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Abstract: Hemodialysis involves large, periodic treatment doses using large-area membranes. If the
permeability of dialysis membranes could be increased, it would reduce the necessary dialyzer
size and could enable a wearable device that administers a continuous, low dose treatment of
chronic kidney disease. This paper explores the application of ultrathin silicon membranes to
this purpose, by way of analytical and finite element models of diffusive and convective transport
of plasma solutes during hemodialysis, which we show to be predictive of experimental results.
A proof-of-concept miniature nanomembrane dialyzer design is then proposed and analytically
predicted to clear uremic toxins at near-ideal levels, as measured by several markers of dialysis
adequacy. This work suggests the feasibility of miniature nanomembrane-based dialyzers that
achieve therapeutic levels of uremic toxin clearance for patients with kidney failure.

Keywords: hemodialysis; membranes; dialysis membranes; models; diffusion; continuous dialysis;
wearable artificial kidney; nanomembranes

1. Introduction

Kidney failure is a life-threatening condition characterized by inadequate renal filtration causing
increased plasma concentrations of uremic toxins. Patients with chronic or end-stage kidney failure
may be treated with kidney transplantation, but are often forced to rely on hemodialysis instead due
to the scarcity of donor kidneys. Indeed, in 2012 the active transplant waiting list population exceeded
the donor supply by 2.7 times, and the incidence of renal disease continues to rise into hundreds of
thousands of new diagnoses per year [1].

Hemodialysis is an artificial supplement or replacement for kidney function that aims to clear
uremic toxins and excess water from a patient’s blood by molecular exchange between uremic blood
and a buffered solution of salts, sugar, and other critical analytes, the dialysate. Several different
incarnations of the treatment exist, but typically the patient’s blood is perfused into a space separating
it from the dialysate by a semi-permeable membrane, and toxins are allowed to diffuse through
the membrane into the dialysate down their concentration gradients while transmembrane osmotic
pressure promotes ultrafiltration to reduce the patient’s total body fluid [2].

While intermittent hemodialysis has been the standard of care for replacing lost kidney function
since the mid 1970’s, the therapy has many limitations [3]. The intermittent nature of most
dialysis treatments means that dialysis is typically administered in large doses, in an attempt to
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compensate for toxin generation during the time that the patient is not receiving treatment. Evidence
exists to suggest that the resulting "sawtooth" pattern of toxin concentrations (decreasing rapidly
during treatment, recovering between treatments, being decreased again, and so on) exacerbates the
morbidities of kidney failure when compared to more consistent techniques, owing to the relatively
high concentration of toxins over average just before treatment [4].

Perhaps unsurprisingly, increased patient morbidity and mortality have been associated with
increased interdialytic intervals. For instance, one study found a statistically significant increase
in risk of sudden death in hemodialysis patients on Mondays and Tuesdays, the period of time
during which patients on typical hemodialysis schedules are in their longest interdialytic interval [5].
A separate study reported significantly increased risk of hospitalization for cardiovascular disease in
hemodialysis patients at longer times since their last treatment [6]. These and similar results suggest
that more frequent dialysis could reasonably be expected to mitigate risk of morbidity and mortality
in kidney failure patients, a theory also supported directly by literature [7,8].

Furthermore, such a high degree of toxin clearance is necessary that hemodialysis devices
must be quite large to account for the necessary membrane area and pumping apparatus. These
devices are largely stationary, and thus immobilize the patient during use, typically for approximately
three-to-five hours per day, three days per week in hemodialysis centers. In-home hemodialysis
techniques exist and have gained some popularity; however, the patient remains tethered to a large
device regularly, and is at increased risk for hospitalization due to infection [9].

