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Cognitive tasks induce fluctuations in the functional connectivity between brain regions

which constitute cognitive networks in the human brain. Although several cognitive

networks have been identified, consensus still cannot be achieved on the precise borders

and distribution of involved brain regions for each network, due to the multifarious use

of diverse brain atlases in different studies. To address the problem, the current study

proposed a novel approach to generate a fused cognitive network with the optimal

performance in discriminating cognitive states by using graph learning, following the

synthesization of one cognitive network defined by different brain atlases, and the

construction of a hierarchical framework comprised of one main version and other

supplementary versions of the specific cognitive network. As a result, the proposed

method demonstrated better results compared with other machine learning methods for

recognizing cognitive states, which was revealed by analyzing an fMRI dataset related to

themental arithmetic task. Our findings suggest that the fused cognitive network provides

the potential to develop new mind decoding approaches.

Keywords: systematic fusion, brain atlas, cognitive network, fronto-parietal network, fMRI

1. INTRODUCTION

Cognitive functions of the human brain rely on neuronal activities, as well as the intra-neural
networks and inter-neural networks. Modern neuroimaging technologies, such as functional
magnetic resonance imaging (fMRI), have provided effective approaches to revealing the patterns
of the neural network, also known as cognitive network, during the cognitive processes. Being a
vital control-type cognitive network, the fronto-parietal network (FPN) occupying brain regions
across the lateral prefrontal cortex to the posterior parietal cortex, plays a critical role in imposing
cognitive control on a variety of tasks by initiating and deploying executive control abilities. As
a result, it has always been in a flexible state full of dynamic changes while other processing-
type cognitive networks are deemed to be more comparatively modular and static (Dosenbach
et al., 2008). Previous studies on structural and functional neuroimaging have reached a general
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consensus that the FPN is responsible for intelligence, integrated
with the cognitive functions including perception, attention,
memory, language, and planning (Colom et al., 2010). Many
fMRI and PET studies on attention, working memory, and
episodic memory retrieval have reported the frequent detection
of the FPN’s activity. Moreover, the activation of the FPN was
observed in some fMRI studies for conscious visual perception
(Naghavi and Nyberg, 2005), and the FPN in the Theta band was
found to take a vital role in a mentally demanding arithmetic task
(Mizuhara and Yamaguchi, 2007). Consequently, the exploration
of the FPN can help to provide amore comprehensive and precise
understanding of the intelligence and cognitive abilities of the
human brain.

Given that the human brain is a precisely interconnected
system network, graph theory has increasingly proved to be a
popular tool for the analysis of human MRI data (Fornito, 2016).
By adopting graph analysis, it is found that the local and global
integrity of the FPN, the cingulo-opercular network (CON), and
other control-type cognitive networks, are significantly positively
associated with cognitive abilities. It suggests that greater network
efficiency supports better cognitive ability, evidenced by the
similar performance in healthy participants and patients with
schizophrenia (Sheffield et al., 2015). Under the resting state, the
functional connectivity between the critical regions of the FPN is
identified to be linked to the cognitive performance of patients
with glioma as well as their cognitive outcome after the surgery
treatment (Lang et al., 2017). The FPN and its subregions can
change the functional connectivity with nodes of other cognitive
networks on the different goals of cognitive tasks. In addition,
the functional connectivity pattern of the FPN can indicate
its involvement in specific tasks, and facilitate the novel tasks’
learning in the form of a transferable code (Zanto and Gazzaley,
2013). Therefore, the FPN can be regarded as a defined control
network, whose partial function is to interact with and change
other cognitive networks (Marek and Dosenbach, 2018).

The cognitive networks in the human brain are often defined
on the basis of anatomical or functional brain atlases. Automated
Anatomical Labeling (AAL) is a commonly used anatomy-based
structural brain atlas (Tzourio-Mazoyer et al., 2002). On the
basis of AAL, the FPN and its default mode network (DMN)
can be structurally defined, where the FPN has six regions in
the frontal lobe and four regions in the parietal lobe (Oliver
et al., 2019). The FPN can also be defined with some functional
brain atlases. For instance, Dosenbach-160 (Dosenbach et al.,
2010) is a human brain atlas consisting of 160 regions of
interest (ROIs), where each ROI is uniquely assigned to one
of its six cognitive networks. Power-264 (Power et al., 2011)
is a human brain atlas composed of 264 ROIs, of which 236
ROIs are uniquely assigned to the given part of its 13 cognitive
networks yet the remaining 28 ROIs belong to which part of the
cognitive networks remains uncertain. There are 21 ROIs and 28
ROIs identified in the FPNs of Dosenbach-160 and Power-264,
respectively.Willard-499 (Richiardi et al., 2015) is a voxel-defined
brain atlas, and its 142 regions can be identified in one of its 14
cognitive networks while the cognitive networks to which the
remaining 357 regions belong are unknown. Willard-499 does
not make an explicit definition of the FPN, yet it defines two

