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Abstract: The retina and, in particular, retinal pigment epithelial cells are unusual for being en-
cumbered by exposure to visible light, while being oxygen-rich, and also amassing photoreactive
molecules. These fluorophores (bisretinoids) are generated as a byproduct of the activity of vitamin A
aldehyde—the chromophore necessary for vision. Bisretinoids form in photoreceptor cells due to ran-
dom reactions of two molecules of vitamin A aldehyde with phosphatidylethanolamine; bisretinoids
are subsequently transferred to retinal pigment epithelial (RPE) cells, where they accumulate in
the lysosomal compartment with age. Bisretinoids can generate reactive oxygen species by both
energy and electron transfer, and they become photo-oxidized and photolyzed in the process. While
these fluorescent molecules are accrued by RPE cells of all healthy eyes, they are also implicated in
retinal disease.

Keywords: retina; retinal pigment epithelium; bisretinoid lipofuscin; photosensitization;
photo-oxidation; photodegradation; vitamin A-aldehyde

1. Introduction

In the cell, reactive oxygen species (ROS) are generated due to the ability of molecular
oxygen to accept electrons. ROS can be generated via both enzymatic and non-enzymatic
processes. For instance, superoxide anions (O2

•−) can be produced by the leakage of elec-
trons from the electron transport chain during oxidative phosphorylation in the mitochon-
dria, or by electron transfer from cytosolic nicotinamide adenine dinucleotide phosphate
oxidase (NADPH-oxidase), as occurs in monocytes [1]. Hydrogen peroxide (H2O2), on the
other hand, can be produced by the dismutation of superoxides, while hydroxyl radicals
(•OH) are generated from hydrogen peroxide by single-electron transfer in the presence of
Fe2+. •OH is highly reactive toward most organic molecules.

Photosensitizers, both natural and synthetic, are molecules that can be activated by
specific wavelengths of light, because they exhibit the conjugated double-bond systems
that are necessary for intersystem crossing to the triplet-excited state, wherein the spin of
the excited electron is reversed such that it is parallel to a ground-state electron. These π–
electron systems also permit long-lived triplet states that allow sufficient time for reaction
with neighboring target molecules [2,3]. The excited sensitizer in the triplet state may then
transfer energy to molecular oxygen, thereby generating excited-state singlet oxygen (1O2),
while the photosensitizer itself is returned to the ground state [1]. Subsequently, the singlet
oxygen produced by illumination can attack the photosensitizer (photobleaching) and/or
react with other molecules. Alternatively, a photosensitizer may transfer one electron
to oxygen to produce a superoxide anion (O2

•−). The latter can then be converted to
hydrogen peroxide (H2O2) by superoxide dismutase [4], with H2O2 forming the highly
reactive hydroxyl radical (•OH) in the presence of iron (Fenton reaction). The retina
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is unique in being burdened not only by exposure to light, but also by the age-related
accumulation of photoreactive molecules; the latter form as a byproduct of the activity of
vitamin A aldehyde—the chromophore necessary for vision.

2. Vitamin A Aldehyde and Bisretinoid Fluorophores

Bisretinoid fluorophores (Figure 1), which constitute the lipofuscin of the retina, form
non-enzymatically in photoreceptors’ outer segments due to random reactions of vita-
min A aldehyde with ethanolamine-containing phospholipids [5,6]. These fluorophores
accumulate throughout the lifetime of an individual but, as discussed later, they un-
dergo increased synthesis in some retinal disorders. The heterogeneous mixture of these
fluorophores includes A2-GPE (A2-glycero-phosphoethanolamine) (molecular weight,
747.0), A2-DHP-PE (A2-dihydropyridine-phosphatidylethanolamine) (molecular weight,
1224.8 with dipalmitoyl PE (C16:0)), all-trans-retinal dimer-PE (all-trans-retinal dimer phos-
phatidylethanolamine) (molecular weight 1225.8 with dipalmitoyl PE (C16:0), and A2E
(molecular weight, 592.9) [7–14]. Because these fluorophores accumulate in the retinal pig-
ment epithelium (RPE) after formation in photoreceptor cells, they are typically measurable
in the RPE but present at low levels or non-detectable in the neural retina.
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mophore are indicated. Phosphate cleavage of A2PE generates A2E. R, R1, and R2 are fatty acids with various carbon 
numbers and multiple double bonds. Adapted from [15]. 