To address the limitations of the current hemodialysis regimen, several groups have proposed
designs for a “wearable artificial kidney” which acts as a continuous dialyzer without immobilizing
the patient [10]. Such devices may represent the future of hemodialysis, but at present still face
technical challenges associated with miniaturization without severe losses in transport efficiency.
Thus, we have proposed the application of ultrathin nanoporous membranes (nanomembranes) as
an ultra-efficient membrane to minimize the area required for dialysis [11].

Nanomembranes were originally developed from pure silicon by Striemer et al. with thicknesses
on the scale of tens of nanometers [12]. The extraordinary thinness of these membranes enhances
transmembrane diffusion by orders of magnitude compared to traditional hemodialysis membranes,
which are on the scale of 100 times thicker [13]. Our premise is that this increased transport should
reduce the membrane area required to achieve a target solute clearance and thus pave the way for
extremely compact, continuous hemodialysis devices.

In this report, we develop analytical and computational models to examine the potential
benefits of ultrathin nanomembranes in hemodialysis. Our models describe flow-counterflow dialysis
in microfluidic devices featuring nanomembranes. Assuming the steady introduction of newly
generated uremic toxins into the blood, we demonstrate adequate clearance of an array of toxins
to establish a theoretical proof of concept. Our work suggests that nanomembranes offer a promising
avenue for development of novel small-format hemodialysis devices, and that our models will be
valuable tools in the design of such devices.

2. Experimental Section

2.1. Silicon Nanomembranes

The silicon nanomembranes developed by Striemer et al. [12] offer an array of characteristics that
make them suitable for hemodialysis. They are also highly porous and exceedingly thin, resulting in
extremely low resistance to transmembrane diffusion of molecules much smaller than the average
pore diameter (on the order of tens of nanometers). Our recent publication describes the creation of
Silicon Nitride nanomembranes [14]. The membranes are significantly stronger and more chemically
inert compared to the pure silicon nanomembranes developed by Striemer et al. [12].
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For our models, we consider the membrane to act as a perfect wall for convective flow (prevents
convective coupling between the flows on either side [15]) and a uniform region for diffusion in the
transmembrane direction only that does not adsorb solutes.

2.2. Analytical Model

Our models were designed to predict the fraction of solute that is cleared from a volume of
blood as it passes through the dialyzer. The dialyzer system consists of blood flowing through a
wide channel, bounded on one side by an impermeable wall and on the other by the nanomembrane
(Figure 1). For our first model, we considered a simplified system constrained by several
assumptions: (1) the velocity of the blood is constant across the channel (plug flow); (2) diffusive
transport of solutes in the direction of flow is negligible compared to convective transport; (3) the
concentration of any blood solute of interest in the region beyond the membrane is always zero
(a perfect sink). The first two of these assumptions taken together mean that diffusion occurs in
only one dimension (towards or away from the membrane) and over an interval of time given by
the ratio of the membrane length in the direction of flow to the flow velocity (overall dimensions of
time), which is the total residence time for a fluid element in the active region of the channel. The
third assumption is founded on the fact that fresh dialysate is constantly washing away the solute
beyond the membrane. This will find important application as a boundary condition shortly.

These assumptions allow us to describe the concentration of the solute within the dialyzer as a
function of only two independent variables: the distance between the wall and the membrane x, and
the local residence time of a fluid element in the channel, t. A schematic of this system is depicted in
Figure 1. Our model is then constructed mathematically from Fick’s second law in one dimension,

∂c
∂t

= D
∂2c
∂x2 (1)

where x is the location along the axis of diffusion and c represents the concentration of the
solute of interest at a given x and t. Since the solute is bounded within the channel on one
side by the membrane and on the other by an impermeable wall, this equation can be rewritten
non-dimensionally as:

∂c̄
∂t̄

=
∂2 c̄
∂x̄2 f or 0 ≤ x̄ < 1 and t̄ ≥ 0 (2)

where

x̄ =
x
a

; c̄ =
c
c0

; t̄ =
tD0

a2 (3)

where a is the distance between the membrane and the wall, c0 is the initial concentration of the
solute, and D0 is the free diffusion coefficient of the solute within the solvent. Assuming that the
membrane poses no resistance to diffusion of the solute, we can apply three boundary conditions to
Equation (2):

