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Abstract: Having a system to measure food consumption is important to establish whether individual
nutritional needs are being met in order to act quickly and to minimize the risk of undernutrition.
Here, we tested a smartphone-based food consumption assessment system named FoodIntech.
FoodIntech, which is based on AI using deep neural networks (DNN), automatically recognizes food
items and dishes and calculates food leftovers using an image-based approach, i.e., it does not require
human intervention to assess food consumption. This method uses one-input and one-output images
by means of the detection and synchronization of a QRcode located on the meal tray. The DNN
are then used to process the images and implement food detection, segmentation and recognition.
Overall, 22,544 situations analyzed from 149 dishes were used to test the reliability of this method.
The reliability of the AI results, based on the central intra-class correlation coefficient values, appeared
to be excellent for 39% of the dishes (n = 58 dishes) and good for 19% (n = 28). The implementation
of this method is an effective way to improve the recognition of dishes and it is possible, with a
sufficient number of photos, to extend the capabilities of the tool to new dishes and foods.

Keywords: artificial intelligence; portion evaluation; mobile phone images; machine learning; reliability

1. Introduction

Measuring patient food consumption and food waste are important for the goals of
healthy eating and sustainability. In hospitals, having a system to measure food consump-
tion is a key element to know if patients’ nutritional needs are being properly covered and
to decrease food waste. However, recording food intake is challenging to implement in
the hospital context, and often suboptimal [1,2], and nutritional monitoring is thus rarely
part of the clinical routine [3]. Potential barriers include the lack of knowledge and poor
awareness of caregivers, the medical prescription of the three-day food record, and the
absence of a quick and easy-to-use monitoring tool that is accurate and precise. The most
used method is a direct visual estimation [4]. This method consists of quantifying the
remaining part of the food intake of subjects during mealtimes by trained staff (care staff,
dieticians or experimenters). Direct visual estimation is easy to organize, and has proven
to be reliable in different institutions, including geriatric units [5–7]. This method can be
used to differentiate each item of food served and leftovers by portion (1, 3/4, 1/2, 1/4 or 0 of
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food served) because employees can mentally separate different items on a plate. However,
direct visual estimation is often performed quickly and with a low degree of precision
because staff are not always trained. In addition, the estimation of the food before and after
consumption is not always done by the same employee. This approach is also subjective,
which may lead to errors. Additionally, while a large number of subjects can be followed,
this method also requires the availability of multiple employees at the same time.

In a clinical research context, the weighing method remains the “gold standard” to
measure actual food consumption. This method is based on the difference between the
weights of foods offered before consumption and those not consumed after consumption
by the participant [8,9]. However, the weighing method is complex in real-life in facilities,
and the delivery modes are difficult to reconcile with data requirements. This method is
time-consuming, requires significant staff resources, and remains unsuitable for the hospital
environment [8,9].

Other methods using photography have been developed. Martin et al. developed the
Remote Food Photography Method (RFPM), which involves participants capturing images
of their food selection and leftovers [10,11]. These images were then sent to the research
center via a wireless network, where they are analyzed by dietitians to estimate food intake.
These same authors were able to show that there was a good correspondence between
the RFPM method and the weighing method, with a difference ranging from −9.7% for
the starter to 6.2% for the vegetables [12]. This technique does not require a large number
of personnel on site during mealtimes. It was compared to the visual estimation process
in collective dining facilities [13], to the weighing method in an experimental restoration
situation [14], in a cafeteria situation [15] and in a geriatric institution [16]. It avoids the
bias associated with the presence of experimenters at mealtimes and, by capturing images,
the analyses can be repeated by different people. Although these methods are reliable, they
all require a professional to perform the data analysis, and they remain time-consuming.

Several novel techniques have recently been proposed thanks to advances in Artificial
Intelligence (AI) applications. AI has expanded in different domains using images with
new opportunities in nutrient science research [17]. In a review, mobile applications
based on systems using AI were of significant importance in the different fields of studies
on biomedical and clinical nutrients research and nutritional epidemiology. Among the
available AI applications, two algorithms can be used: machine learning (ML) algorithms,
widely used in studies on the influence of nutrients on the functioning of the human body in
health and disease; and deep learning (DL) algorithms, used in clinical studies on nutrient
intake [17]. ML is an AI domain related to algorithms that improve automatically through
gathered experience, making it possible to create mathematical models for decision-making.
DL is a subtype of ML, with the advantage of program autonomy that can build functions
used in recognition. Recently, Lu et al. proposed a dietary assessment system, named
goFOODTM, based on AI using DL [18]. This method uses the deep neural networks to
process two images taken by a single press of the camera shutter button. Even if the results
demonstrated that goFOODTM performed better with detection using DL algorithms than
experienced dietitians did, this method still requires human intervention.