Conversely, the phosphatidylpyridinium bisretinoid A2PE is measurable in photo-
receptor cells or whole neural retinae, and is the immediate precursor of A2E [16]. The 
most recently characterized bisretinoid is alkyl-ether-lysoA2PE (1-alkyl ether-2-
lysoA2PE) (1-octadecyl-2-lyso-sn-glyceroA2PE)—a fluorophore presenting with a single 
alkyl chain at the sn-1 position (340 and 440 nm, molecular weight, 999.5) [12]; this bisret-
inoid forms via the reaction of two vitamin A aldehydes with the ethanolamine head 
group of a glycerophospholipid with an ether bond at the sn-1 position, rather than the 
more common ester linkage. The structures of all of these pigments have been determined 
using various combinations of high-performance liquid chromatography, mass spectrom-
etry, Fourier-transform infrared spectroscopy, nuclear magnetic resonance, and total syn-
thesis [8,10–13,17]. All of the members of the bisretinoid family discussed above have been 

Figure 1. Structures of some of the bisretinoid fluorophores (A–J) known to be constituents of the lipofuscin of the retina.
The fluorescence capability of bisretinoids is provided by the extensive system of carbon–carbon double bonds within
the retinaldehyde-derived chromophore. Absorbance maxima (λmax) corresponding to the long and short arms of each
bischromophore are indicated. Phosphate cleavage of A2PE generates A2E. R, R1, and R2 are fatty acids with various carbon
numbers and multiple double bonds. Adapted from [15].

Conversely, the phosphatidylpyridinium bisretinoid A2PE is measurable in photore-
ceptor cells or whole neural retinae, and is the immediate precursor of A2E [16]. The
most recently characterized bisretinoid is alkyl-ether-lysoA2PE (1-alkyl ether-2-lysoA2PE)
(1-octadecyl-2-lyso-sn-glyceroA2PE)—a fluorophore presenting with a single alkyl chain
at the sn-1 position (340 and 440 nm, molecular weight, 999.5) [12]; this bisretinoid forms
via the reaction of two vitamin A aldehydes with the ethanolamine head group of a glyc-
erophospholipid with an ether bond at the sn-1 position, rather than the more common ester
linkage. The structures of all of these pigments have been determined using various combi-
nations of high-performance liquid chromatography, mass spectrometry, Fourier-transform
infrared spectroscopy, nuclear magnetic resonance, and total synthesis [8,10–13,17]. All of
the members of the bisretinoid family discussed above have been detected in both human
and murine retinae. A2 in the various nomenclatures reflects formation from two vitamin A
aldehyde molecules. Oxidative mechanisms are not involved in the formation of bisretinoid
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lipofuscin, unlike assumptions made for other forms of lipofuscin [18]; however, as will be
discussed below, oxygen participates in the photolysis of these compounds.

Structural features shared amongst bisretinoid chromophores include the alternating
single and double carbon–carbon bonds that originate from an aromatic head group. These
bonds extend along the two side-arms of the molecule and into the terminal β-ionone rings
(Figure 1). Each of these extended conjugation systems constitutes a chromophore, and
allows for electron transitions to excited states after absorption of specific wavelengths of
light. A2E and its isomers [8,16] A2-GPE [10] and A2PE [16] are characterized by a central
pyridinium ring that houses a quaternary amine nitrogen. The nitrogen does not undergo
deprotonation [8,19], and the positive charge on the pyridinium nitrogen is neutralized
by a counterion (probably chloride). While the double bonds along the side-arms of A2E
assume the trans (E) position, Z-isomers of A2E have double bonds at the C13/14 (isoA2E),
C9/9′-10/10′, and C11/11′-12/12′ positions [8]. Highly excited states enable intramolecular
modifications that produce these photoisomers. Rather than having a pyridinium ring,
A2-DHP-PE presents with a non-charged dihydropyridine ring at its core [13], while the
bisretinoid all-trans-retinal dimer presents with a cyclohexadiene ring. All-trans-retinal
dimer-E and all-trans-retinal dimer-PE are all-trans-retinal dimers attached to PE via an
imine function group (–C=N–), with a protonation state that is pH-dependent [7].