executive control networks (ECNs), namely, the left ECN and
the right ECN located in the two hemispheres. Given that FPN
and ECN are conceptually equivalent (Seeley et al., 2007; Vincent
et al., 2008), the FPN can be obtained by tailoring the ECN of
Willard-499. Moreover, some researchers defined a small brain
atlas manually for their own research. For example, the brain atlas
Gao-32 (Gao and Lin, 2012) consists of 32 ROIs, where each ROI
is uniquely assigned to one of its five cognitive networks. The
FPN of Gao-32 contains nine ROIs in the frontal lobe, parietal
lobe, and insula. Despite the conceptual consistency in cognitive
neuroscience, the above mentioned frameworks of FPN differ
in their structures and distributions. The differences between
the multiple FPNs bring challenges to exploring the processing
mechanisms of FPNs in human brain cognitive tasks.

The various versions of the FPN definitions result in the fact
that any exploration of the FPN from just a single perspective
may only result in one sided outcome. Given the complexity
of brain science, brain informatics (Zhong et al., 2011) claimed
the importance and necessity of a thorough exploration for the
research of human information processing system (HIPS). Thus,
a systematic fusion ofmulti-source FPNsmay provide an effective
way to address this problem by providing a comprehensive
and systematic investigation. This article aims to propose a
graph-learning-based method for fusing multi-source cognitive
networks and tends to evaluate it with its application to the
fusion of the FPNs from multiple brain atlases. Three steps are
involved to achieve this method as shown in Figure 1. The first
step is to study and adjust the FPNs defined in the multiple
brain atlases, so as to ensure the consistent boundaries between
the regions contained in all the FPNs and to spatially synthesize
the multi-source FPNs for the realization of a combined FPN.
The second step is to analyze the functional connectivity of
the combined FPN under a specific cognitive task and to
calculate the graph properties of each independent FPN in the
combined FPN. The single FPN with the optimal performance
in discriminating the graph properties under different cognitive
states is chosen as the main FPN while other FPNs are accepted
as the supplementary FPNs. In the last step, the main cognitive
network is adopted as the initial candidate fused FPN, into
which the ROIs in all the supplementary FPNs are added one
by one according to their nodal index. The iteratively fused FPN
composed of the main FPN and the added ROIs has the optimal
index and, thus, is set as the final fused FPN. The experiment
materials are the fMRI data generated by mental arithmetic task
(Yang et al., 2017) and the resulting fused FPN will be evaluated
by comparing it with other classic machine learning methods.

2. METHODOLOGY

2.1. Synthesizing Multi-Source Cognitive
Networks
Closely related to the core cognitive functions of the human
brain, the FPN has been widely discussed in the research
literature on brain atlases. However, no agreement has been
reached on the definition of the FPN and its relative descriptions,
and some obvious differences or even contradictions still exist
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FIGURE 1 | Systematic fusion of multi-source cognitive networks, (A) combined cognitive network synthesized from multiple brain atlases, (B) main and

supplementary cognitive networks obtained from graph analysis, (C) fused cognitive network computed from cognitive networks fusion algorithm.
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between different brain atlases. To better explore the fusion of
cognitive networks congruent with the FPN, this section will first
analyze several typical brain atlases that define the FPN, and then
clip some FPNs to obtain a reasonable combined FPN. Given the
FPN is just one specific type of cognitive network in the human
brain, it is necessary to generalize the definitions of cognitive
network initially.
Definition 1. CN is the concept of a cognitive network that
specializes in specific cognitive functions of the human brain,
and (CN)I refer to the set of all the concrete cognitive network
instances of CN. CNinst , the element in the set of (CN)I , is one
instance of CN and constituted by a collection of ROIs, as shown
in Equation 1.

CNinst = {ROI1,ROI2, ...,ROI|CNinst |},CNinst ∈ (CN)I (1)

where |CNinst| is the ROIs’ number of CNinst .
The ROIs in different instances of CN vary from different

reference brain atlases. If a specific CN has the instances of
CN1,CN2, ...,CN|(CN)I |, the union of all the instances constitutes
the combined cognitive network of CN, defined and shown in
Equation 2.
Definition 2. A combined cognitive network noted as CCN and
formulated in Equation 2 is the set of ROIs from all the instances
of the same specific CN. |(CN)I | is the instances’ number of the
specific CN.

CCN =

|(CN)I |⋃

i=1

CNi,CNi ∈ (CN)I (2)

It should be noted that ROIs with equal Montreal Neurological
Institute (MNI) coordinates may come from different instances
of CN. Given that these ROIs originate from different brain
atlases or research, the ROIs with the same MNI coordinates
are still considered to be different. That is, CNi

⋂
CNj =

∅,∀CNi,∀CNj ∈ (CN)I , i 6= j. With regards to the different
ROIs from the same instance of CN, they do not have the same
MNI coordinates.

