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Abstract: Since the chirp spread spectrum (CSS) system is considered as a communication technology
for the Internet of things (IoT), long-range communication and a high data rate are required.
In wireless communications, in order to increase spectral efficiency and to extend transmission
coverage, a two-path successive relaying (TPSR) protocol has been proposed. Thus, in order to
improve transmission performance of the CSS system, in this paper we apply the TPSR protocol to the
CSS system. However, since the TPSR protocol is successively relaying data, the spectral efficiency
may be limited due to inter-relay interference (IRI). Hence, we propose a multiple linear chirp-based
IRI mitigation method for the CSS-based TPSR protocol. In the proposed scheme, the cross-correlation
coefficient (CCC) has been derived mathematically according to a separating bandwidth in a given
total bandwidth. Then, one separating bandwidth that guarantees the transmission performance is
allocated to the primary relay by considering a single relay CCC (SR-CCC) and another separating
bandwidth that guarantees the orthogonality from the primary relay is allocated to the secondary
relay by considering the inter-relay CCC (IR-CCC). Since the IR-CCC means a degree of similarity
between these two relays, it is possible to mitigate the IRI effect within the same bandwidth by
allocating orthogonal separating bandwidths to each relay. Simulation results show that the proposed
scheme can improve the transmission performance by mitigating the IRI effect even in high IRI
environments. Consequently, we expect that the proposed scheme can extend the transmission
coverage and increase the data rate of the CSS system.

Keywords: chirp spread spectrum; two-path successive relaying; inter-relay interference;
multiple linear chirp; cross-correlation coefficient

1. Introduction

The spread spectrum system was firstly developed to improve the low probability of detection and
anti-jamming capability of military wireless communications [1]. Since the spread spectrum system has
robustness against multipath fading as well as multiple access, it has been used as a core technology for
code division multiple access (CDMA). Among the spread spectrum systems, chirp spread spectrum
(CSS) system using a chirp signal has several advantages such as low energy consumption, high
resolution, and Doppler effect robustness. Due to these advantages, the CSS system has been used for
military radio detection and ranging (RADAR) systems from the 1940s [2] and adopted as an IEEE
802.15.4a standard for a physical layer of wireless localization systems [3]. Recently, it is mainly used
for a long range (LoRa) technology of low-power wide area networks for Internet of Things (IoT)
communications [4]. The transmission method for the CSS system is generally classified into a direct
modulation-based CSS (DM-CSS) scheme and a binary orthogonal keying-based (BOK-CSS) scheme,
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depending on the usage of the chirp signal [5]. In the DM-CSS scheme, the data modulation part and
the chirp generation part are independently separated, and the chirp signal is used as a spreading
code similar to a pseudo-noise sequence in direct sequence spread spectrum systems. Although it has
the advantage of obtaining antipodal characteristics according to the modulation technique, there is
a disadvantage that the complexity is increased to synchronize precisely between the separated parts.
On the other hand, the BOK-CSS scheme transmits a single linear chirp (SLC) according to binary data.
The SLC mainly uses an up-chirp, which increases the instantaneous frequency or a down-chirp, which
decreases the instantaneous frequency. Therefore, the complexity of the BOK-CSS system is relatively
low compared to the DM-CSS scheme. However, since the SLC-based BOK-CSS scheme cannot
guarantee perfect orthogonality, various studies have been carried out to analyze the cross-correlation
coefficient (CCC) to improve transmission performance [6–8]. In [6], the authors consider the CCC
for multi-user chirp signals. In [7], a study on the CCC of nonlinear chirp is conducted to overcome
the limitation of the linear chirp that cannot obtain a negative CCC. In [8], the authors analyzed and
derived the optimal CCC by using a multiple linear chirp (MLC). Moreover, in order to improve the
data rate, [9] proposed the overlapped chirp transmission scheme. In [9], it is shown that the data rate
can be improved by overlapping a plurality chirp with different overlap time.