It is often stated that RPE lipofuscin consists of lipids and proteins [20]. However,
proteomics analysis of lipofuscin-containing organelles purified from human RPE reveals
that amino acids account for less than 2% of the constituents, yet these preparations
express photoreactivity and the expected content of bisretinoids such as A2E, isoA2E,
and all-trans-retinal dimer-phosphatidylethanolamine [21]. The compounds accounting
for autofluorescence accumulation in cultured RPE cells after 2 weeks of feeding their
isolated outer segments are not described [20]. Moreover, products of lipid peroxidation
(4-hydroxynonenal, HNE; malondialdehyde, MDA) that are assumed to originate in the
polyunsaturated-fatty-acid-rich outer segments of photoreceptors are also detected in RPE
lipofuscin [21,22] (Figure 2). While these lipid fragments are not the primary constituents
of RPE lipofuscin [23–25], photoreactive processes incited by bisretinoids may be involved
in their production. A mechanism such as this is consistent with studies demonstrating
that cell membranes incubated in the presence of light and isolated lipofuscin granules
undergo lipid peroxidation [26–28].
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Figure 2. Photosensitization can initiate lipid peroxidation. Reaction with singlet oxygen leading to 
lipid peroxide formation in the hydrophobic interior of lipid membranes. 1,2-Didocosahexaenoyl-
Figure 2. Photosensitization can initiate lipid peroxidation. Reaction with singlet oxygen leading to
lipid peroxide formation in the hydrophobic interior of lipid membranes. 1,2-Didocosahexaenoyl-
sn-glycero-3-phosphoethanolamine (22:6 PE) that contains polyunsaturated fatty acids is shown.
Hydroxyl radicals also initiate lipid peroxidation via hydrogen atom abstraction from a methylene
(-CH2-) group. Once peroxyl radicals are generated through multiple steps (stacked arrows), the
peroxyl radicals cause the formation of aldehyde-bearing end products of lipid peroxidation (lipid
fragmentation), such as HNE (4-hydroxynonenal) and MDA (malondialdehyde).
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3. Bisretinoids: Photosensitizers Unique to the Retina

It is often stated that because the retina is exposed to light and high oxygen tensions,
its tissue is subject to oxidative stress [29]. A co-requisite to these conditions, however, is a
chromophore capable of absorbing photons of specific energy via electron excitation. In the
retina, bisretinoids of lipofuscin serve in this role, because their structures include systems
of conjugated double bonds containing delocalized electrons that can absorb light and
allow the bisretinoid to enter an excited singlet state. Thus, using cholesterol peroxidation
assays, oxygen uptake [25,29,30], and ESR (electron spin resonance) spectroscopy, whole
lipofuscin extracts, isolated lipofuscin-storage organelles, and suspensions of RPE cells
have all been shown to exhibit photoreactivity under aerobic conditions, with efficiency
being greatest using short-wavelength visible light [26,30–37]. Photoexcited pigments in
lipofuscin granules have also been reported to form triplet states, with both singlet oxygen
and superoxide anions being produced [25,26,31,38].

Synthesized bisretinoids such as A2E, A2-GPE, and all-trans-retinal dimer have also
been shown to initiate photosensitization reactions that generate superoxide anion radicals
(O2
•−) and singlet oxygen (1O2) [10,11,34,35,37–44] (Figure 3). These photosensitization

studies included the detection of a characteristic 1270 nm phosphorescence indicative of
singlet oxygen, when A2E was irradiated at 430 nm [38,45].
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cals—also led to the appearance of an electron paramagnetic resonance (EPR) spectrum 
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Figure 3. Photosensitization and photo-oxidation of bisretinoids illustrated using the bisretinoid fluorophore A2E as a
model. The mass to charge ratio (m/z) of nonirradiated A2E is 592. Bisretinoids such as A2E initiate photosensitization
reactions that generate singlet oxygen and superoxides. Singlet oxygen is inserted into double bonds along the side-arms of
the molecule. The series of peaks from m/z 608 to 656 detected by electrospray ionization (ESI) mass spectroscopy indicate
the addition of oxygen (mass 16), and reflect photo-oxidation at carbon–carbon double bonds. Proposed structures of the
oxygen-containing modifications of A2E include furan, epoxide, and endoperoxide moieties.