To synthesize a combined cognitive network with the FPNs as
a specific case, the investigation of the ROIs contained in each
instance of the FPN must be initially conducted. The brain atlas
Gao-32 defines an FPNwith nine ROIs, as shown in Figure 2A, of
which seven red ROIs belong to the frontal lobe or parietal lobe,
while the two blue ROIs belong to the insula. The present study
does not define the insula as the portion of the FPN. Previous
emotion-controlling studies on the exploration of the emotion-
regulating strategies failed to prove the possible connections
between insula-active and FPN-active regions (Li et al., 2021),
which indicates that the insula may not be a part of the FPN on
the edge. Suppose these results are correct, there are only seven
ROIs left in the FPN of Gao-32 after the removal of the insula
ROIs. Moreover, very scant follow-up studies were conducted to
make a further validation of Gao-32, thus the FPN of Gao-32 is
not on the consideration list for the present study. The brain atlas
Power-264 defines an FPN with 25 ROIs, as shown in Figure 2B,
in which 24 red ROIs belong to the frontal lobe or parietal lobe,

while the only blue ROI belongs to the temporal lobe. Although
previous studies have indicated that many cognitive networks
vary among subjects, a great level of overlap can be identified
from the FPN of multiple subjects in the internal parietal sulcus,
ventral inferior temporal gyrus, and lateral prefrontal cortex
(Marek and Dosenbach, 2018). Given that one ROI in the FPN of
Power-264 belongs to the middle temporal gyrus in the temporal
lobe, it is removed from the definition of the FPNwith the Power-
264 in the present study. The brain atlas Willard-499 defines an
ECN containing 24 regions, as shown in Figure 2C, 17 of which
belong to the frontal lobe or parietal lobe. In addition, there is
one specific region in both limbic and temporal lobes and five
particular regions in the cerebellum. Considering Willard-499
is defined with numbers for different regions rather than with
specific names, only the regions located in the frontal lobe or
parietal lobe in the ECN of Willard-499 are retained, so as to
reach the congruity between the Power-264 clipping strategy and
the lobes involved in the FPN of other brain atlases. A customized
Willard-499 FPN is finally obtained as shown in Figure 2D.

Partial brain atlases defined their FPNs containing regions
or ROIs that only belong to the frontal lobe or parietal lobe,
resulting in the congruity between conceptual boundaries when
synthesizing multi-source FPNs. The FPN defined on the basis of
AAL contains 10 regions (Oliver et al., 2019), all of which belong
to the frontal lobe or parietal lobe, as shown in Figure 3A. The
FPN obtained from the central ROI of each region is shown in
Figure 3B. Dosenbach-160 defines an FPN with 21 ROIs, and all
ROIs belongs to the frontal lobe or parietal lobe exclusively, as
shown in Figure 3C. The original FPN of Power-264 is clipped to
obtain a pruned FPN with 24 ROIs, as shown in Figure 3D. An
FPN with 17 regions is obtained by clipping the original Willard-
499 ECN, and the ROIs in the new FPN ofWillard-499 are shown
in Figure 3E.

In the present study, the original or clipped FPNs with
reference to AAL, Dosenbach-160, Power-264, and Willard-499
are confined to the frontal lobe and parietal lobe, providing the
congruent lobe boundaries to synthesize multi-source FPNs. The
combined FPN contains 72 ROIs, located in the frontal lobe or
parietal lobe, and their distributions in the brain are shown in
Table 1. Of all the forty-seven frontal ROIs in the combined FPN,
six come from AAL, 13 from Dosenbach-160, 17 from Power-
264, and 11 from Willard-499. On top of that, four ROIs from
AAL, eight ROIs from Dosenbach-160, seven ROIs from Power-
264, and six ROIs from Willard-499 constitute the 25 parietal
ROIs in the combined FPN.

Taking the FPN as a specific concept of the cognitive network
as an example, if the four FPNs mentioned above make up all the
instances of the FPN, the definition of the instances set of the FPN
can be shown in Equation 3.

(FPN)I = {FPNa, FPNd, FPNp, FPNw} (3)

where FPNa, FPNd, FPNp, and FPNw represent the FPNs in the
brain atlas of AAL, Dosenbach-160, Power-264, and Willard-
499, respectively.

To arrive at a comprehensive examination of all the FPNs
defined in these human brain atlases, all the contained ROIs need
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FIGURE 2 | Definition issues of the FPNs in some brain atlases, (A) the ROIs in the FPN of Gao-32, where the blue ROIs belong to the insula, (B) the ROIs in the FPN

of Power-264, where the only blue ROI belongs to the temporal lobe, (C) the regions in the ECN of Willard-499, where some of the regions belong to limbic lobe,

temporal lobe, or cerebellum, and (D) the frontal and parietal regions in the ECN of Willard-499.

to be synthesized. And the definition of the combined FPN is
shown in Equation 4.

CombinedFPN = FPNa

⋃
FPNd

⋃
FPNp

⋃
FPNw (4)

Compared with other FPN instances, more ROIs in
CombinedFPN mean more various dimensions of the correlation

matrices for functional connectivity analysis, resulting in the
difficulty in interpreting the final results of the CombinedFPN.