In wireless communications, in order to obtain diversity gain and to extend transmission coverage,
cooperative relay-based communication has been widely studied [10,11]. In the cooperative relay
schemes, there are two main issues: relay power allocation and relay selection [12]. In the relay
power allocation technique, since the relay power controls not only the transmission coverage
but also the transmission performance, various research has been done to optimize the relaying
power [13,14]. In the relay selection technique, since a wireless channel environment is randomly
fluctuated, an opportunistic relay selection (ORS) protocol that selects the optimal relay among multiple
relays based on channel state has been proposed [15]. In order to operate the ORS protocol, there
are several objectives for selecting the optimal single relay, such as the minimum bit error rate (BER),
the maximum system throughput [16], and the minimum power consumption [17]. Moreover, several
relay selection techniques for the ORS protocol, such as max–min relay selection, harmonic mean relay
selection, and threshold-based selection, have been studied [18]. The common advantage of these
ORS protocols is that they do not need to consider an inter-relay interference (IRI) effect because they
select only one relay. However, the disadvantage of the ORS protocol is that the spectral efficiency may
be decreased because of half-duplex transmission. Thus, in order to overcome orthogonal relaying
time and to increase the spectral efficiency, a two-path successive relaying (TPSR) protocol has been
proposed [19]. In the TPSR protocol, when one relay receives data from the transmitter, then another
one successively relays data to the receiver. However, since the TPSR protocol can virtually perform
full duplex transmission by the successive relaying, it can cause the IRI problem [20]. Therefore,
various studies have been carried out to solve the IRI problem for the TPSR protocol [20,21]. In [20],
the authors proposed power allocation with only a pair of relays under both individual and global
power constraints. Moreover, the relay pair selection is performed with a criterion based on their
proposed power allocation. In [21], a cognitive radio approach is proposed to assign a priority to
a relay having a relatively better channel state and the relay having the priority is allocated with
a maximum relaying power. In this scheme, it is confirmed that the spectral efficiency can be improved
over the conventional TPSR scheme even in a high IRI environment by opportunistically assigning the
priority according to the channel state.

We described earlier the requirements for the CSS system and the TPSR protocol to improve their
performance. The TPSR protocol can be considered as a method to improve the spectral efficiency. In the
CSS system, if the system guarantees the optimal CCC between different chirp signals, the interference
occurring at the transmitter can be reduced. Thus, in this paper, we consider the CSS-based TPSR
protocol and propose a method to mitigate the IRI effect. The proposed scheme considers the MLC
that can adjust the CCC according to the separating bandwidth to solve the IRI problem naturally
occurring in the TPSR protocol. In [22], we proposed the concept of the CSS-based TPSR protocol
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and analyzed the BER performance of the primary relay. However, in [22] we did not derive the IRI
effect theoretically and did not analyze the BER performance of the secondary relay. Thus, in order to
analyze the IRI effect theoretically, we derive the inter-relay CCC (IR-CCC) according to the separating
bandwidth when the single relay CCC (SR-CCC) is given. Then, we express the theoretical BER
performance of both relays and describe the physical meaning of the SR-CCC and the IR-CCC. The
following is a summary of the contributions of this paper.

1. To the best of the authors’ knowledge, no research using the relay node in the CSS system has yet
been carried out.

2. When the operator designs the relay-based CSS system, our analysis can easily offer the
parameters to mitigate the IRI effect.

3. In the CSS-based TPSR protocol, it is expected that the proposed scheme can increase the data
rate and extend the transmission coverage even in a high IRI environment.

The rest of the paper is organized as follows. In Section 2, the BOK-CSS scheme and the TPSR
protocol model are described. Then, the IR-CCC according to the separating bandwidth and the IRI
analysis are described in Section 3. In Section 4, the simulation results are presented, followed by the
conclusion in Section 5.

2. System Model

2.1. BOK-CSS Scheme

Figure 1 shows the conventional BOK-CSS scheme in the additive white Gaussian noise (AWGN)
channel [5]. The transmitted signal s(t) is represented as one of two chirp signals according to the
input bit i ∈ {0, 1}. The SLC ci(t) for the bit i used in the BOK-CSS scheme can be expressed as [5,7]

ci(t) = cos
(

2π fct− (−1)iπµt2
)

, |t| 6 Tc

2
, (1)

where Tc denotes the chirp duration in sec, fc denotes the center frequency in Hz, and µ denotes the
chirp rate in Hz/sec, which is the same as the frequency sweep rate. Then, if the chirp rate takes
a positive direction by µ > 0 (or a negative direction by µ < 0), the transmitted signal represents the
up-chirp (or the down-chirp) and the instantaneous frequency increases (or decreases). We consider
the AWGN channel with the noise n(t). At the receiver, when the received signal y(t) = s(t) + n(t) is
passed through the correlator pairs, the outputs of the correlators are obtained:

ui =
∫ Tc

2

− Tc
2

ci(t) · y(t) dt, i ∈ {0, 1} . (2)