Irradiation of the bisretinoid A2E with 430 nm light in the presence of DMPO
(5,5′-dimethyl-1-pyrroline-N-oxide)—a radical trap used to detect oxygen-centered free
radicals—also led to the appearance of an electron paramagnetic resonance (EPR) spec-
trum characteristic of DMPO-OH [46]. This EPR signal was inhibitable by superoxide
dismutase [46]—an enzyme that converts superoxide anion radicals (O2

•−) to molecular
oxygen and hydrogen peroxide (H2O2) [4]. These findings were indicative of hydroxyl
radical (•OH) formation, either directly, or following initial spin trapping of superoxide
anions by DMPO. An increase in dihydroethidium (HEt) fluorescence and luminol-based
chemiluminescence was also observed—both of which, on the basis of inhibition by su-
peroxide dismutase, were indicative of superoxide anion generation by the transfer of one
electron to oxygen when A2E was irradiated at 430 nm in cell-free systems [46].

The photoreactivity of bisretinoids is further manifest in cell-based studies. For
instance, lipofuscin-free cultured RPE cells that were allowed to accumulate A2E [47,48],
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as well as cultured RPE cells that phagocytose lipofuscin-filled organelles [49], exhibited
considerable phototoxicity to short-wavelength light in vitro. The death of blue-light-
irradiated A2E-containing cells could also be blocked by oxygen-depleted media, but was
increased in deuterium-based media, and did not occur if the cells were A2E-free [40].
Loss of viability was also decreased in the presence of histidine, 1,4-diazabicyclooctane
(DABCO), and azide, all of which are efficient scavengers of singlet oxygen. On the other
hand, an inhibitor of catalase (3-AT) and a scavenger of hydroxyl radicals and superoxides
(DMTU) had no effect on the frequency of cell death following blue-light illumination
of A2E.

Not surprisingly, measurements of the efficiency of singlet oxygen generation by A2E
have led to the suggestion that A2E exhibits lower singlet oxygen production than photo-
sensitizers used in photodynamic therapy. However, the detectability of singlet oxygen
in these studies is complicated by the ease with which singlet oxygen reacts chemically
with the parent bisretinoid molecule (discussed below). Moreover, the damaging effects
of bisretinoid photosensitization are likely compounded by the photoproducts generated
when A2E is photo-oxidized [50–52].

4. Photo-Oxidation and Cleavage of Bisretinoids

At any given time, measurement of bisretinoids—either chromatographically or via
short-wavelength fundus autofluorescence—reflects a balance between synthesis and depo-
sition in the RPE versus photodegradative processes. This is because bisretinoids not only
generate reactive oxygen species by both energy and electron transfer, they also chemically
quench these species and are simultaneously consumed. Photo-oxidation of bisretinoids
has been recognized in mass spectra by the generation of a series of higher molecular mass
derivatives [40] (Figure 3). The sizes of these species increased by increments of mass
16 (the molecular weight of oxygen). By chromatography, these peaks elute at retention
times that are indicative of greater hydrophilicity. The generation of these photoprod-
ucts is accompanied by the loss of bisretinoids, the latter being diminished, however,
when illumination is performed after oxygen depletion and in the presence of a singlet
oxygen quencher.

A2E photo-oxidation is potentiated in deuterium oxide (D2O) [38,39]—a solvent
that extends the lifetime of singlet oxygen—while the singlet oxygen quencher 1,2,2,6,6-
pentamethyl-4-piperidinol attenuates A2E photo-oxidation [40]. Additionally, singlet oxy-
gen generated by thermal decomposition of the 1,4-endoperoxide of 1,4-dimethylnaphthalene
can substitute for blue light in mediating A2E oxidation [38,39,53], and the same species of
oxygen-containing moieties form as with exposure to short-wavelength visible light [38,39].
Together, these findings are indicative of photo-oxidation of bisretinoids.

