]. Moreover, in the present study, we test DL networks for the 

whole prostate gland segmentation, with ENet demonstrating the best performance; 

however, a main clinical goal is the segmentation of related prostatic structures or 

substructures such as the prostatic zones (transition, central and peripheral), neurovascular 

bundles or seminal vesicles. The performance of DL networks, especially ENet, on this topic 

should play an essential role in many medical imaging and image analysis tasks such as 

cancer detection, patient management, and treatment planning including surgical planning, 

and should be analyzed in future works. Automatic segmentation of the whole prostate gland 

and prostatic zone (transition, central and peripheral) without inter-user variability will lead, 

in the future, to a correct localization of prostate cancer. This result will increase the 

reliability of computer-aided design (CAD) algorithms which will help automatically create 

PI-RADS zone maps to reduce inter-user variability among clinicians when interpreting 
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prostate MRI images. In this scenario, radiomics analysis should be performed automatically 

providing information that can lead clinicians on the management of patients with prostate 

cancer.

5. Conclusions

Our study demonstrates that faster and less computationally expensive DL networks can 

perform accurate prostate delineation and could facilitate the adoption of novel imaging 

parameters, through radiomics analyses, for prostatic oncologic diseases. Specifically, we 

assessed the performance of three DL networks using data augmentation, standardization, 

and normalization, and the five-fold cross-validation strategies, and the Tversky loss 

function in a small dataset of 85 studies. All DL networks achieved accurate prostate 

segmentations with a DSC > 87%. Nevertheless, differences related to training time and data 

requirements were highlighted. ENet and ERFNet, developed for self-driving cars, were 

much faster than UNet. In addition, ENet had better performance (DSC = 90.89%) than 

ERFNet (DSC = 87.18%). Future studies with more patients could improve the results.
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Featured Application:

The study demonstrates that high-speed deep learning networks could perform accurate 

prostate delineation facilitating the adoption of novel imaging parameters, through 

radiomics analyses, for prostatic oncologic diseases.
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Figure 1. 
Workflow of the proposed segmentation method.
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Figure 2. 
Feature maps (None, 256, 256, 15) extracted from the first hidden layer in the ENet Model 

for Patient #7 slice #20.
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Figure 3. 
(a) Training DSC and (b) loss function Tversky loss plots for each of the three models for 

one fold.
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Figure 4. 
Comparison of segmentation performance for the three Net architectures in #7, 74, and #84 

patients (four different slices for each patient). The manual segmentation (yellow), ENet 

(red), ERFNet (blue), and U-Net (green) are superimposed.
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Figure 5. 
Comparison of 3D segmentation of prostate (patients #7, #74, and #84) for each column 

using the three Net architectures. The manual segmentation (yellow), ENet (red), ERFNet 

(blue), and U-Net (green) are superimposed.

Comelli et al. Page 18

Appl Sci (Basel). Author manuscript; available in PMC 2021 March 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Comelli et al. Page 19

Table 1.

Parameter of MRI protocol.

Parameter Repetition Time (ms) Echo Time (ms) Flip Angle (Degrees) Signal Averages Signal-to-Noise Ratio

T2w TSE 3091 100 90 3 1
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Table 2.

The model parameters and shape output after the first hidden layer in the ENet model for a given provided 

input image (Patient #7 slice #20).

Layer (Type) Output Shape Parameters Number

input_l (InputLayer) (None, 512,512,1) 0

conv2d_l (Conv2D) (None, 256, 256,15) 150
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Table 3.

Performance segmentation using the ENet, UNet, and ERFNet methods.

Sensitivity PPV DSC VOE VD

ENet

Mean 93.06% 89.25% 90.89% 16.50% 4.53%

±std 6.37% 3.94% 3.87% 5.86% 9.43%

±CI (95%) 1.36% 0.84% 0.82% 1.24% 2.00%

UNet

Mean 88.89% 91.89% 90.14% 17.66% 3.16%

±std 7.61% 3.31% 4.69% 6.91% 9.36%

±CI (95%) 1.62% 0.70% 1.00% 1.47% 1.99%

ERFNet

Mean 89.93% 85.44% 87.18% 22.18% 5.70%

±std 10.92% 5.43% 6.44% 9.61% 14.72%

±CI (95%) 2.32% 1.16% 1.37% 2.04% 3.13%
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Table 4.

ANOVA on the DSC showed statistical differences between segmentation methods.

ANOVA F Value F Critic Value p-Value

ENet vs. ERFNet 20.70407668 3.897407169 0.000010236

ERFNet vs. UNet 11.69135829 3.897407169 0.000788084

ENet vs. UNet 1.301554482 3.897407169 0.255553164
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Table 5.

Computational complexity of the three models.

Model Name Number of Parameters Size on Disk Inference Times/Dataset

Trainable Non-Trainable CPU GPU

ENet 362,992 8352 5.8 MB 6.17 s 1.07 s

ERFNet 2,056,440 0 25.3 MB 8.59 s 1.03 s

UNet 5,403,874 0 65.0 MB 42.02 s 1.57 s

Appl Sci (Basel). Author manuscript; available in PMC 2021 March 04.


	Abstract
	Introduction
	Materials and Methods
	Experimental Setup
	Deep Learning Models
	Training Methodology

	Results
	Discussion
	Conclusions
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Table 1.
	Table 2.
	Table 3.
	Table 4.
	Table 5.