In this paper, we propose a smartphone-based food consumption assessment system,
called FoodIntech. FoodIntech, which is based on AI using DL, automatically recognizes
food items and dishes and calculates portion leftovers using an image-based approach,
i.e., it does not require human intervention to assess food consumption. This method
uses one-input and one-output images by means of the detection and synchronization of a
QRcode label stuck to the meal tray. Then, the deep neural networks are used to process the
images and implement food detection, segmentation and recognition. The aim of this paper
is to test the reliability of this method in laboratory conditions, but as similar as possible to
routine clinical practice in a hospital environment.
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2. Materials and Methods
2.1. General Procedure

The tool developed is the subject of an industrial program whose technical details
cannot be fully disclosed.

The implemented method is based on the analysis of food tray pictures taken by a
standard out-of-the box mobile phone (i.e., Android Samsung S8), before and after the
simulated consumption of a standard meal tray taken from the central kitchen of the Dijon
University Hospital, and processed by laboratory research staff. However, the method
implemented here attempted to emulate routine clinical practice in a hospital environment:
the smartphone was attached by a system adapted to the heating trolley used to distribute
the meal trays in the hospital, the food quantities measured were identical to those served to
patients, and the same dishes, the same trays, the same crockery and the same arrangement
of dishes were also used. The protocol was designed to simulate patient consumption in a
large range of situations to build a consolidated vision of the liability and repeatability of
the process (detailed in Weighed food method paragraph).

Each pair of pictures of the tray (before/after) was recorded in an experimental
database and linked to the weight values of each food item on each plate corresponding
to the captured images. The food items were weighed before and after the simulation by
the research team, for all the plates and in each of the experimental conditions established
in the protocol. The collected data constitute the reference dataset for comparison of the
study on which the technical process of the solution has been evaluated.

AI based on deep learning received the input of 13,152 pictures showing 26,584 food
item consumption situations produced throughout the study to ensure learning based on
image segmentation. The AI program therefore needed a very large number of pictures per
food item or dish to learn to recognize it, around 200 images for each.

The raw data returned by AI cannot immediately be processed by the system; it has to
be interpreted. As such, a transcoding overlay was added. The sole purpose of the overlay
is to process the AI results and map the using the list of known dishes from the menu.

Sometimes, the transcoding overlay is unable to map the dishes properly, especially
when the AI returns a relatively vague result (e.g., the same element several times). In this
case, a refinement increment is required to be able to discern which is which, and to return
an accurate response, enabling a flawless transcoding process.

The results of the system were also challenged to obtain a precise percentage of each food
component portion remaining from one picture to another compared to the weighted method.

Each new increment of the AI was thoroughly tested to track any possible regression.
To do so, each dataset line result was reprocessed and then compared with the experimental
value to produce a comprehensive vision of the AI’s capabilities for this version.

Both the AI core and the transcoding overlay were modified in the process so they
could deliver the best results. Many iterations were made, focusing on different priorities
each time, to be able to come up with a satisfying AI result. Monitoring the different results
release after release made it possible to follow the evolution of the AI and to establish the
optimal process of teaching the neural network to recognize new dishes/components. This
also made is possible to manage inconsistencies with the transcoding system to achieve a
technically reliable system capable of digital detection and weighing (not in this paper).

2.2. Algorithm Used for Deep Learning

The measurement of the quantity of food ingested was based on an analysis of images
taken before and after meals. This analysis consisted of a measurement of the pixel surface
of the different food items present in the menu. Thanks to the progress that has been
made over the last few years with deep learning techniques, image analysis has also
become increasingly powerful. Three main approaches are used to analyze images with
these techniques: the first one, called “Classification”, indicated the presence or not of a
particular object (here food) in the analyzed image. The second more precise approach,
called “Detection”, indicated in which area of the image the recognized object was located.
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Finally, the third approach, which is the most precise, consisted in a fine clipping of the
detected object. This approach, called “Instance Segmentation”, was well adapted to
our application.

There are mainly two types of Deep Learning neural networks dedicated to instance
segmentation: U-Net [19] and Mask R-CNN [20]. Based on study of Vuola and al, we
decided to use Mask R-CNN rather than U-Net for its better ability to identify and separate
small and medium-sized objects that compose a large part of the food items present in the
analyzed plates [21].

For both training and inference, the spatial resolution of the images was between 800
and 1365 pixels per side. The Mask-RCNN neural networks were trained and used on a
computer equipped with a NVidia Titan RTX graphics card with 24 GB VRAM.

For the implementation of Mask-RCNN, we used the mask_rcnn_inception_resnet_v2_
atrous_coco one from Tensor Flow Object Detection Model Zoo [22]. It is based on the
inception-resnet-v2 backbone [23], and provides great precision masks at the cost of a high
computing power requirement. Classical data augmentation was used for the training
with a randomized image horizontal flip and a randomized brightness adjustment at each
period of the training. In order to achieve satisfactory performance, it was necessary to train
the Mask-RCNN with an average of 200 examples per food item; items were accurately
annotated and included in the training database.