The oxygen-containing moieties formed by the photosensitization and oxidation of
A2E and all-trans-retinal dimer, for instance, consist of three membered rings that include
one oxygen atom (epoxide; C-O-C; epoxide-A2E), heterocyclic rings of four carbons and
one oxygen (furan) (furano-A2E), and heterocyclic rings that include four carbons and an
endoperoxide (O–O) (peroxy-A2E) [11,15,38,39,54] (Figure 3). Molecular fragmentation
readily occurs at positions of oxygen addition; as a result, aldehyde- and carbonyl-bearing
degradation products are released (Figure 4). These low-molecular-weight products include
methylglyoxal and glyoxal [55,56]—known mediators of advanced glycation end product
(AGE) formation [57,58]. Ketones and aldehydes are relatively long lived and, therefore,
can diffuse from their site of origin to reach and attack other targets intracellularly or
extracellularly. These reactive dicarbonyls modify molecular structure and function by
forming adducts with proteins, phospholipids, and nucleotides. Cleavage of oxidized A2E,
with diffusion of fragments, explains the observation that when fibronectin was used as
a substrate for A2E-containing RPE cells, irradiation elicited A2E photodegradation, and
the fibronectin became AGE-modified [59,60]. The photodegradation products released
from bisretinoids can cross-link proteins and promote resistance to the activity of matrix
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metalloproteinases [61]. Proteins similarly modified by dicarbonyls have been described in
drusen [62,63]—the sub-RPE deposits associated with AMD [64].
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The finding that complements can be activated in serum overlying irradiated, A2E-
laden RPE cells is also consistent with the view that reactive cleavage products of A2E are
generated by photo-oxidation [65]. These oxidized forms of bisretinoid are detectable in
human and murine RPE cells [39], and these bisretinoid-photodegradative processes are re-
sponsible for the lower bisretinoid levels measured in albino versus black mice and in light-
versus dark-reared mice [66]. Similarly, these processes may be the reason why early and
intermediate AMD are associated with lower fundus autofluorescence intensity—measured
as quantitative fundus autofluorescence, (qAF)—in the central retina [67]. Methylglyoxal
(MG) is known to be generated as a byproduct of metabolic pathways such as glycoly-
sis [57,68]. The release of MG via the photodegradation of bisretinoids reflects a previously
unrecognized source.

5. Bisretinoid Fluorescence

All of the known bisretinoids of RPE lipofuscin are fluorescent compounds. Each
hydrophobic retinoid-derived arm of a bisretinoid molecule constitutes a system of double-
bond conjugations, and each serves as a chromophore—one arm absorbing from the visible
region of the spectrum, and the other arm absorbing ultraviolet wavelengths (Figure 1).
The absorbance wavelengths are determined by the lengths of the systems of alternating
double and single bonds. A2E, A2-GPE, and alkyl-ether-lysoA2PE [10,12,16], for example,
have an absorbance maximum (λmax) in the visible spectrum at ∼440 nm that is generated
within the long arm, and an absorbance at ∼340 nm that can be assigned to the short
arm. The absorbance/excitation spectrum of A2E/isoA2E is narrower than that of whole
lipofuscin [69]. The absorbance maxima of the other bisretinoid pigments are: all-trans-
retinal dimer, λmax∼290, 432 nm; all-trans-retinal dimer-E/all-trans-retinal dimer-PE, λmax
∼290, 510 nm; and A2-DHP-PE, λmax∼333, 490 nm. The additional redshift to 510 nm
absorbance in the case of all-trans-retinal dimer-PE and all-trans-retinal dimer-E occurs
due to the protonation of the Schiff base nitrogen [7,11]. As noted above, some of the
bisretinoids retain a phospholipid moiety, but this portion of the molecule does not make a
contribution to absorbance at wavelengths greater than 250 nm.

Despite the variability in excitation maxima amongst bisretinoid species, the emission
maxima of bisretinoids are similar. With excitation at 430 nm, A2E and iso-A2E have
relatively broad emission spectra, with maxima at 600 nm [19] and orange fluorescence.
Excitation of all-trans-retinal dimer-PE and all-trans-retinal dimer-E at their approximate
absorbance maxima (~500 nm) also produces an emission centered at 600 nm, but its
fluorescence intensity is weaker and the maxima are less clearly defined. Unconjugated
all-trans-retinal dimer presents with greater fluorescence emission than A2E and all-trans-
retinal dimer-PE when excited at 430 nm, but peak emission occurs at 510 nm and the
spectral width is reduced. When considered relative to the corresponding absorbance,
A2-DHP-PE also exhibits fluorescence (emission monitored at 630 nm; excitation at 430 nm)
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of greater intensity than A2E and all-trans-retinal dimer-PE [13]. The combined emission
spectra of A2E/isoA2E and all-trans-retinal dimer-PE/all-trans-retinal dimer-E correspond
well to the emission maximum (590–620 nm) of native RPE lipofuscin. Absorbances in the
visible spectrum are significant, since these wavelengths reach the retina.