∂c̄
∂x̄

(0, t̄) = 0 (4)

c̄(x̄, 0) = 1 (5)

c̄(1, t̄) = 0 (6)
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Figure 1. Diagram of system considered by the analytical models. The system is initially at
some constant concentration (depicted as red shading) and becomes less concentrated in a gradient
over time. Mathematically, the system is one-dimensional; however, it is shown here with a
second dimension to illustrate the relationship between the temporal and spatial evolution of the
concentration profile.

Boundary Condition 4 represents the no-flux condition of the solute through the wall and
Condition 5 is the initial concentration of solute. Condition 6 defines the membrane as a sink for
the solute. Conceptually, this means that solute that reaches the membrane is swept away by the flow
of the dialysate (assumption (3) from earlier,) and that transport across the membrane is unrestricted
and instantaneous. Both of these assumptions will be revisited. The solution to this problem is [13]:

c̄(x̄, t̄) =
2
π

∞

∑
n=1

(−1)n+1

n− 1
2

cos(λn x̄)e−λ2
n t̄ (7)

where

λn = π(n− 1
2
) (8)

Alternatively, if we consider that the membrane does resist diffusion across it, we can quantify
the contribution of the membrane to the overall diffusive resistance:

β =
d/Dm

a/D0
(9)

where d is the thickness of the membrane and Dm is the effective diffusion coefficient of the molecule
within the membrane space, as calculated by the pore hindrance model in Snyder et al. [13]. Due to
the extreme thinness of nanomembranes β will be very small when considering the transport of small
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molecules (e.g., urea or creatinine,) but may become significant for larger protein solutes. We can
incorporate this into the analytical model by redefining Boundary Condition Equation (6) as:

c̄(1, t̄) + β
∂c̄
∂x̄

(1, t̄) = 0 (10)

This expression simplifies to Equation (6) in the case that β → 0, and in such a case the solution
in Equation (7) is valid. Otherwise, the concentration profile is given by:

c̄(x̄, t̄) =
∞

∑
n=1

Cncos(zn x̄)e−λn t̄ (11)

where λn = z2
n and

Cn =
2sin(zn)

zn + sin(zn)cos(zn)
(12)

The values of zn are the solutions to the eigenfunction,

tan(zn) =
1

βzn
(13)

where z1 is the smallest absolute value of z that is a solution to Equation (13), z2 is the next smallest,
and so on.

Whether Equation (7) or Equation (11) is appropriate, the fraction of solute remaining in the
blood channel at the outlet for a given time, channel height, and diffusion coefficient can be obtained
by averaging the value of c̄ over x. Fractional clearance can be obtained by subtracting this value
from one. In this work, Equation (7) is used unless otherwise stated.

2.3. Experimental System and the Finite Element Model

In order to test our models, we built a simple microfluidic device consisting of two channels
cut into silicone, separated by a chip supporting the nanomembrane. Photos of the system are
shown in Figure 2. On one side of the 300-micrometer-thick chip, the silicon substrate is etched
at a 55 degree angle, creating a trapezoidal prism in which the bottom face is the free-standing
nanomembrane; on the other side, the membrane is flush with the surface of the chip (Figure 2b,
“Reverse Side”). On the dialysate side 1X phosphate buffered saline (pH 7.4) was pumped into
a 300-micrometer-tall, 2-millimeter-wide channel connected to the trapezoidal channel at 9 cubic
millimeters per second. On the blood side, the same buffer dosed with a known concentration of
the experimental analyte was pumped in the opposite direction. The blood channel was 1 millimeter
in width and with height adjusted with the volumetric flow rate to keep the average velocity of the
fluid within the channel at 0.2 millimeters per second (0.1, 0.3, and 1.0 millimeters channel height for
0.02, 0.06, and 0.20 cubic millimeters per second flow rate, respectively). The membrane dimensions
are 700 micrometers in width and 2 millimeters in length, such that the residence time in the blood
channel was 10 s. Samples from the blood side were collected and assayed for the concentration
of the analyte post-dialysis, using an appropriate assay (BioVision Urea Colorimetric Assay Kit
(catalog #K375-100) for urea; absorbance at 410 nanometers for cytochrome c; ThermoFisher Scientific
Quant-iT Protein Assay (catalog #Q33210) for bovine serum albumin). For this design, the predictions
made by the analytical model are reduced to 70% to account for the fact that only 70% of the blood
channel under the membrane in the experimental system is actually exposed to it.