Consequently, the following section will discuss how to set a

given FPN instance as the main FPN in the CombinedFPN, and
then choose some ROIs with higher priority from the remaining

supplementary FPNs to construct a fused FPN so as to ensure
a reasonable range of the dimensions, as well as the optimal
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FIGURE 3 | Multi-source FPNs for synthesizing the combined FPN, (A) the regions belong to the FPN of AAL, (B) 10 ROIs of the FPN in AAL, (C) 21 ROIs of the FPN

in Dosenbach-160, (D) 24 ROIs of the FPN in Power-264, and (E) 17 ROIs of the FPN in Willard-499.
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TABLE 1 | Combined fronto-parietal network.

Cognitive

network

Number of ROIs

Frontal Parietal Occipital Temporal Limbic Cerebellum

FPN of AAL 6 4 0 0 0 0

FPN of

Dosenbach-

160

13 8 0 0 0 0

FPN of

Power-264

17 7 0 1 0 0

ECN of

Willard-499

11 6 0 1 1 5

Combined

FPN

47 25 0 0 0 0

TABLE 2 | Fused fronto-parietal network.

Cognitive network Number of ROIs

Frontal Parietal

FPN of AAL 5 2

FPN of Dosenbach-160 13 8

FPN of Power-264 11 5

ECN of Willard-499 4 3

Fused FPN 33 18

performance in discriminating the graph properties of the FPN
under different cognitive states.

2.2. Selecting Main Cognitive Network
Although the synthesis of multi-source cognitive networks can
examine more cortical regions relevant to the cognitive task, such
an operation will contribute to the increase of computational
load during data analysis, as well as the worse performances in
discriminating the graph properties of the FPN under different
cognitive states. Alternatively, the concentration on one specific
instance of the cognitive network may help to provide a
consensus to reach a better interpretation of the analyzed results.
Consequently, there is a need to select one instance of CN as the
main cognitive network and set the remaining instances of CN as
the supplementary cognitive networks.
Definition 3. The main cognitive network noted as MCN and
formulated in Equation 5 is the instance of CN and has the
optimal performance, compared with any other instances of CN,
in discriminating the graph properties under different cognitive
states for the relative task.

MCN ∈ (CN)I , P(MCN) ≥ P(CNi),CNi ∈ (CN)I ,CNi 6= MCN
(5)

where P stands for the performance, usually set as the P-value, in
discriminating the graph properties of the FPN under different
cognitive states. The P-Value of each instance of CN is given in
Algorithm 1. The remaining instances ofCN excludingMCN are
the supplementary cognitive networks.

Algorithm 1:Main cognitive network selection.

Data:MatricesConditions
Input: (CN)I ,Conditions, Subjects
Output:MainROIs, SuppROIs
begin

// Stage 1
subnetP-Values = ∅

for candidateMain ∈ (CN)I do
MatricesIndices = InitMatrix(|Conditions|, |Subjects|)
for c ∈ range(|Conditions|) do

for s ∈ range(|Subjects|) do
index = GraphProperty(MatricesConditionsc,s,
candidateMain)
MatricesIndicesc,s = index

P-Value = StatisticalTest(MatricesIndices)
add P-Value to subnetP-Values

MainIndex = indexOfMin(subnetP-Values)
MainROIs = (CN)I

MainIndex

// Stage 2
UnsortedSuppROIs = Union[(CN)I]−MainROIs
nodalP-Values = ∅

for roi ∈ UnsortedSuppROIs do
MatricesIndices = InitMatrix(|Conditions|, |Subjects|)
for c ∈ range(|Conditions|) do

for s ∈ range(|Subjects|) do
index =

GraphProperty(MatricesConditionsc,s, {roi})
MatricesIndicesc,s = index

P-Value = StatisticalTest(MatricesIndices)
add P-Value to nodalP-Values

SuppROIs = sort(UnsortedSuppROIs, nodalP-Values)

returnMainROIs, SuppROIs

Definition 4. The supplementary cognitive network noted as
SCN and formulated in Equation 6 refers to any instances of CN
excludingMCN.

SCN ∈ (CN)I − {MCN} (6)

The selection procedure of MCN and SCN is depicted in
Algorithm 1, with the manipulated dataMatricesConditions. The
input parameters include (CN)I , Conditions, and Subjects, and
the output parameters include MainROIs and SuppROIs. (CN)I

is the set of all instances of CN, while Conditions and Subjects
are arrays containing the conditions and subjects of the cognitive
task respectively. The returned MainROIs are a non-priority list
of ROIs from MCN, and SuppROIs are a prior list of ROIs from
all SCNs. Algorithm 1 can be divided into two stages as follows:
Stage 1: Select the cognitive network in (CN)I with the optimal

performance as the MCN, and append the ROIs of MCN into
a non-priority list asMainROIs.
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Stage 2: Merge the ROIs of all SCNs in (CN)I into a non-
priority list as UnsortedSuppROIs, and reorder the ROIs in
UnsortedSuppROIs into a priority list as SuppROIs according
to their nodal graph property.