The details of the learning parameters are provided in Appendix B.
Figure 1a,b gives an illustration of this segmentation technique. The left part of the

figure corresponds to the image of the plate acquired with the mobile phone and the right
part to the image of the plate analyzed with the Mask-RCNN segmentation algorithm. We
can see that the different foods contained in the plate are very well separated. From this
segmentation, the surface of each food item is measured by the number of pixels needed to
cover the item.
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Figure 1. Food segmentation example applied to (a) plate with food served, (b) segmentation of each
food of the plate.

2.3. Data Collection and Process or Procedure of Deep Learning View Synthesis Approach

The Foodintech procedure of using deep learning synthesis to determine food portions
is shown in Figure 2:
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Figure 2. Implementing computer vision technology and a deep learning process to recognize food
items and calculate the amount of missing food between two meal tray pictures.

(1) A standard mobile phone was used, and the camera zoom of the device allowed
to automatically focus the frame around the border of the tray; (2) and (3) two captured
images before and after simulated consumption were taken and synchronized thanks to
the QRcode label on the tray; (4) the bounding boxes show the results of Mask R-CNN
to identify food items; (5) detection of food items: precision enhanced by deep learning
annotations; (6) identification of food items: each food item is identified among 77 food
categories, the exact recipe is defined by the menu which is provided in advance; (7) solving
conflicts: transcoding layer applies decision rules to AI results conflicts or errors between
items; (8) segmentation counting the numbers of pixels corresponding to different regions
on the plate; (9) digital weighing: food intake calculated by % of missing portion for each
item; (10) results dataset: displays consumption % of each plate on each tray applied to
known served portion weight to show results in grams of food intake compared to real
portion weight measures.

Dish preparation—The dishes were prepared in the central kitchen of the Dijon Uni-
versity Hospital according to the standardized recipes and the same procedures for each
day of measurement. The plates were prepared in a meal tray as if they were being served
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to patients, with the same quantities, presentation and daily menus. The quantities served
adhered to the nutritional guidelines for adults in France. The captured images of 169 dif-
ferent labels of dishes were used to test the reliability of the FoodIntech method. They were
produced between 22 December 2020, and 15 May 2021, at the Dijon University Hospital.

Weighed food method—Each meal component was weighed before and after each
simulated consumption using the same electronic scales (TEFAL, precision +/− 1 g). The
experimenter, always the same person, initially weighed the dish with the quantities of the
nutritional guidelines provided by the central kitchen and then removed 1 spoonful at a
time until there was nothing left on the plate. The obtained weight allowed us to define the
different experimental conditions for each dish. Then, the experimental conditions were
reproduced between 4 to 14 different simulated consumptions. Each food component was
weighed between 5 to 20 times for each experimental condition, and 30 to 200 pictures were
taken per food item depending on the initial quantity served.

Food Image acquisition—Each meal tray was pictured before and after experimental
conditions were applied using a standard mobile smartphone (Samsung Galaxy S8) with a
zoom function on the camera. To estimate the reliability of the AI algorithm results, i.e., the
estimated consumption percentage of a given dish, each of the 169 dishes studied had to be
photographed 4 to a maximum of 14 times. A total of 13,152 pairs of images of 26,584 food
items in various consumption conditions were produced. Two captured images, one input
and one output, were synchronized thanks to a QRcode label (Figure 3a,b).
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2.4. Statistical Analysis

The sample size of this study was determined using the PASS software. A sample size
of 20 subjects (camera angles) with 14 repetitions (food conditions) per subject achieves 80%
power. This can detect an intra-class correlation of 0.90 under the alternative hypothesis
when the intraclass correlation under the null hypothesis is 0.80, using an F-test with a
significance level of 0.05 [24].

The estimation of the reliability of the AI results for each dish was assessed by the
Type 3 Intra-class Correlation Coefficient (ICC) [25]. We used type 3 ICC issued from a
two-way mixed model as recommended by Koo and Li 2016 [26]. Indeed, the reliability
of a measurement refers to its reproducibility when it is repeated on the same subject.
We wanted to have a complete overview with all possible camera angles, so positions
where randomly selected among all the possible camera angles (infinite population). This
corresponded to the random subject effect. Concerning repetitions, we were interested
in assessing the 14 possible conditions, which reflect the finite, well-defined, possible
measurement circumstances, and they were not randomly selected in an infinite population.
This corresponded to the repetition factor, which was considered as a fixed effect in our
model. All of these considerations were applied for each given food.
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These ICCs were determined using a random effect model from the irrNA (R package
version 0.2.2; Berlin Germany) R software package (version 4.1.0, R Core Team; R Founda-
tion for Statistical Computing, Vienna, Austria). It is important to note that the calculation
of the ICC does not require the normality of the measurements and that the package allows
the estimates to be made despite a varying number of conditions and images. The values
of the ICC are between 0 and 1. The closer the ICC is to 1, the more similar the results are
using AI under the same condition; however, the lower the ICC is (close to zero), the more
the results of the AI diverge for the same condition. The central estimates for each ICC
are accompanied by their 95% confidence interval, providing an estimate of the range in
which the true value of the ICC could lie at the risk of a type I error of 5%. According to
Shrout and Fleiss, an ICC greater than or equal to 0.8 supports excellent reliability; an ICC
between 0.7 and 0.8 indicates good reliability. Values below 0.7 indicate moderate reliability
at best [25,27].