In addition, we constructed finite element models of this system in three dimensions using the
COMSOL Multiphysics 4.2a software package. The models consist of three domains: the blood
channel, the dialysate channel, and the membrane separating them. Within the channels, fluid flow
driven by a known inlet velocity is solved and then passed to the diffusion model as a convective
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term, where it is combined with a diffusion term to acquire a complete description of solute transport.
The membrane is modeled as a purely diffusive space, in which diffusion is allowed to occur
in the transmembrane direction only. The value of the finite element models are twofold: first,
they can be used to assess the validity of the simpler analytical model, and second, they can be
made to incorporate non-ideal three-dimensional geometries as shown in Figure 2 to make accurate
predictions of real experimental outcomes. In order to meet the first goal, a very simple model was
constructed that is a three-dimensional extrapolation of the one-dimensional system the analytical
model describes. If the analytical model is a valid representation of the behavior of three-dimensional
systems, a simple rectangular prism should recapitulate the behavior of the analytical model for
a given channel height, time, and diffusion coefficient. Note that the COMSOL finite element model
is a full simulation of laminar Navier-Stokes fluid dynamics and mass transport that relaxes all of the
simplifying assumptions (1–3) of the analytical model for a more realistic description of the system
behavior.

h

1mm

2mm

300um

Dialysate

Blood

300um

300um

Dialysate

Blood

Reverse Side

(a)  (b)
(c)  (d)

Figure 2. Photos, schematic, and COMSOL finite element model of the experimental system. (a) Photo
of the experimental system taken from the access side. The dialysate channel passes over the
membrane (in the center of the chip) while the blood channel passes underneath it; (b) Photo of the
same system taken from the other side. The four squares in the corners of the chip in the photographs
are additional regions of membrane, but are not in use during this particular experiment; (c) Schematic
of active section of experimental system. The membrane spans 70% of the blood channel’s width, and
the dialysate and blood are in counterflow. The dashed line represents the membrane; (d) Snapshot
of the finite element model. It is colored with an example heat map representing concentration of a
solute as it moves through the system, where the highest concentration is bright red while the lowest
is dark blue.

2.4. Prediction of Dialyzer Adequacy

Once the fractional clearance value for a given dialyzer design and toxin is obtained from the
models, a simple analysis allows us to predict the effect the dialyzer would have on the concentration
of a particular toxin during continuous treatment. This steady-state concentration of a given toxin
can be acquired from a statement of balance between toxin generation and toxin clearance:

Ġ = Q̇× C× f (14)

where Ġ is the rate of solute generation in amount per time, Q̇ is the volumetric flow rate of blood
through the dialyzer in volume per time, C is the steady-state concentration of solute in amount per
volume, and f is the fractional clearance of solute from the dialyzer.
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2.5. Design Selection

Guided by calculations of steady-state concentrations of various uremic toxins for a given
dialyzer design, the analytical model can be used to select for reasonable combinations of parameters
in order to assess the effectiveness of nanomembranes in miniaturized dialysis. Designs are selected
by: (1) iteration through a wide number of combinations of dialyzer geometry, membrane pore size,
and blood flow rate; (2) narrowing these down only to systems that result in desired clearance rate
of urea and albumin; and finally (3) selecting the system that clears middle molecule toxins most
effectively. This algorithm results in a well-rounded dialyzer, but by no means guarantees the best
possible result by more heuristic measurements of dialysis quality—it is only a proof of principle. For
this reason, an active membrane area of 9 square centimeters was selected due to its practicality.
Membranes on this scale represent an approximate upper limit on the size of single contiguous
membrane area currently achievable in the laboratory [16].