The dataMatricesConditions is a four-dimensional matrix, where
the first dimension refers to the conditions of the cognitive task,
and the dimension size stands for the number of conditions. For

instance, if the mental arithmetic task only involve the conditions
of addition and subtraction, the dimension size will be set as
two. The subjects recruited for the cognitive task stand for the
second dimension, thus this dimension size is measured by the
number of subjects. In the present study, twenty-one subjects
participated in the present mental arithmetic task, and thus, the
subjects’ dimension size is 21. The third and fourth dimensions of

FIGURE 4 | The four-dimensional matrix MatricesConditions, where the first dimension represents the conditions in the cognitive task, and the second dimension

represents the subject. When the condition and subject are set, the obtained two-dimensional matrix stands for the brain functional connectivity matrix of the subject

under the current cognitive task condition, and the shape of the two-dimensional matrix is determined by the ROIs’ number of the adopted cognitive network.
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the matrix both represent the nodes contained in the CCN. Since
the combined FPN here contains a total of 72 nodes, the sizes of
the two dimensions are both 72 in the current case.

The intermediate two-dimensional matrix
MatricesConditionsc,s at both stages is the sub-matrix of
MatricesConditions where c represents the index of the cognitive
task condition in Conditions and s represents the index of the
subject in Subjects. MatricesConditionsc,s basically stands for the
functional connectivity matrix of the subject Subjectss under
the cognitive task condition Conditionsc. Since the functional
connectivity matrix of MatricesConditionsc,s is constructed
on the basis of CCN, the shape of MatricesConditionsc,s is
|CCN| × |CCN|. The relationship between MatricesConditions
and its sub-matrixMatricesConditionsc,s is shown in Figure 4.

The functional connectivity matrix of MatricesConditionsc,s
for each subject under specific cognitive conditions has been
given, yet what actually needs to be calculated is the graph
property of the candidate’s main cognitive network, noted as
candidateMain in the top loop at Stage 1, as well as the nodal
graph property of the ROI, noted as roi in the top loop at Stage
2. Since candidateMain is a proper subset of CCN, and roi is an
element of CCN, the graph property calculation implemented by
the function of GraphProperty is based on MatricesConditionsc,s
as the first parameter. The second parameter of GraphProperty is
of great significance in that its setting size can determine whether
the calculating processing is targeted at graph property or nodal
graph property. The metric choice of graph property includes
degree centrality, clustering coefficient, and network efficiency.
In the present study, degree centrality is set as the metric for its
popular application in discriminating the graph properties under
different cognitive states.

The intermediate two-dimensional matrix MatricesIndices
at the two stages is used for storing the performance of
each candidate’s main cognitive network in (CN)I or the
performance of each ROI in UnsortedSuppROIs. The shape of
MatricesIndices is |Conditions|× |Subjects|, andMatricesIndicesc,s
is the cell in the cth row and the sth column to store the
performance corresponding to subject Subjectss under cognitive
condition Conditionsc.

The function StatisticalTest at the two stages is used to conduct
the statistical test between the rows ofMatricesIndices, and return
the P-Value which represents the performance in discriminating
the graph properties under different cognitive states. The
row number, namely the number of cognitive conditions, of
MatricesIndices needs to be considered in the choice of a specific
test function. If the row number of MatricesIndices is two, the
statistical analysis of the t-test or the χ

2 test can be adopted, yet
if the row number is greater than two, the statistical analysis of
variance needs to be utilized.

When the P-Value of each candidateMain at Stage 1 is
obtained, the cognitive network with the minimum P-Value is
selected as the main cognitive network, and the ROIs in the
main cognitive network are appended into the non-priority
list MainROIs. Similarly, after the acquisition of P-Value of
each roi from UnsortedSuppROIs at Stage 2, the ROIs in
UnsortedSuppROIs are reordered and appended into the prior list
SuppROIs. Finally, the MainROIs and SuppROIs are returned by
the algorithm.

Algorithm 2: Cognitive networks fusion.

Data:MatricesConditions
Input: Conditions, Subjects,MainROIs, SuppROIs
Output: FusedROIs, FusedP-Value
begin

// Stage 1
P-Values = ∅

iterFusedROIs = MainROIs
for roi ∈ SuppROIs do

add roi to iterFusedROIs
MatricesIndices = InitMatrix(|Conditions|, |Subjects|)
for c ∈ range(|Conditions|) do

for s ∈ range(|Subjects|) do
index = GraphProperty(MatricesConditionsc,s,
iterFusedROIs)
MatricesIndicesc,s = index

P-Value = StatisticalTest(MatricesIndices)
add P-Value to P-Values

// Stage 2
FusedIndex = indexOfMin(P-Values)
FusedP-Value = P-ValuesfusedIndex
FusedROIs = MainROIs
for i = 0; i ≤ fusedIndex; i++ do

add SuppROIsi to FusedROIs

return FusedROIs, FusedP-Value

2.3. Searching a Fused Cognitive Network
WhenMCN, consisting of the ROIs inMainROIs, is selected and
set as the main cognitive network, it will be utilized as the base for
fusing the ROIs, which are stored in the priority list SuppROIs,
from all the supplementary cognitive networks.
Definition 5. Fused cognitive network, noted as FCN and
formulated in Equation 7, is the union ofMCN and the set, noted
as Sub(SuppROIs, fusedIndex), constituted by the first number of
fusedIndex ROIs in SuppROIs, and has the optimal performance
in discriminating the graph properties under different cognitive
states for the relative task.