Figure 1. Conventional binary orthogonal keying-based chirp spread spectrum (BOK-CSS) scheme.
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Since the detector decides the transmitted bit by comparing the bit energy, the energy of the
difference signal should be analyzed. The energy of the difference signal is [23]

Ed =
∫ Tc

2

− Tc
2

[c1(t)− c0(t)] dt =
∫ Tc

2

− Tc
2

c2
1(t) dt +

∫ Tc
2

− Tc
2

c2
0(t) dt +

∫ Tc
2

− Tc
2

c1(t) · c0(t) dt. (3)

Here, since each of the first two terms denotes the bit energy Eb, (3) is simplified to

Ed = 2Eb − 2ρEb = 2Eb (1− ρ) , (4)

where ρ is the SR-CCC of the SLC when considering a single relay environment, which is given by

ρ =
1
Eb

∫ Tc
2

− Tc
2

c1(t) · c0(t) dt. (5)

In order to analyze the SR-CCC of the SLC, various values of the time-bandwidth product TcB are
generally considered. The SR-CCC of the SLC according to TcB can be expressed as [24]

ρ =
1√
TcB

C
(√

TcB
)

, (6)

where C(x) =
∫ x

0 cos
(

πv2

2

)
dv is the Fresnel’s cosine integral [5]. Consequently, the theoretical BER of

the SLC is affected by the SR-CCC and is finally obtained as follows [23].

Pe = Q

(√
Ed

2N0

)
= Q

√Eb (1− ρ)

N0

 , (7)

where Q(x) , 1√
2π

∫ ∞
x e−t2/2dt. Note that since the SR-CCC of the SLC cannot obtain the orthogonality

(ρ = 0), the antipodal (ρ = −1) case is the best for a single relay environment.

2.2. Two-Path Successive Relaying Protocol

Figure 2 shows the conventional TPSR protocol model [21]. It consists of a single source, two
amplify-and-forward (AF) relays, and two destinations. We assume that a relay and a destination are
determined as a relaying pair in advance through the scheduling process, and the source alternatively
transmits the data to each relay. Note that although two relaying pairs are generally considered in the
single TPSR protocol environment, it is possible to extend this protocol to a more complex scenario
such as multiple TPSR protocol environments by considering the relay selection process such as in [25].
In the first phase, relay 2 relays the data to its destination 2 while the source transmits the data to relay
1. In the second phase, relay 1 relays the data to its destination 1 while the source transmits the data
to relay 2. In Figure 2, hk (k ∈ {1, 2}) denotes the channel gain between the source and the k-th relay,
gk denotes the channel gain between the k-th relaying pair, and I denotes the channel gain of the IRI.
We assume that there is no direct path between the source and each destination. In this paper, since
the relay receives the data from the source and another relay at the same time, we handled the IRI
problem as being the same as a co-channel interference problem. Thus, if we consider the AWGN
channel, the theoretical BER of the TPSR protocol can be calculated as [26]

PIRI =
1
2

Q (
√

γ + α
√

γ) +
1
2

Q (
√

γ− α
√

γ)

=
1
2

Q ((1 + α)
√

γ) +
1
2

Q ((1− α)
√

γ) ,
(8)
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where γ = S/N is the signal-to-noise ratio (SNR), S is the average power of the received signal, N is
the average power of the noise, α = 1/

√
S/I is the magnitude of the IRI, and S/I = 1/α2 is the

average signal-to-interference ratio. Here, the SNR is γ = (Eb (1− ρ) /N0) · (B/Rb), N0 is the noise
power spectral density in W/Hz, B/Rb is the processing gain Gp, B is the transmission (or spreading)
bandwidth, and Rb is the bit rate. From (8), since the SLC cannot guarantee the orthogonality not only
in the SR-CCC but also in the IR-CCC, the BER may be significantly deteriorated when the IRI effect
is increased. On the other hand, since the MLC can guarantee the orthogonality in both the SR-CCC
and IR-CCC, the BER performance can be significantly improved because the IRI effect can be directly
reduced. Moreover, since each relay successively transmits the data, the IR-CCC should be considered
more than the SR-CCC in the TPSR protocol.
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Figure 2. Conventional two-path successive relaying (TPSR) protocol model.