While the analytical model allows for quick comparison among and selection of designs, it makes
no consideration of the practical constraints of real systems. Once a theoretical design has been
selected by the analytical model, finite element models incorporating those parameters into more
practical designs (i.e., designs that could be fabricated in a laboratory setting) can be constructed and
compared. This process serves as our most efficient path for the rapid design and prototyping of
dialysis devices.

3. Results and Discussion

3.1. Validation of Models

As expected, the analytical model and the finite element model agree with a high degree of
accuracy for simple rectangular geometries (Figure 3). This comparison validates both models and
suggests that at least under these flow conditions any difference between the analytical model and
finite element model is a product of the complexities of the dialyzer geometry alone. Experimental
results were adequately predicted by the finite element models for a range of blood channel
heights and solute diffusion coefficients, as shown in Figure 4. The analytical model systematically
over-predicts clearance in this design by a small degree because of its assumption of ideal geometry.
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Figure 3. A comparison between the analytical model and a simple finite element model incorporating
ideal geometry (schematic inset). Though the analytical model is one-dimensional and the finite
element model is three-dimensional, they are in near-exact agreement regardless of blood channel
height. These data for a solute of hydrodynamic radius 1.5 nanometers and a blood flow rate of
10 millimeters per minute.
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Figure 4. Comparison between the analytical model, the complex geometry finite element model,
and experimental results. Experiments were performed with n = 3 or 4, and error bars represent
standard error of the mean. Experiments varying blood channel height used solute with diffusion
coefficient 1.6× 10−6 and experiments varying diffusion coefficient used blood channel height of 0.3
mm. Residence time of blood channel fluid near the membrane was 10 s in all cases. The finite element
model was highly predictive of experimental results, while the analytical model captured trends but
systematically over-predicted clearance.

3.2. Proof-of-Principle Design

The analytical model was used as a tool for selecting a proof-of-principle design from amongst
a wide range of possible combinations of blood flow rates, blood channel heights, and pore sizes
by restricting the design in successive steps. First, the active membrane area is set at a reasonable
value of 9 square centimeters. Urea clearance is fixed at its target value (Table 1), which constrains
the design to a specific relationship between blood channel height and blood flow rate as shown in
Figure 5a. Urea is so small that the membrane is unable to hinder its diffusion significantly (i.e., β

is always very small), so pore size is ignored in this step. Next, given this relationship we fix the
clearance of the large molecule albumin to its desired value to find a relationship between pore size
and channel height (Figure 5b). Finally, given pore size and blood flow rate as functions exclusively
of channel height, the clearance of middle molecule β2-microglobulin is evaluated as a function of
channel height only and maximized (Figure 5c).

Table 1. Generation rates Ġ, physiological concentrations, target clearance rates, and predicted
steady-state concentrations during continuous nanomembrane dialysis for selected uremic toxins as
well as albumin. "Physiological concentrations" refer to reference concentrations expected of patients
in good health. Values may vary from patient-to-patient and serve here only as approximations of
averages for a mean body weight of 70 kg. An example target clearance calculation is supplied
in Equation (15). Steady-state concentrations are predicted using Equation (7) for β < 0.2 (see
Equation (9)) and (11) otherwise.