FCN = MCN
⋃

Sub(SuppROIs, fusedIndex) (7)

The second parameter in Sub operation determines how
many ROIs are chosen from the beginning of SuppROIs
to constitute the set, and its value ranges from 0 to
|SuppROIs|. Sub(SuppROIs, 0) means an empty set, and
Sub(SuppROIs, |SuppROIs|) means the set containing all the
ROIs in SuppROIs. Since FCN has the optimal performance, it
can be inferred that P(MCN

⋃
Sub(SuppROIs, fusedIndex)) ≥

P(MCN
⋃

Sub(SuppROIs, i)), where P is the same as the one
defined in Equation 5, and i 6= fusedIndex.

Therefore, the essence of searching the FCN is to find
the value of fusedIndex and to integrate the ROIs in
Sub(SuppROIs, fusedIndex) into MCN to construct the
FCN. The search process of the fusedIndex is implemented
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FIGURE 5 | Statistical comparison results of the FPNs’ topological property (degree centrality) between the addition and subtraction cognitive states. The FPN of

Dosenbach-160 has yielded the sharp differences with the biggest statistical significance between the two cognitive states of mental arithmetic, followed by the FPNs

of CCN (Combined Cognitive Network), AAL, Power-264, and Willard-499.

by Algorithm 2, which can be divided into two stages
as follows:
Stage 1: Initialize the candidate fused cognitive network,

represented as the list iterFusedROIs, with the ROIs in the non-
priority list MainROIs. Then, add the ROIs in SuppROIs into
the candidate fused cognitive network iteratively and append
the performance of the current candidate fused cognitive
network into the list of P-Values.

Stage 2: Select the minimum P-Value in P-Values and its
corresponding position, namely FusedIndex, in the list. The
ROI at the position of FusedIndex and all its leading ROIs
in SuppROIs, together with the ROIs in MainROIs, constitute
the final fused cognitive network FCN with the optimal
performance in discriminating the graph properties under
different cognitive states.

MatricesConditions, Conditions, and Subjects are the same as the
ones in Algorithm 1 and will be reused. The returnedMainROIs
and SuppROIs by Algorithm 1 are set as the input parameters
here. The output results, namely FusedROIs and FusedP-Value,

are the generated list of ROIs in the optimal fused cognitive
network FCN and its performance, respectively.

Despite the optimal performance in the entire iterative
searching process, further comparisons between the fused
cognitive network and the results obtained from other typical
machine learning methods are necessity.

3. EXPERIMENTS AND RESULTS

3.1. Experiment
The fMRI data comes from the mental arithmetic task of
simple addition and subtraction (Yang et al., 2017) designed
by the Web Intelligence Consortium (WIC). The goal of this
cognitive task is to study the regularity of brain neural activity
in simple arithmetic operations. Twenty-one subjects (12 males,
9 females) with no statistically significant differences were
recruited. Before the experiment, each subject was made clear
about the possible natural responses during the task process, and
all subjects signed an informed consent form. After obtaining
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FIGURE 6 | Results of the main FPN and supplementary FPNs, (A) the ROIs in MainROIs, i.e., the FPN in Dosenbach-160, (B) the ROIs in all the supplementary

FPNs, i.e., the FPNs in AAL, Power-264, and Willard-499. ROI with warmer colors has a higher priority in SuppROIs. Conversely, ROI with cooler color has a lower

priority in SuppROIs.

permission from the Ethics Committee of Xuanwu Hospital of
Capital Medical University, the cognitive task was implemented
and the fMRI data were collected by the WIC team in
the hospital.

The preprocessing of the fMRI data was conducted with
the software of Statistical Parameter Mapping (Friston et al.,
2007) in four steps, namely slice time correction, head motion
correction, spatial normalization, and smoothing. The Python
software package and other relative software packages were used
for the graph analysis of the fMRI data and the implementation
of the cognitive networks fusion algorithm. The NiBabel was
used for the basic manipulation of neuroimaging files like
fMRI data and the SciPy (Virtanen et al., 2020) was used for
Pearson coefficient calculation, FDR correction, and statistical
test. Topological indices in the graph analysis were calculated by
NetworkX (Hagberg et al., 2008), and the results were visualized
via NiLearn.

3.2. Results
As shown in Figure 5 all the instances of FPN, FPNd has the
optimal performance of the statistical test (P-Value = 0.00032)
between the degree centralities of the functional connectivity
matrices under the two mental arithmetic cognitive states,
followed by CombinedFPN (P-Value = 0.000328), FPNa

(P-Value = 0.000486), FPNp (P-Value = 0.000669), and FPNw

(P-Value = 0.001053), respectively. Consequently, FPNd is set as
MCN, and the remaining instances of FPN are used as SCN in the
following fusion of cognitive networks.