3. MLC Signal Model and IRI Analysis

In order to mitigate the IRI effect, we consider the MLC, which can simply adjust the CCC,
and analyze the IRI effect by deriving the IR-CCC according to the separating bandwidth.

3.1. MLC Signal Model

In order to successively transmit and receive the data in the TPSR protocol, we consider the
MLC-based BOK-CSS scheme in which the source and two relays transmit the data with a different
separating bandwidth. The MLC for the k-th relay according to the bit i is [27]

c fi,k
(t1) = A · cos

(
2π f0t1 + πµ fi,k

t2
1

)
, (9)

cbi,k
(t2) = A · cos

(
2π
(

f0 + B fi,k

)(
t2 −

Tc

2

)
+ πµbi,k

(
t2 −

Tc

2

)2
)

, (10)

where A =
√

Es/Tc, Es is the chirp energy, and 0 6 t1 6 Tc/2 and Tc/2 6 t2 6 Tc are the duration of
the front-chirp c fi,k

(t1) and the back-chirp cbi,k
(t2), respectively. Moreover, f0 is the initial frequency,

B fi,k
= B/2 + (−1)i {B`/2 + (k− 1) M`/2} is the allocated separating bandwidth for the k-th relay

according to the bit i, B` =
∣∣∣B f1,1 − B f0,1

∣∣∣ is the primary separating bandwidth between the chirps of

the primary relay, and M` =
∣∣∣B f1,2 − B f0,2

∣∣∣ is the secondary separating bandwidth between the chirps
of the secondary relay. Then, the front-chirp rate µ fi,k

and the back-chirp rate µbi,k
are respectively

obtained as follows.
µ fi,k

= B fi,k

/
(Tc/2) , (11)

µbi,k
=
(

B− B fi,k

) /
(Tc/2) . (12)
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3.2. IRI Analysis

3.2.1. Derivation of IRI

In order to improve the BER performance of the BOK-CSS scheme in a single user environment,
we derived the SR-CCC of the MLC according to the separating bandwidth [24]. However, in order to
mitigate the IRI effect occurring in the TPSR protocol, we propose the IR-CCC concept, which considers
the similarity of the MLC between two relays. Thus, in order to analyze the IRI effect, we need to
analytically derive the IR-CCC for both cases where two relays transmit the same bits and the different
bits. The IR-CCC when two relays transmit the same bits is

ρs = ρs
f + ρs

b

=
1
Es
2

∫ Tc
2

0
c f1,1(t) · c f1,2(t)dt +

1
Es
2

∫ Tc

Tc
2

cb1,1(t) · cb1,2(t)dt.
(13)

Here, we use the relationship of cos(a) cos(b) = 1/2 (cos(a− b) + cos(a + b)), then (13) becomes

ρs
` =

1
Tc

∫ Tc
2

0
cos

(
πµs

`t
2
)

dt +
1
Tc

∫ Tc

Tc
2

cos
(

π
(

µs
`t

2 + 2Bs
`t
))

dt, (14)

where Bs
` =

∣∣∣B f1,1 −Ms
`

∣∣∣, Ms
` = {B/2, B/2 + D∆, B/2 + 2D∆, · · · , B} is a set of the secondary

separating bandwidths for the secondary relay when i = 1, µs
` = Bs

`/ (Tc/2) is the difference of
the chirp rate between the primary relay and the secondary relay when they transmit the same bits,
and D∆ is the bandwidth separation interval.

Similarly, the IR-CCC when two relays transmit the different bits is

ρd = ρd
f + ρd

b

=
1
Es
2

∫ Tc
2

0
c f1,1(t) · c f0,2(t)dt +

1
Es
2

∫ Tc

Tc
2

cb1,1(t) · cb0,2(t)dt.
(15)

Here, we also use the relationship of the triangular functions. Then (15) can be expressed as

ρd
` =

1
Tc

∫ Tc
2

0
cos

(
πµd

` t2
)

dt +
1
Tc

∫ Tc

Tc
2

cos
(

π
(

µd
` t2 + 2Bd

` t
))

dt, (16)

where Bd
` =

∣∣∣B f1,1 −Md
`

∣∣∣, Md
` = {B/2, B/2− D∆, B/2− 2D∆, · · · , 0} is a set of the secondary

separating bandwidths for the secondary relay when i = 0, and µd
` = Bd

` / (Tc/2) is the difference of
the chirp rate between the primary relay and the secondary relay when they transmit the different bits.