3. Results

Dishes for which data was only available for one condition, or dishes for which
measurements were not available for all conditions were excluded (exclusion of 20 dishes
and 15% of all the pictures/situations, i.e., 4040 pictures). Thus, 22,544 analyzed situations
for 149 dishes were considered for this reproducibility analysis. In total, based on the central
ICC values obtained and the classification proposed by Shrout and Fleiss, the reliability
of the AI results appeared to be excellent for 39% of the dishes (n = 58 dishes) and good
for 19% (n = 28). The reliability appeared insufficient for 42% of the dishes (Figure 4). The
ICCs for each dish are available in Appendix A (Table A1).
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An additional analysis was performed for dishes for which the number of pictures was
greater than or equal to 200 (n = 60 dishes). The ICCs obtained were in favor of excellent
reliability for 45% of the dishes selected (27/60), of good reliability for 17% of the dishes
(n = 10) and for insufficient reliability for 38% of the dishes.

4. Discussion

In this paper, we report our testing of FoodIntech, which is a dietary portion assess-
ment system that estimates the consumed portion size of a meal using images automatically
captured by a standard smartphone. This study is a pioneer study including 149 different
labels of dishes, with single or composite food items. We covered high volume images of
22,544 food items using automatic detection and AI. The images were taken in experimental
conditions approaching routine clinical practice in a hospital environment: a smartphone
was attached to a heating trolley used to distribute meal trays, the quantities of food were
identical to those served to patients, and we used the same dishes, trays, crockery, and
arrangement of dishes on the trays.
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A review of the literature shows that there is has been real interest in using image-
based dietary assessments in different situations: in free-living individuals [10,28], and in
specific environments such as hospitals, [29–31], laboratories, [10,32] and cafeterias [33].
This method is often combined with food records or voice recording describing served and
consumed meals [28,34], or associated with video recordings to be compared to weighed
food records in free-living young adults [35]. However, even if the performance was found
to have good reliability compared to traditional methods by some researchers, these image-
based dietary assessments require the capture of images by participants and/or trained
staff members to observe or calculate the individual’s consumption [10,29,31,36,37].

The main advantage of AI is that human intervention is not required, and the results
are obtained instantly. This is why the automatic detection of food in real-life contexts
with data acquired by a wearable camera or smartphone in association with an AI analysis
is challenging: image quality depends on variable factors such as appropriate lighting,
image resolution, and limited blur caused by the movement of person taking the pictures.
Many studies have demonstrated the validity of AI to automatically detect food items. To
our knowledge, none have tested reproducibility on a number of complex foods or dishes
as large as in our study. In addition, few studies have specified the number of analyzed
images or the conditions under which the images were analyzed. Ji et al. [38] assessed the
relative validity of an image-based dietary assessment app—Keenoa—and a three-day food
diary in a sample of 102 healthy Canadian adults, but no information was given about the
sample of images used and the authors showed that the validity of Keenoa was better at the
group level than the individual level. In Fang et al. [39], the authors estimated food energy
based on images and the generative adversarial network architecture. They validated the
proposed method using data collected by 45 men and women between 21–65 years old,
and obtained accurate food energy estimation with an average error of 209 kilocalories for
eating occasion images (1875 paired images) collected from the Food in Focus study using
the mobile food record. However, the authors specify the need to combine automatically
detected food labels, segmentation masks, and contextual dietary information to further
improve the accuracy of their food portion estimation system. Jia et al. [40] developed
an artificial intelligence-based algorithm which can automatically detect food items from
1543 food-images acquired by an egocentric wearable camera, called the eButton. Even
in the absence of reproducibility data, they reported that accuracy, sensitivity, specificity
and precision were 98.7, 98.2, 99.2 and 99.2%, respectively for food images. In a recent
publication, Lu et al. [18], proposed goFOODTM as a dietary assessment system based on
AI to estimate the calorie and macronutrient content of a meal with food images captured
by a smartphone. goFOODTM uses deep neural networks to process the two images
and implements food detection, segmentation and recognition, while a 3D reconstruction
algorithm estimates the food’s volume. Thus, the calorie and macronutrient content was
calculated from 319 fine-grain food categories, and the authors specified that the validation
was performed using two multimedia databases containing non-standardized and fast
food meals (one contained 80 central-European style meals and another one contained
20 fast-food type meals). However, in this study, there was no indication of reproducibility
or the number of images analyzed. Other authors showed the error estimation of their
system: Lu et al. [41] showed an estimation error of 15% with their system allowing a
sequential semantic food segmentation and estimation of the volume of the consumed food
with 322 meals. Sudo et al. [42] showed an estimation error close to 16.4% with their system
presenting a novel algorithm that can estimate healthiness from meal images without
requiring manual inputs.