The result of Algorithm 1 is shown in Figure 6. FPNd is
selected as the main FPN and all the ROIs in FPNd are in
the returned non-priority list MainROIs as in Figure 6A. FPNa,
FPNp, and FPNw are all selected as the supplementary FPNs, all
the ROIs are in the returned priority list SuppROIs. As shown in
Figure 6B, the ROI with warmer color has a higher priority and
will be in closer propinquity to the head of SuppROIs, while the
ROI with cooler color has a lower priority and will be in closer
propinquity to the tail of SuppROIs. The position of the ROI in
SuppROIs determines the time when it will be added into the
candidate FPN in the iterative process of Algorithm 2.

The iterative process of Algorithm 2 is displayed in Figure 7.
FPNd is used as the initial candidate fused FPN, and the
ROIs in SuppROIs are added into the candidate fused FPN
one by one. The performance of the candidate fused FPN
in discriminating the graph properties under the two mental
arithmetic conditions is statistically tested during each iteration.
The results show that the candidate fused FPN, formed by the
ROIs of FPNd and the first 30 ROIs in SuppROIs, has the optimal
performance. The triangular part of the inferior frontal gyrus
from the right hemisphere of AAL is eventually added into the
resulting fused FPN with 51 ROIs. As shown in Table 2, the
numbers of ROIs belonging to the frontal and parietal lobes in
the fused FPN are 33 and 18, respectively. More specifically,
among the 33 ROIs in the frontal lobe, the numbers from
the FPNs in brain atlas of AAL, Dosenbach-160, Power-264,
and Willard-499 are 5, 13, 11, and and 4 respectively while
the corresponding numbers are 2, 8, 5, and 3 in the parietal
lobe respectively.
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FIGURE 7 | The iterative statistical test of the graph properties of the candidate fused FPNs in discriminating the cognitive states. When Dosenbach-160 is set as the

initial candidate fused FPN, and the top thirty of all ROIs in AAL, Power-264, and Willard-499 are added to Dosenbach-160, the candidate fused FPN can produce the

most significant statistical performance. The last ROI to be added to the fused FPN is the triangular part of the inferior frontal gyrus from the right hemisphere of AAL.

The spacial differences can be intuitively identified between
the distributions of the ROIs of the generated FPNs with a close
eye on Figure 8. Figures 8A–D display the FPNs with the top
51 ROIs chosen by ExtraTrees, AdaBoost, RandomForest, and
XGB, respectively. The fused FPN calculated by Algorithm 2

is shown in Figure 8E. The numbers of ROIs located in the
frontal lobe and parietal lobe are 31/20 (ExtraTrees), 36/15
(AdaBoost), 35/16 (RandomForest), 35/16 (XGB), and 33/18
(Algorithm 2). All these algorithms are conducted on the basis
of CombinedFPN. Since CombinedFPN yields 47 ROIs and
25 ROIs in the frontal lobe and parietal lobe, respectively,
it could be judged that the distribution ratio of ROIs in
the two lobes generated from Algorithm 2 is close to that
of CombinedFPN.

On the other hand, compared with the adopted machine
learning algorithms, Algorithm 2 has the optimal performance,
as shown in Figure 9 and Table 3, of the statistical test
(P-Value = 4.7e-05) between the degree centralities of the
functional connectivity matrices under the twomental arithmetic
cognitive states, followed by that of ExtraTrees (P-Value =

0.000291), XGB (P-Value = 0.000353), RandomForest
(P-Value = 0.000372), and AdaBoost (P-Value = 0.000453).
Such a performance is even better than that of CombinedFPN
(P-Value = 0.000328). In a word, it can be safely concluded

that Algorithm 2 can choose the FPN better representing the
cognitive states of mental arithmetic.

4. DISCUSSION

In the present study, the graph properties of the multi-source
FPNs, combined FPN, fused FPN, and the FPNs generated by
the adopted machine learning methods can be effectively used
to discriminate the graph properties under different cognitive
states in mental arithmetic task. Such a result lends support
to the previous studies about the major dependence of adults’
arithmetic ability on the FPN. To date, many research methods
have been adopted to explore the possible role of the FPN
in mental arithmetic, such as the meta-analysis of the brain
regions involved in numbers and mental arithmetic (Arsalidou
and Taylor, 2011), the pathway analysis on the brain mental
arithmetic (Dehaenea and Cohen, 1997), and the structural
connection analysis on the code model involved in mental
arithmetic (Klein et al., 2013, 2016). All these studies proved
that the mental arithmetic processing can activate the adult
brain’s FPN, which consists of the superior parietal lobule (SPL)
and inferior parietal lobule (IPL) in the parietal regions, and
inferior frontal gyrus (IFG), middle frontal gyrus (MFG), and left
superior frontal in frontal regions.
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FIGURE 8 | FPNs with 51 ROIs calculated by different methods. ROIs with colors teal, blue, red, magenta come from AAL, Dosenbach-160, Power-264, and