Since the representations of the IR-CCC when transmitting the same bits and different bits are
similar, it is convenient to analyze both cases together. At first, in order to derive the IR-CCC of the
front-chirp,the first terms in (14) and (16) are expressed together as

ρ f ,` =
1
Tc

∫ Tc
2

0
cos

(
πµ`t2

)
dt. (17)

With a change of the variable v =
√

2µ`t, (17) is simplified to

ρ f ,` =
1

Tc
√

2µ`

∫ Tc
2

√
2µ`

0
cos

(
π

v2

2

)
dv. (18)
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Then, with a relationship of the chirp rate µ` = B`/Tc, the IR-CCC of the front-chirp is finally
obtained by

ρ f ,` =
1

2
√

TcB`
C
(√

TcB`

)
. (19)

Next, in order to derive the IR-CCC of the back-chirp, the second terms in (14) and (16) are
expressed together as

ρb,` =
1
Tc

∫ Tc

Tc
2

cos
(

π
(

µ`t2 + 2B`t
))

dt

=
1
Tc

∫ Tc

Tc
2

cos

(
π

((
√

µ`t +
B`√
µ`

)2
−

B2
`

µ`

))
dt.

(20)

Here, we use the relationship of cos(a− b) = cos(a) cos(b) + sin(a) sin(b), then (20) becomes

ρb,` =
1
Tc

∫ Tc
Tc
2

cos
(

π
(√

µ`t +
B`√
µ`

)2
)
· cos

(
π

B2
`

µ`

)
+ sin

(
π
(√

µ`t +
B`√
µ`

)2
)
· sin

(
π

B2
`

µ`

)
dt. (21)

With a change of the variable w =
√

2
(√

µ`t +
B`√
µ`

)
and the chirp rate µ` = B`/Tc, the IR-CCC

of the back-chirp is finally obtained by

ρb,` =
1

2
√

TcB`

[
cos

(
π

TcB`

2

)
C
(√

TcB`

)
+ sin

(
π

TcB`

2

)
S
(√

TcB`

)]
, (22)

where S(x) =
∫ x

0 sin
(

πv2

2

)
dv is the Fresnel’s sine integral [5]. Consequently, each IR-CCC for the

same bits or difference bits is given by the following.

ρs
` =

1
2
√

TcBs
`

[
C
(√

TcBs
`

)
·
(

1 + cos
(

π
TcBs

`

2

))
+ sin

(
π

TcBs
`

2

)
S
(√

TcBs
`

)]
, (23)

ρd
` =

1

2
√

TcBd
`

[
C
(√

TcBd
`

)
·
(

1 + cos

(
π

TcBd
`

2

))
+ sin

(
π

TcBd
`

2

)
S
(√

TcBd
`

)]
. (24)

3.2.2. IRI Effect on BER Performance

Since the IR-CCC means the degree of similarity of the MLC between the relays, the IRI magnitude
α in (8) is directly influenced by the IR-CCC. Then, (8) can be changed to

PIRI,` =
1
2

Q

(1 + α|β`|)

√
Eb (1− ρ`)

N0
Gp

+
1
2

Q

(1− α|β`|)

√
Eb (1− ρ`)

N0
Gp

 , (25)

where β` is the IR-CCC of the MLC, which is the normalized IRI ratio at the `-th separating
bandwidth expressed as

β` =
ρs
` − ρd

`

max`∈{1,··· ,L}
(
ρs
` − ρd

`

) , (26)

and ρ` is the SR-CCC of the MLC at the `-th separating bandwidth expressed as [24]

ρ` =
1

2
√

TcB`

[
C
(√

TcB`

)
·
(

1 + cos
(

π
TcB`

2

))
+ sin

(
π

TcB`

2

)
S
(√

TcB`

)]
. (27)

From a signal characteristic perspective, since the SR-CCC of the MLC cannot obtain the antipodal
property, it has a limitation to improve the BER compared to the antipodal signal in a single relay
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environment. On the other hand, in the TPSR protocol, if the system considers the IR-CCC with the
orthogonal property (|β`| ≈ 0), we expect that the IRI effect can be significantly mitigated and the
BER performance of the MLC can be the same as the AWGN channel according to the SR-CCC of the
MLC. Consequently, the proposed scheme can improve the BER performance over the antipodal-based
TPSR protocol in high IRI environments.