It is still impossible for the system to recognize all the food categories in the world
and in real-life, and this remains a limit for all existing applications. The limitation of our
system is mainly determined by the training data.

We showed that 86 dishes were correctly detected by the system in repeatable con-
ditions over an ICC value of 0.7/1. The 63 non-repeatable dishes (ICC < 0.7) show the
limitations of the system: 10 were served in containers (cups or tubes), 18 had more than
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200 pictures but were specially shaped food items or dishes (e.g., oranges or other fruits
with skin leftover) and 35 were reproduced in less than 200 pictures. In order to address
the limitations associated with food recognition, we will try to analyze their origins and
the possible solutions:

- First of all, is the AI able to improve its results on the identified less detected food
items and dishes? If we look precisely at the identified items that were the least reliable
in the field of the study (for example yogurts or purées in containers) it appears that it
was difficult to build a volumetric vision from a single sight view at 90◦. It produces,
with containers that are higher than wide, a drop shadow that leads to the difficult
identification of height and volume. This issue could probably be improved by the
use of new virtual 3D sensors embedded in recent market smartphones based on,
for example, the Time of Flight (ToF) technology proposed by Samsung from the
Galaxy S10 version. This technology calculates the speed of photons to access the
surface of the target objects in order to construct a virtual depth vision of the objects
in three dimensions. Additionally, some of the products might be transferred to glass
or plastic containers in order to avoid the identified issues. Lo et al. [43] created an
objective dietary assessment system based on a distinct neural network. They used
a depth image, the whole 3D point cloud map and iterative closest point algorithms
to improve dietary behavior management. They demonstrated that the proposed
network architecture and point cloud completion algorithms can implicitly learn the
3D structures of various shapes and restore the occluded part of food items to allow
better volume estimation.

- Secondly, is the AI able to improve its results on the fruit with a peel? Inedible leftovers
are currently interpreted as the fruit itself in most cases. However, we are confident
that the AI can learn to recognize these leftovers from the flesh of the fruit with new
learning. In addition, we can code some specific rules to the transcoding overlay to
help with the reproducibility of correct identifications.

- Finally, is the size of the sample enough, especially when we consider that some
food items with more than 200 pictures in records had insufficient reliability? Some
dishes, as well as some food containers, are more difficult to recognize and segment
than others due to their shape, colors or ingredients, with the mixture on the plate
making them more difficult to identify. Like human vision, computer vision has
limitations that will never achieve 100% performance. However, just like humans, AI
can improve the recognition of certain dishes or situations through a wider learning
process and thus increase the number of reference pictures and segmentations. The
method validated in this study, in particular, can obtain high-performance results for
complex food items, allowing us to extrapolate that significant improvements could
be obtained for dishes that are still poorly recognized or poorly reliable. Examples
of these complex items include the “Colombo of veal with mangoes”, which had
an ICC of 0.897 with 201 photos, the “Nicoise salad”, which had an ICC of 0.899
with 199 photos, and the “gourmet mixed salad”, which had an ICC of 0.949 with
198 photos.

5. Conclusions

These results were obtained using different learning steps, demonstrating that the
method used to improve the recognition of dishes is effective, and that with a sufficient
number of photos it can be extended to new dishes and foods. This study is, to our
knowledge, one of the first to have tested such a large sample (22,544 images), and we
obtained a high level of precision for more than half (57.8%) of a wide range of foods (149).
To our knowledge, this method represents a paradigm shift in dietary assessment. AI
technology can automatically detect foods with camera-acquired images, reducing both the
burden of data processing and paper transcription errors. An additional benefit of AI is the
ability to immediately analyze the data and obtain results. This study demonstrates that
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this image recognition technique could be an exploitable clinical tool for monitoring the
food intake of hospital patients.

6. Future Work

Future work will aim to show the validity and the usability of the FoodIntech artificial
intelligence system for the evaluation of food consumption in hospitalized patients. The
system will provide a measure of patient food consumption, which could then be associated
with the patient’s age, gender and body weight. Dietitians or physicians could use this
information to adapt in-hospital menus to patient needs.
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Appendix A

Table A1. The Intra-class Correlation Coefficients (ICCs) for each dish studied.