Plasma Solute Ġ (mmol/h) Physiological
Concentration (mM)

Target
Clearance (L/h)

Steady-State
Concentration (mM)

Urea 10 [17] 4.6 [18] 2.3 4.6
Creatinine 0.58 [19] 0.11 [18] 5.3 0.29

β2-microglobulin 7.7× 10−4 [20] 1.5× 10−4 [21] 5.1 1.5× 10−2

Albumin 1.0× 10−2 [22] 0.65 [18] 1.5× 10−2 0.65

Desired clearance can be obtained from the required product of fractional clearance and
volumetric flow rate for a given solute. For instance, for urea:

Q̇× furea =
Ġurea

Curea
= 2.3

L
h

(15)
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where Curea is the reference physiological concentration serum of urea in a healthy adult. When this
equation is satisfied, the dialyzer maintains plasma urea at Curea, so for adequate urea clearance,
the left hand side of the equation must equal at least 2.3 L·h−1. The maximum possible value of
fractional clearance f is of course 1, so the minimum possible Q̇ is 2.3 L·h−1. However, for any
feasibly miniaturized design, the corresponding furea for this minimum Q̇ is significantly less than 1;
thus, Q̇ must be increased to compensate, in turn reducing furea further (but by a smaller degree than
the increase in Q̇), and so on. The product of these values begins to approach the desired 2.3 L·h−1

only at rather high flow rates.
The design selected for proof of principle by this process (Figure 5d) has an active membrane

area of just 9 square centimeters, a blood channel height of 50 micrometers, and passes blood
at a rate of 0.85 liters per minute. Its nanomembrane has an average pore diameter of roughly
23 nanometers, and these factors combine to produce the steady-state concentrations shown in
Table 1. It is noteworthy that while the urea and albumin clearances are ideal by design, the maximum
possible β2-microglobulin clearance rate is fully two orders of magnitude lower than the target value.
This will be addressed further.
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Figure 5. Dialyzer optimization process. Volume per time values in plots (a–c) are products of the
volumetric flow rate of blood and the fractional clearance of urea, albumin, and β2-microglobulin,
respectively. Curves shown are polynomial fits used to express all values as a function of channel
height only. (a) Isolines of urea clearance with changing blood channel height and blood residence
time; line B (green) is the isoline where urea clearance is at the desired value; (b) Isocurves of albumin
clearance with changing channel height and pore size, with residence time calculated as a function
of channel height in order to maintain constant urea clearance. Curve D (green) is the desired curve
in this plot; (c) β2-microglobulin clearance as a function of channel height with constant urea and
albumin clearances. The shape of this relationship is complex owing to the simultaneous change
of three separate variables represented by changes in blood channel height (channel height itself, in
addition to blood residence time and pore size); (d) Final proof-of-principle design selection. While
a channel height of 0.05 millimeters does not correspond to the global maximum of β2-microglobulin
clearance, it is a good compromise between clearance and practicality.
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3.3. Finite Element Models of Practical Designs

We are now ready to make predictions of solute clearance in realistic geometries. We consider
several device designs that have been developed or are under development in the laboratory: a
chip with many shallow triangular trenches etched into it beneath the membrane (the “trench”
design, Figure 6a); a chip with 13 trapezoidal membrane windows resting over a thin channel as
demonstrated by Johnson et al. [11] (the “trapezoidal” design, Figure 6b); and a uniform sheet of
membrane as demonstrated by Miller et al. [16], suspended over a set of thin channels (the “lift-off”
design, Figure 6c). The results of these simulations are shown in Table 2.