4. Simulation Results

In order to evaluate the BER performance, we considered the BOK-CSS scheme given in Figure 1
and the TPSR protocol given in Figure 2. For the computer simulations, the chirp duration Tc = 1 µs,
the bit rate Rb = 1 Mbps, and the spreading bandwidth B = 30 MHz were considered. The BER
performance was measured both for the primary relay and the secondary relay to analyze the IRI effect
occurring from each relay, and then the theoretical BER performance was obtained from (25). Since the
purpose of our paper is to analyze and mitigate the IRI effect, three kinds of MLC combinations as
the representative cases were chosen based on the analyses of the SR-CCC and the IR-CCC. Then, we
considered the SLC-based TPSR (“SLC-TPSR”) and the antipodal-based TPSR (“Antipodal-TPSR”) to
compare the BER performance to these MLC combinations (“MLC-TPSR”). We used MATLAB for the
simulation and the number of Monte Carlo runs was 1,000,000.

4.1. SR-CCC and IR-CCC Values

Figure 3 shows the SR-CCC and the IR-CCC values according to the separating bandwidth.
In Figure 3, since the SLC-TPSR is not affected by the separating bandwidth, the SR-CCC of the SLC
is equal to 0.0914 for all separating bandwidths. On the other hand, both the SR-CCC and IR-CCC
fluctuated according to the separating bandwidth in the MLC. Moreover, we observe from (25) that
the performance of each relay is determined by the SR-CCC when the IRI effect is ignored, and the
performance of each relay is determined by the IR-CCC when the IRI effect exists. Since we propose
an IRI mitigation method in this paper, we assume the IRI effect and define the separating bandwidth
allocation rules for each relay as follows.

• Primary relay: In order to guarantee the best BER performance in a given separating bandwidth,
the separating bandwidth with the minimum SR-CCC min(ρ`) is preferably allocated to the
primary relay.

• Secondary relay

1. In order to guarantee the BER performance of the secondary relay without considering the
IR-CCC, the separating bandwidth at the minimum SR-CCC min(ρ`) is allocated to the
secondary relay.

2. In order to consider a negative SR-CCC and negative IR-CCC, the separating bandwidth
with these conditions can be allocated to the secondary relay.

3. In order to guarantee the orthogonality from the primary relay, the separating bandwidth at
the IR-CCC β` ≈ 0 is allocated to the secondary relay without considering the SR-CCC.

Thus, from the separating bandwidth allocation rules, we observe that the primary separating
bandwidth of B` = 2.6 MHz should be occupied to improve the BER performance for the primary
relay. Moreover, when the primary relay occupies the primary separating bandwidth of B` = 2.6 MHz,
the secondary relay can occupy the secondary separating bandwidth of M` = 6.6 MHz to improve
the BER performance over the orthogonal counterpart. However, in order to significantly mitigate
the IRI effect against the primary relay, the secondary relay should occupy the secondary separating
bandwidth of M` = 9.2 MHz that can guarantee the IR-CCC |β`| ≈ 0. Table 1 shows the considered
parameters of the separating bandwidth pairs for each MLC.
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Figure 3. Cross-correlation coefficient (CC) and inter-relay CCC (IR-CCC) values according to
separating bandwidth.

Table 1. Parameters of separating bandwidth pairs for each multiple linear chirp (MLC).