With excitation of individual bisretinoid chromophores and whole lipofuscin, and
with excitations that elicit in vivo fundus autofluorescence [10,69,70], maximum fluores-
cence emission undergoes excitation-dependent hyperchromic and hypochromic shifts; the
emission exhibits redshifts (hyperchromic change) in response to longer wavelengths of
excitation; this shift is indicative of a complex mixture of bisretinoids.

Moreover, the wavelength of emission maxima and emission intensity is also influ-
enced by the surrounding milieu [10,12,71]. Specifically, emission maxima occur at shorter
wavelengths and higher intensities when associated with relatively more hydrophobic
environments, while in more polar solvents the emission is redshifted. When introduced to
TMAC (trialkyl-methylammonium chloride)—a positively charged detergent with which
A2E would not associate—fluorescence emission was minimized [72].

Finally, fluorescence intensities of some oxidized forms of bisretinoid can be many
times greater than the parent molecule. For instance, addition of one and two oxygen atoms
on the short arm of A2E increases fluorescence efficiency by as much as 12-fold [71]. This
property is consistent with an increase in overall fluorescence emitted from a bisretinoid
mixture, despite a reduction in the amount of each parent molecule.

The depletion of fluorescence associated with oxidation of bisretinoid [73] is typical of
photobleaching (Figure 5). Fluorescence quenching of bisretinoid has been observed in vivo
as a reduction in fundus autofluorescence [74,75]. Specifically, in non-human primates
during adaptive optics scanning laser ophthalmoscopy (AOSLO) with in vivo fluorescence
capability (568 nm excitation), the natural autofluorescence of the RPE was found to be
reduced immediately after irradiation. At lower light exposures, the fluorescence bleaching
can recover fully. These photobleaching processes have been replicated in cell-based and
non-cellular assays [73]. For instance, cell-associated in vitro modeling of A2E fluorescence
bleaching has shown that the process involves photo-oxidation and photodegradation of
bisretinoids, the latter being measured as a loss of specific absorbance [73]. The potential
for autofluorescence recovery is dependent on light dose and antioxidant status.
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Figure 5. Photo-oxidation of alkenyl ether lysoA2PE (lysoA2phosphatidylethanolamine) (P-18:0/0:0)
(P: plasmalogen, one cis double bond on the fatty acid chain). (A) The structure of lysoA2PE. (B) With
excitation at 440 nm, lysoA2PE (in phosphate buffer with 2% DMSO (dimethylsulfoxide)) has an
emission maximum at 608 nm. Fluorescence emission of lysoA2E when not irradiated (red trace) and
when irradiated for the times indicated (yellow, green, and blue traces). Emission peak wavelengths
are indicated adjacent to each trace. Note the increase in emission intensity and the peak shift to
shorter wavelengths with increasing duration of irradiation. (C) Photo-oxidative loss of lysoA2PE
is plotted as normalized peak area and as a function of irradiation time. (D) Formation of oxidized
lysoA2PE is presented as normalized peak area and as a function of irradiation time.
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6. Iron-Assisted Oxidation of Bisretinoids

Since iron is able to accept and donate electrons, this metal, in its ferrous state (Fe2+),
can react with H2O2, yielding highly reactive hydroxyl radicals (•OH) (Fenton reaction) [1].
Just as with photomediated oxidation [55,56], the conjugated systems of double bonds
within bisretinoid structures can be oxidized as a consequence of iron-mediated hydroxyl
radical production [76]. The latter mechanism explains the reduction in HPLC-(high-
performance liquid chromatography) quantified bisretinoid levels in liver-specific hepcidin
(Hepc)-knockout (LS-Hepc−/−) mice; these mice present with elevated iron in their blood
and increased free (labile) iron levels in their retinal and RPE cells [77,78]. Similarly, the
excessive iron in the RPE cells of mice deficient in ceruloplasmin (Cp) and hephaestin
(Heph) (Cp−/−; Heph−/− mice) [79] is associated with toxic bisretinoid photo-oxidation
and degradation [76].