Labelled Dishes in English Labelled Dishes in French ICC (95%CI) Number of Images p Values

Apple turnover Chausson aux pommes 0.993 (0.985–0.998) 200 <0.001

breaded fish poisson pané 0.991 (0.98–0.997) 200 <0.001

parsley potatoes pommes persillées 0.985 (0.952–0.998) 29 <0.001

Pear poire 0.981 (0.94–0.997) 30 <0.001

chopped steak steak haché 0.977 (0.951–0.993) 201 <0.001

Clamart rice riz Clamart 0.972 (0.94–0.991) 199 <0.001

light cream baba baba crème legère 0.968 (0.927–0.992) 201 <0.001

saithe fillet with saffron sauce filet de lieu sauce safran 0.968 (0.9–0.995) 29 <0.001

potatoes pommes de terre 0.962 (0.92–0.988) 197 <0.001

Ratatouille ratatouille 0.959 (0.914–0.987) 200 <0.001

green beans salad haricots verts salade 0.958 (0.91–0.988) 200 <0.001

Flemish apples pommes flamande 0.957 (0.908–0.988) 200 <0.001

Gruyère Cream Crème de gruyère 0.952 (0.882–0.992) 198 <0.001

Poultry Nuggets nuggets de volaille 0.95 (0.897–0.985) 200 <0.001

Eastern pearl salad salade mélangée gourmande 0.949 (0.895–0.984) 198 <0.001
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Table A1. Cont.

Labelled Dishes in English Labelled Dishes in French ICC (95%CI) Number of Images p Values

Brussels sprouts chou de Bruxelles 0.945 (0.836–0.991) 30 <0.001

Béchamel spinach épinards béchamel 0.943 (0.883–0.982) 200 <0.001

Kiwi kiwi 0.942 (0.826–0.99) 30 <0.001

quenelle with aurore sauce quenelle sauce aurore 0.94 (0.877–0.982) 200 <0.001

veal fricassee fricassé de veau 0.939 (0.872–0.983) 200 <0.001

couscous semolina semoule couscous 0.938 (0.876–0.979) 225 <0.001

mortadelle mortadelle 0.938 (0.873–0.981) 197 <0.001

Apple pomme 0.936 (0.803–0.99) 26 <0.001

grated carrots carottes râpées 0.931 (0.855–0.98) 201 <0.001

rustic lentils lentilles paysanne 0.926 (0.85–0.977) 195 <0.001

rhubarb pie tarte à la rhubarbe 0.924 (0.83–0.984) 201 <0.001

mashed broccoli purée brocoli 0.923 (0.844–0.976) 201 <0.001

Hoki fillet sorrel sauce filet de hoki sauce oseille 0.921 (0.841–0.975) 198 <0.001

troppezian pie tropezienne 0.921 (0.675–0.985) 16 <0.001

parsley endive endives persillées 0.91 (0.821–0.972) 199 <0.001

juice spinach épinards au jus 0.906 (0.814–0.97) 201 <0.001

Nicoise salad salade nià§oise 0.899 (0.801–0.968) 199 <0.001

Colombo of veal with mangoes colombo de veau aux mangues 0.897 (0.785–0.973) 201 <0.001

Dijon Lentils lentilles dijonnaise 0.892 (0.704–0.982) 30 <0.001

meal bread pain repas 0.892 (0.69–0.982) 26 <0.001

Macedonia Mayonnaise macédoine mayonnaise 0.89 (0.773–0.971) 201 <0.001

sautéed lamb sauté d’agneau 0.875 (0.747–0.967) 201 <0.001

sautéed Ardéchoise poêlée ardéchoise 0.87 (0.409–0.98) 13 0.0027

parsley youth carrots carottes jeunes persillées 0.865 (0.743–0.956) 200 <0.001

lemon fish poisson citron 0.865 (0.736–0.96) 200 <0.001

paella trim garniture paëlla 0.864 (0.641–0.976) 30 <0.001

Italian dumplings boulettes à l’italienne 0.862 (0.739–0.955) 192 <0.001

peas with juice petits pois au jus 0.861 (0.75–0.948) 231 <0.001

salted plain yogurt pie tarte au fromage blanc salée 0.86 (0.62–0.982) 30 <0.001

pasta salad salade de pâtes 0.859 (0.738–0.954) 365 <0.001

Parisian pudding pie tarte au flan parisien 0.854 (0.699–0.966) 176 <0.001

Natural yogurt Yaourt nature 0.851 (0.623–0.964) 29 <0.001

turkey fricassee fricassée de dinde 0.847 (0.603–0.973) 29 <0.001

colored pasta pâtes de couleur 0.845 (0.711–0.949) 199 <0.001

blood sausage with apples boudin aux pommes 0.835 (0.565–0.978) 29 <0.001

devilled chicken poulet à la diable 0.829 (0.686–0.943) 200 <0.001

Braised celery heart coeur de céleri braisé 0.829 (0.68–0.948) 201 <0.001

braised fennel fenouil braisé 0.829 (0.68–0.948) 201 <0.001

donuts beignets 0.825 (0.679–0.941) 197 <0.001

parsley carrots duet duo de carottes persillées 0.822 (0.666–0.941) 109 <0.001
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Table A1. Cont.