0.05 
mm

Dialysate

Blood

61 individual channels

24 mm

22 mm

0.1 mm

(a) Trench

Blood0.05 
mm

0.3 
mm

Dialysate

13 membranes

13.5 mm

12.1 mm

(b) Trapezoidal

13 mm

0.5 mm

24 mm

Blood

Dialysate

0.05 
mm

(c) Lift-Off

Silicon
Nitride

Silicon
Nitride

Figure 6. Depictions of the practical designs referenced in Table 2. (a) The trench chip design,
consisting of a series of triangular channels etched under a continuous membrane. Sixty-one
individual channels are fed by a single inlet and empty into a single outlet, and 11 such chips would
be required for a total active membrane area of 9 square centimeters; (b) The trapezoidal chip design,
incorporating 13 regularly spaced membranes instead of a single continuous membrane. Fourteen
chips are needed to reach 9 square centimeters of membrane area. While in the original design used
by Johnson et al. the trapezoidal windows were the blood channels with dialysate on the other side,
this was reversed here due to the need for such thin blood channels; (c) The lift-off design. This
free-standing membrane can be fabricated up to approximately 9 square centimeters in a single sheet
and would need to be held up by periodically placed supports; however, these would not affect the
clearance characteristics.

Table 2. Comparison between target physiological concentrations of various toxins and steady-state
concentration results from three-dimensional finite element models of practical geometries depicted
in Figure 6. Values are steady state concentrations in mM. While the trapezoidal and lift-off designs
have too much clearance of albumin and not enough of smaller solutes, the trench design achieves a
more desirable distribution of steady state concentrations.

Plasma Solute Physiological Trapezoidal Trench Lift-off

Urea 4.6 24 2.1 5.7
Creatinine 0.11 1.8 0.14 3.9

β2-microglobulin 1.5× 10−4 1.3× 10−2 6.0× 10−4 2.3× 10−3

Albumin 0.65 7.0 2.0× 10−2 0.10

Note: All values in mM.
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While the lift-off design straddles the line between clearance that is too low (for smaller
molecules) and clearance that is too high (for larger molecules) and the trapezoidal design loses a
large degree of efficiency due to its significant inactive area, the trench design has a more desirable
relationship between solute size and clearance rate. It also provides a much-needed boost to
middle-molecule β2-microglobulin clearance over the analytical model, apparently sharpening the
size-based cutoff characteristics of the design.

We concluded, then, that the triangular channel design of the trench chips enhances the
selectivity of the system for clearing small molecules with the same volumetric flow rate. This may be
owing to the enhanced diffusivity of small molecules laterally within the blood channel: all solutes
will be more rapidly depleted near the corners of the triangular channel due to reduced distance
between wall and membrane, but the increased diffusivity of smaller molecules enables them to
more quickly spread out into the corners to replace this depletion, and thus take advantage of the
corners more readily. Investigation into the advantages this design offers may prove invaluable as
our research progresses further.

3.4. Discussion

Traditionally, dialysis adequacy is measured by the dialyzer’s clearance of a marker solute, most
often urea or creatinine. While extensive research has been conducted on these metrics (often by
empirical correlation with patient outcome), more careful analysis of the co-morbidities of kidney
disease reveals that small molecule markers are not major contributors to uremic toxicity. Instead,
toxicity is primarily exercised by buildup of middle molecules and protein-bound toxins, such as
β2-microglobulin, p-cresyl sulfate, and indoxyl sulfate, the latter two of which build up in kidney
failure patients due to high affinity for serum albumin, which is not substantially cleared by most
hemodialysis techniques [4,23]. It is for this reason that our design was selected with middle and
large molecules in mind.

The ability of a miniaturized nanomembrane dialyzer to achieve steady-state concentrations
of uremic toxins close to healthy physiological values (Tables 1 and 2) suggests that this device
design approximates the size-based clearance characteristics of a healthy kidney fairly well. This
represents a dramatic improvement over traditional dialysis, which fails to adequately clear many
uremic toxins larger than urea. For instance, one study found serum β2-microglobulin concentrations
roughly 45 times higher in hemodialysis patients, compared to control participants [24]. Similarly,
albumin-binding toxin p-cresyl sulfate has been found to be elevated by as much as three times over
normal in late-stage chronic kidney disease patients in spite of frequent hemodialysis, likely due to
poor clearance of serum albumin during traditional treatments [25].