Conversely, the increase in HPLC-quantified bisretinoids and SW-AF (short-wavelength
autofluorescence) in mice treated with the iron chelator deferiprone (DFP) is indicative of
DFP-mediated reduction in the endogenous iron-associated degradation of bisretinoids [76].
The FDA-(Food and Drug Administration) approved iron chelator deferiprone (DFP) is
orally absorbed and cell-permeable, and is known to reduce serum iron and intracellular
iron levels in the retina [76,80,81]. DFP not only binds iron, it also oxidizes Fe2+ to Fe3+,
thus impeding the effects of Fe2+—the major catalyst of free radical damage to cells [82].

The production of hydroxyl radicals via the Fenton reaction depends on continued
availability of Fe2+ (ferrous iron). Nevertheless, light may overcome this limitation. Thus,
in in vitro experiments, it was observed that the oxidation of A2E was greater when iron,
H2O2, and light were provided in the reaction mixture, as compared to H2O2 and Fe2+ (in
darkness) or light alone. Under these conditions, it was surmised that light in the presence
of the photosensitizer A2E potentiated the Fenton reaction due to reduction of Fe3+ to Fe2+

(one electron transfer) by superoxides (O2
•−) [46,76,83,84] (Figure 6). Synergy between

the Fenton reaction, photosensitization of bisretinoids, and redox conversion of the Fe2+

and Fe3+ oxidation states is significant to the retina since, unlike most tissues, the retina is
exposed to visible light [77].
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7. Antioxidant Protection

The tripeptide glutathione (L-γ-glutamyl-L-cysteinyl-glycine, GSH) is present in cells
in millimolar concentrations [85]. By employing colorimetric assays, chromatography,
and mass spectrometry, it was demonstrated that GSH can donate hydrogen atoms to—
and form conjugates with—photo-oxidized forms of the bisretinoids A2E and all-trans-
retinal dimer, as well as with their photocleavage products [86]. As expected based on
its detoxification capabilities [85], GSH formed an adduct with methylglyoxal both non-
catalytically and by glutathione-S-transferase (GST)-mediation. The chemical reduction by
GSH involved the donation of a hydrogen atom from each of two GSHs, and the ratio of
GSH consumed to GSSG formed was consistent with GSH being utilized for both reduction
and adduct formation. The adducts preferentially formed with photo-oxidized forms of
A2E carrying two or more oxygen atoms. The binding of GSH to these photocleavage
products of A2E likely serves to limit their reactivity.

Using in vitro studies designed to detect cellular damage together with A2E as a model
bisretinoid, vitamin E has been shown to attenuate 430 nm light-induced oxidative injury
in cells that accumulated A2E [87]. By fast atom bombardment (FAB) mass spectrometry,
the protection was associated with reduced oxidation of A2E. In mice receiving a diet
supplemented with vitamin E, HPLC analysis revealed higher levels of RPE bisretinoid
indicative of reduced oxidative loss of the fluorophores [66]. In Abca4−/− mice known
to exhibit photoreceptor cell loss by 8 months of age, outer nuclear layer thinning was
alleviated. These protective effects reflect the ability of vitamin E to serve as an electron
donor that prevents bisretinoids from being oxidized.

Four phytochemicals—bilberry-derived anthocyanins [88], resveratrol [87], the phase
2 inducer sulforaphane [89], and quercetin [90]—also confer resistance to photo-oxidative
processes initiated in RPE cells by bisretinoids. The protective effect of anthocyanins is
enabled both by the unsaturated diene conjugation in the C (pyrane) ring that allows for
singlet oxygen quenching and by the presence of hydrogen-donating hydroxyl groups on
the B ring. Quercetin also defends RPE cells against light damage in vitro by preventing
the photo-oxidation and photodegradation of bisretinoids. Sulforaphane itself does not
directly partake in antioxidant processes, but instead acts indirectly to increase antioxidant
defense through the induction of cellular enzymes such as glutathione-S-transferases (GST),
NAD(P)H:quinone reductase (NQO1), epoxide hydrolase, γ-glutamylcysteine synthetase,
and UDP-glucuronosyl-transferases [91].