Willard-499, respectively, (A) 6, 14, 17, and 14 ROIs are selected by ExtraTrees from the four brain atlases, respectively, (B) 8, 17, 13, and 13 ROIs are selected by

AdaBoost from the four brain atlases, respectively, (C) 5, 15, 18, and 13 ROIs are selected by RandomForest from the four brain atlases, respectively, (D) 7, 17, 14,

and 13 ROIs are selected by XGB from the four brain atlases, respectively, (E) 7, 21, 16, and 7 ROIs are selected by the cognitive networks fusion algorithm from the 4

brain atlases, respectively.
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FIGURE 9 | Statistical comparison results of the FPNs’ topological properties between the addition cognitive state and the subtraction cognitive state. Among them,

the fused FPN by the cognitive networks fusion algorithm has yielded the sharp differences with the biggest statistical significance between the two cognitive states of

mental arithmetic, followed by the FPNs generated by ExtraTrees, CCN (Combined Cognitive Network), XGB, RandomForest, and AdaBoost.

The FPN plays an important part in adults’ mental arithmetic
processing, and a similar network was also detected in children’s
mental arithmetic processing with experiment and retrospective
analysis (Peters and De Smedt, 2018). It is generally considered
that the FPN is in charge of perceiving the top-down activity
regulation of the cortex for attention preparation and memory
orientation. CON also plays a vital role in the cognitive control,
whose downstream effect may be attributed to the output gating
of memory. Thus, both the FPN and CON were indispensable in
controlling working memory (Wallis et al., 2015). By adopting
a functional connectivity analysis, the working memory in the
mental arithmetic tasks was also explored and the collaborative
work between the frontal lobes and parietal lobes in working
memory tasks was detected as well (Hagiwara et al., 2016).
However, the DMN was found to be passivated in the mental
arithmetic processing, which might be caused by the inhibitory
effect of functional network activation during the cognitive tasks
(Dimitriadis et al., 2010).

With regards to the big variations in the topological structure
of the FPN, it is likely to result from the significant differences in
the graph properties between the cognitive states of addition and
subtraction in performing the mental arithmetic processing. Via
the graph analysis and statistical analysis, significant differences

can be identified in the adopted metric of the FPN’s degree
centrality from different brain atlases under the two mental
arithmetic cognitive states. Such a result is consistent with the
findings of previous studies. For example, the subjects achieved
obvious improvements in their mathematics skills and the FPN
activities after attending the adaptive number-sense training. It
was found that the activation of the subjects’ bilateral parietal
lobe significantly increased, while the activation of their frontal
striatum and middle temporal lobe decreased considerably
(Kesler et al., 2011). Moreover, more activation of the FPN is
thought to be generated in the numerical inductive reasoning,
such as the mental arithmetic process, because more exchanges
might be transacted between the intermediate representations
and long-term declarative knowledge in the process of numerical
rule recognition (Liang et al., 2016). On top of that, the white
matter dispersion property of the FPN was also detected to be
effective in the prediction of children’s mental arithmetic ability
(Tsang et al., 2009).

5. CONCLUSION

Focusing on the multi-source cognitive networks, this
study takes the single-source cognitive network with the
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TABLE 3 | Performance of each method in discriminating cognitive states.

Method
Mean of degree centrality

P-Value

Addition Subtraction

Combined Cognitive Network 0.8474 0.7941 0.000328

ExtraTress 0.8384 0.7833 0.000291

AdaBoost 0.8371 0.7830 0.000453

RandomForest 0.8401 0.7845 0.000372

XGB 0.8536 0.7999 0.000353

Fused Cogntive Network 0.8536 0.7957 0.000047

optimal performance as the main cognitive network through
synthesizing the multi-source cognitive networks. The ROIs in
the supplementary cognitive networks are sorted and integrated
into the main cognitive network iteratively, so as to search for
the fused cognitive network with the optimal performance in
discriminating the graph properties under different cognitive
states. The potential advantages of the present research method
can be summarized as follows:

1. The distribution of the obtained ROIs in the fused FPN is
spatially closer to that of the combined cognitive network, and
the ROIs selected are better balanced between the frontal lobe
and parietal lobe.

2. The fused cognitive network is constructed under the
framework of the main cognitive network by integrating
the ROIs with top priority in the supplementary cognitive
networks. In the analysis of the fMRI data, the fused cognitive
network relies on the main cognitive network for the major
interpretation, together with the ROIs of supplementary
cognitive networks for the complementary explanation.

3. Compared with other typical machine learning algorithms, the
proposed method can yield better performance and the results
bear more self-consistency to those obtained in cognitive
neuroscience.

On the whole, it has proved that the proposed method can
produce a satisfactory evaluation performance and provide
a more reasonable interpretation for the related cognitive
neuroscience research. However, the potential impact of the
fused cognitive network on the cognitive computing model waits
for further explorations. Additionally, the generality of such a

proposed method also waits for further validations with diverse
brain atlases and various fMRI datasets.
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