It’s fortunate that finite element modeling of the trench chip design resulted in sufficient
clearance of β2-microglobulin given that the analytical model predicted very poor clearance of that
toxin for systems with ideal geometry. However, it is probable that a more desirable set of clearance
characteristics is possible with the analytical model if the restriction of a specific urea clearance rate is
relaxed. Given that the elevation of serum β2-microglobulin and other middle molecules is so much
more of a contributing factor to overall uremic toxicity than urea itself, future designs may benefit
from addressing the clearance rate of middle molecules preferentially, and allowing small molecules
to remain somewhat elevated.

It is notable that the lift-off design did not result in ideal clearance characteristics despite its ideal
geometry. This deviation has two causes: first, the assumption of plug flow made by the analytical
model becomes an increasingly worse approximation at higher flow rates. Second is the exacerbation
of small errors in fractional clearance caused by high flow rates. That is to say that the magnitude of
the change in the steady-state concentration C derived from Equation 14 due to a small change in f
is scaled by the value of Q̇. Thus even a deviation from ideal fractional clearance can have significant
effects on the resulting serum concentration of toxins. This line of reasoning favors lower flow rates
in dialyzers, and must remain in consideration as design efforts progress.
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High blood flow rate is generally considered undesirable in hemodialysis devices which access
blood via arteriovenous fistula, owing to increased demand on patients’ hearts. However, studies
attempting to qualify the amount of arteriovenous access flow which is dangerous have reported
that there is little cardiac concern for patients with otherwise healthy hearts for access flow rates less
than approximately 30% of their total cardiac output (reference range 4 to 8 L·min−1) [26]. Thus, this
device would likely pose little risk to patients healthy enough for access via arteriovenous fistula due
to its 0.85 L·min−1 blood flow rate.

Interestingly, the small active area required for a miniaturized nanomembrane dialyzer could
feasibly obviate the need for pumping of blood, instead relying on the patient’s natural arteriovenous
pressure drop to supply the necessary flow. For instance, if the 9 square centimeter active membrane
area of the device described above is 30 centimeters perpendicular to the direction of flow and 0.3 cm
parallel to it, rough estimation of the device’s hydraulic resistance reveals that 14,000 Pascals (an
estimation of mean arteriovenous pressure drop) applied across the device is sufficient to achieve
about 1 L·min−1 of blood flow [27]. While this is probably an undesirable design for actual
implementation, it illustrates the benefit of inventive geometrical designs. Devices on this scale
may be able to take advantage of low hydraulic resistance to further reduce overall dialyzer size
by removal of the blood pump.

Another advantage of miniaturized dialysis is reduced extracorporeal blood volume. The
minimum necessary blood volume for the 9 square centimeter device is just 45 microliters, compared
to between 47 and 121 milliliters for traditional hollow fiber dialysis machines (not to mention a
significant volume of tubing between the fibers and the patient) [28]. This reduction in volume
could be reasonably expected to alleviate some of the risk of hypotension and hypothermia during
treatment; however, this will also depend on the degree of ultrafiltration, which will in turn depend
on the characteristics of the dialysate channel. Reduced volume also reduces the risk associated with
accidental disconnection from the device during use, as less blood is lost in the process—a factor that
may be as important in prompting patients to adopt the device as in keeping them safe.

4. Conclusions

Ultra-permeable silicon membranes have been proposed as an enabling technology for
miniaturized continuous hemodialysis devices, which could offer improved treatment for people
with end stage or chronic renal disease. Our models strongly suggest that miniaturized
nanomembrane dialysis is not only feasible, but highly desirable due to our predictions of highly
effective control of uremic toxin levels via this technology. Future work should involve experimental
prototypes of designs predicted by our models to be effective dialyzers, with benchtop experiments to
confirm predictions and animal trials to assess the devices’ efficacies as treatments for the symptoms
of renal failure.
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