Labelled Dishes in English Labelled Dishes in French ICC (95%CI) Number of Images p Values

Bavarian apricot bavarois abricot 0.82 (0.672–0.939) 200 <0.001

beef carbonnade carbonnade de boeuf 0.81 (0.522–0.966) 27 <0.001

fish with mushroom sauce poisson sauce champignons 0.805 (0.527–0.964) 30 <0.001

Mayonnaise tuna thon mayonnaise 0.798 (0.639–0.931) 182 <0.001

fennel with basil fenouil au basilic 0.798 (0.638–0.931) 183 <0.001

Tagliatelle with vegetables tagliatelles aux légumes 0.791 (0.631–0.928) 201 <0.001

Sautéed Veal Marengo sauté de veau marengo 0.789 (0.625–0.927) 182 <0.001

Natural fesh cheese Fromage frais nature 0.788 (0.482–0.961) 27 <0.001

apricot pie tarte aux abricots 0.784 (0.628–0.919) 229 <0.001

black forest cake forêt noire 0.782 (0.155–0.965) 13 0.012

beef with 2 olives boeuf aux 2 olives 0.78 (0.596–0.937) 201 <0.001

bread pain 0.775 (0.587–0.919) 74 <0.001

pasta in shell coquillettes 0.761 (0.449–0.955) 29 <0.001

flaky pastry with vanilla cream feuilleté vanille 0.76 (0.435–0.966) 29 <0.001

Small grilled sausages petites saucisses grillées 0.758 (0.584–0.915) 201 <0.001

chicken breast escalope de poulet 0.755 (0.444–0.954) 30 <0.001

parsley ham jambon persillé 0.755 (0.444–0.954) 30 <0.001

beef goulasch goulasch de boeuf 0.749 (0.0784–0.96) 13 0.017

parsley chard bettes persillées 0.748 (0.562–0.918) 200 <0.001

Assorted green vegetables légumes verts assortis 0.746 (0.568–0.909) 199 <0.001

southern vegetables flan flan de légumes du soleil 0.745 (0.534–0.935) 175 <0.001

roast chicken poulet rôti 0.737 (0.566–0.899) 225 <0.001

juice lentils lentilles au jus 0.736 (0.554–0.905) 197 <0.001

Vegetable bouquette bouquetière de légumes 0.733 (0.551–0.904) 201 <0.001

leeks Vinaigrette poireaux vinaigrette 0.716 (0.539–0.883) 162 <0.001

bow-tie pasta papillons 0.715 (0.528–0.896) 198 <0.001

Dijon chicken cutlet escalope de poulet dijonnaise 0.712 (0.492–0.906) 83 <0.001

melting apples pommes fondantes 0.709 (0.521–0.893) 201 <0.001

beef sirloin faux filet de boeuf 0.704 (0.515–0.891) 200 <0.001

rustic mix mélange champêtre 0.701 (0.528–0.874) 240 <0.001

Green salad mixed salade verte mélangée 0.701 (0.452–0.913) 60 <0.001

stuffed tomatoes tomates farcies 0.693 (0.492–0.895) 190 <0.001

Pudding English Cream pudding crème anglaise 0.682 (0.488–0.881) 201 <0.001

parsley celery root céleri rave persillé 0.676 (0.481–0.878) 200 <0.001

sautéed vegetables poelée de légumes 0.675 (0.33–0.934) 30 <0.001

chocolate meringue meringue chocolatée 0.668 (0.471–0.874) 199 <0.001

lemon cake cake citron 0.664 (0.458–0.882) 200 <0.001

penne penne 0.663 (0.458–0.881) 200 <0.001

Parsley salsifis salsifis persillés 0.66 (0.463–0.87) 198 <0.001

Coleslaw salade coleslaw 0.652 (0.453–0.866) 199 <0.001
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Table A1. Cont.