Type
Primary Relay Secondary Relay

β`
B` [MHz] ρ` M` [MHz] ρ`

MLC-TPSR 1 2.6 −0.1121 2.6 −0.1121 1

MLC-TPSR 2 2.6 −0.1121 6.6 −0.0585 −0.273

MLC-TPSR 3 2.6 −0.1121 9.2 0.1513 0.007

4.2. BER Performance with IRI

Figure 4 shows the BER performance according to the IRI magnitude α when Eb/N0 = −4 dB
with Gp = 30. At first, we analyze the BER performance of the primary relay. From the results, it is
observed that when each relay uses the SLC-TPSR, the BER performance is significantly degraded due
to the IR-CCC of |β`| = 1, meaning that the system cannot directly reduce the IRI effect. Moreover, in
the case of the MLC-TPSR 1, due to the IR-CCC of |β`| = 1, like the SLC-TPSR and the Antipodal-TPSR,
the BER performance is significantly degraded even in low IRI environments and is worse than the
BER of 10−3 from around α = −18 dB. However, since the Antipodal-TPSR has the antipodal property,
the BER performance is improved compared to the SLC-TPSR and the MLC-TPSR 1, and is worse
than the BER of 10−3 from around α = −8 dB. On the other hand, the MLC-TPSR 2 is able to mitigate
the IRI effect more than the Antipodal-TPSR, even when the IRI effect is increased from −10 dB and
guarantees the BER of 10−3 by α = −2 dB. In particular, the performance of MLC-TPSR 3 is the same as
the theoretical BER achieved at Eb/N0 = −4 dB with Gp = 30 by considering the IR-CCC of |β`| ≈ 0.

Next, we analyze the BER performance of the secondary relay. In the |β`| = 1 condition, since the
secondary relay transmits the same signal of the primary relay, the BER performance is also the same
as the primary relay in the SLC-TPSR, the Antipodal-TPSR, and the MLC-TPSR 1. On the other hand,
the MLC-TPSR 2 is able to mitigate the IRI effect more than the Antipodal-TPSR even when the IRI
is increased from −9 dB and guarantees a BER of 10−3 by α = −4 dB. In particular, the performance
of MLC-TPSR 3 is the same as the theoretical BER achieved at Eb/N0 = −4 dB with Gp = 30 by
considering the IR-CCC of |β`| ≈ 0. However, since the SR-CCC of the MLC for the secondary relay is
larger than that of the primary relay, as shown in Table 1, the BER performance of the secondary relay
is more deteriorated than the primary relay.
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Figure 4. Bit error rate (BER) performance according to inter-relay interference (IRI) (Eb/N0 =

−4 dB, Gp = 30). (a) Primary relay; (b) secondary relay.

4.3. BER Performance with Eb/N0

Figure 5 shows the BER performance according to Eb/N0 with Gp = 30 when α = −3 dB. At first,
we analyze the BER performance of the primary relay. From the results, since the Antipodal-TPSR has
the antipodal property, the BER performance is improved over the SLC-TPSR and the MLC-TPSR 1,
and is worse than the BER of 10−3 below Eb/N0 = 2 dB. We observe that the BER performance of
the MLC-TPSR 1 is degraded by about 3.5 dB at a BER of 10−3 compared to the Antipodal-TPSR due
to the SR-CCC. On the other hand, the BER performances of the MLC-TPSR 2 and the MLC-TPSR
3 are improved by about 6 dB and 7.5 dB, respectively, at a BER of 10−3, over the Antipodal-TPSR,
mainly due to the IR-CCC. Next, we analyze the BER performance of the secondary relay. In the
MLC-TPSR 3, due to the SR-CCC of the MLC, the BER performance of the secondary relay was worse
than the primary relay. However, since the MLC-TPSR 2 and the MLC-TPSR 3 can mitigate the IRI
effect, their BER performances are still better than the others. Consequently, we can conclude that the
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proposed scheme can significantly mitigate the IRI effect by considering the IR-CCC, even in high
IRI environments.
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Figure 5. BER performance according to Eb/N0
(
α = −3 dB, Gp = 30

)
. (a) Primary relay;

(b) secondary relay.

5. Conclusions

In this paper, we analyzed the IRI effect in the CSS-based TPSR protocol. In order to mitigate the
IRI effect, we considered the MLC signals. Then, we derived the IR-CCC according to the separating
bandwidth and found the optimal separating bandwidth. From the simulation results, we verify the
theoretical BER performance of the proposed scheme and conclude that the proposed scheme can
mitigate the IRI effect even in high IRI environments, while performing full duplex transmission.
Consequently, we have proposed a new paradigm to mitigate the IRI effect, and it is expected that the
proposed scheme can help to design relay-based CSS systems for IoT communications.
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