Labelled Dishes in English Labelled Dishes in French ICC (95%CI) Number of Images p Values

apricot flaky pie tarte feuilletée aux abricots 0.652 (0.444–0.876) 201 <0.001

Cider ham jambon au cidre 0.632 (0.431–0.856) 196 <0.001

fish with cream sauce poisson sauce crème 0.601 (0.398–0.839) 198 <0.001

parsley wax beans haricots beurre persillés 0.594 (0.383–0.848) 200 <0.001

Green cabbage Vinaigrette chou vert vinaigrette 0.575 (0.38–0.812) 229 <0.001

gingerbread chicken poulet au pain d’épices 0.571 (0.209–0.905) 30 <0.001

chicken with supreme sauce poulet sauce supreme 0.562 (0.195–0.925) 30 <0.001

natural omelette omelette nature 0.535 (0.327–0.802) 160 <0.001

parsley cauliflower chou fleur persillé 0.534 (0.342–0.796) 398 <0.001

orange orange 0.48 (0.3–0.734) 283 <0.001

Cooked and dry sausage saucisson cuit et sec 0.479 (0.282–0.763) 199 <0.001

sautéed deer sauté de biche 0.479 (0.282–0.763) 199 <0.001

Fresh celery remould céleri frais rémoulade 0.478 (0.252–0.773) 94 <0.001

bolognese trim garniture bolognaise 0.457 (0.244–0.756) 113 <0.001

couscous vegetables légumes couscous 0.438 (0.23–0.774) 163 <0.001

Comté slice Comté portion 0.433 (0.25–0.714) 214 <0.001

papet from Jura papet jurassien 0.429 (0.24–0.726) 201 <0.001

spaghetti spaghetti 0.426 (0.0793–0.852) 30 0.0053

hard boiled egg with Mornay sauce oeuf dur sce mornay 0.406 (0.211–0.714) 139 <0.001

Cheese Pie tarte au fromage 0.386 (0.206–0.691) 200 <0.001

Coffee mousse Mousse café 0.382 (0.203–0.688) 200 <0.001

cauliflower flan flan de chou fleur 0.371 (0.19–0.699) 196 <0.001

farmer pâté pâté de campagne 0.338 (0.176–0.63) 213 <0.001

parsley green beans haricots verts persillés 0.337 (0.186–0.62) 398 <0.001

raspberry pie tarte aux framboises 0.323 (0.157–0.655) 201 <0.001

Fig pastry with vanilla cream Figue 0.318 (0.157–0.628) 200 <0.001

Camembert slice Camembert portion 0.3 (0.0733–0.761) 57 0.001

cauliflower salad chou fleur en salade 0.29 (0.144–0.579) 229 <0.001

Clementine clémentine 0.289 (0.0352–0.767) 42 0.009

Hedgehog hérisson 0.235 (0.102–0.536) 201 <0.001

raspberry pastry framboisier 0.218 (0.0872–0.52) 175 <0.001

cheese omelette omelette au fromage 0.213 (0.0785–0.519) 149 <0.001

Strasbourg salad salade strasbourgeoise 0.198 (0.0515–0.519) 104 <0.001

choux pastry with whipped cream chou chantilly 0.186 (0.0294–0.708) 110 0.0038

choux pastry with vanilla cream chou vanille 0.177 (0.0648–0.459) 191 <0.001

Applesauce Compote de pommes 0.169 (0.0573–0.497) 199 <0.001

salted cake cake salé 0.168 (0.061–0.444) 200 <0.001

Liège coffee Café liégeois 0.131 (0.0401–0.386) 200 <0.001

liver pâté pâté de foie 0.129 (−0.112–0.671) 29 0.18

Chocolate flan Flan chocolat 0.099 (0.0224–0.329) 199 0.0014
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Table A1. Cont.

Labelled Dishes in English Labelled Dishes in French ICC (95%CI) Number of Images p Values

Flavored yogurt Yaourt aromatisé 0.0929 (0.0221–0.286) 230 0.0013

chocolate eclair éclair chocolat 0.0756
(−0.109–0.665) 30 0.24

milk chocolate mousse Mousse chocolat lait 0.0637
(0.00361–0.259) 198 0.016

clafoutis with cherries clafoutis aux cerises + 0.0527 (−0.17–0.779) 21 0.33

20% fat plain yogurt Fromage blanc 20% 0.0521
(−0.00104–0.267) 199 0.029

Garlic and herbs cheese fromage Ail et fines herbes 0.0167
(−0.0173–0.192) 200 0.21

pear pie tarte aux poires 0.00198
(−0.0444–0.163) 129 0.42

endive with ham endives au jambon 0 11 1

Hoki fillet Crustacean sauce filet de hoki sauce crustacés 0 4 1

mackerel fillet filets de maquereaux 0 4 1

Semolina Cake Gâteau de semoule 0 27 0.56

Lemon mousse Mousse citron 0 29 0.55

Appendix B. Details of the Learning Parameters Using Mask-RCNN
Deep Learning Algorithm

We used default mask_rcnn_inception_resnet_v2_atrous_coco learning parameters,
except for the learning rate scheduler, which we set to cosine decay scheduling instead
of the default manual step scheduling. The cosine decay parameters are set as follows:
total_steps to 200,000 iterations, warmup_steps to 50,000 iterations, warmup_learning_rate
to 0.0001 and learning_rate_base: 0.002.
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