8. Disease Significance

The disorder best known for being characterized by elevated bisretinoid formation
and accumulation is recessive Stargardt disease (STGD1) [92,93]. In STGD1, handling of
retinaldehyde is impaired due to pathogenic variants in the ATP-binding cassette (ABC)
subfamily A member 4 (ABCA4) transporter expressed by photoreceptor cells—both rods
and cones. Consequently, the tendency of retinaldehyde to form adducts non-enzymatically
is accelerated. STGD1 is characterized by progressive loss of central vision, usually be-
ginning in the first two decades of life. Flecks presenting as hyperautofluorescence foci
that exceed the overall levels of fundus autofluorescence are also a feature of STGD1. The
intense SW-AF signal associated with fundus flecks has been shown to originate from
augmented lipofuscin formation in impaired photoreceptor cells [94]. In some patients
exhibiting retinal degeneration with a pattern dystrophy phenotype, while being negative
for ABCA4 mutations, qAF is also increased, suggesting that elevated qAF may be an
ancillary feature of the disease pathogenesis [95].

Analysis by qAF has revealed that increases in SW-AF indicative of elevated bis-
retinoid lipofuscin formation can also be detected as secondary features in other diseases.
For instance, in acute zonal occult outer retinopathy (AZOOR), SW-AF intensity is elevated
at the border between the diseased and non-diseased retina (AZOOR line). This elevation
coincides with disruptions of the photoreceptor-attributable reflectivity layers in spectral
domain optical coherence tomographic scans [96]. In Best vitelliform macular dystrophy,
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qAF levels are elevated many-fold within the lesion, wherein outer nuclear thinning is also
observed [97]. Similarly, in retinitis pigmentosa (RP), qAF in the ring of hyperautofluores-
cence that is often visible in the fundus exhibits intensity levels that are actually elevated
relative to the same fundus location in healthy eyes [98]. Within these rings, structural and
functional studies attest to photoreceptor cell degeneration [99–103]. Excessive production
of bisretinoids is likely a secondary feature of the disease that is triggered by photoreceptor
cell impairment. Given the phototoxic processes associated with bisretinoids, the increase
in bisretinoid production may be significant to the disease process.

A link between bisretinoid accumulation and light-mediated photoreceptor cell de-
generation is demonstrated by mice and rats deficient in the receptor tyrosine kinase
Mer (Mertk−/−), which enables phagocytosis of photoreceptors’ outer segments by RPE
cells [104–106]. The defective RPE-mediated phagocytosis leads to bisretinoid accumu-
lation in the subretinal space [107]. Under these conditions, the photoreceptor cells are
impaired, and bisretinoids measured by HPLC are elevated relative to wild-type mice.
Moreover, the rate of photoreceptor cell degeneration is more rapid in albino Mertk−/−

mice/rats that also experience higher intraocular light, and the degeneration is more rapid
in mice carrying the wild-type amino acid variant in Rpe65 (Rpe65-Leucine450), which
yields greater bisretinoid formation than methionine in this position [108]. These findings
are consistent with studies in Abca4−/− mice reporting more pronounced light-mediated
photoreceptor cell death in Abca4−/− mice than in the wild-type mice; photoreceptor cell
loss is also more pronounced in older than in younger mice [109].

Susceptibility to age-related macular degeneration (AMD) is related to multiple ge-
netic and environmental factors [110,111]. The influence of non-genetic factors such as
smoking [112,113] and nutritional status in relation to dietary and supplemental antioxi-
dants [114–119] is widely considered to reflect the involvement of oxidative mechanisms
in AMD pathogenesis. Furthermore, because antioxidants can protect against bisretinoid
photo-oxidation [87–89] (Section 7), the beneficial effects of antioxidant intake in combatting
AMD progression may be at least in part attributable to the suppression of photo-oxidative
processes that precede bisretinoid photodegradation. In this regard, several studies and
a meta-analysis have supported a link between AMD and sunlight exposure [120–125].
Interestingly, in studies of AMD cohorts [67], it was found that qAF in patients with soft
and cuticular drusen were within the 95% confidence intervals of qAF values in age-similar
healthy eyes. qAF levels were below the 95% confidence intervals in patients with reticular
pseudodrusen. Decreased lipofuscin in AMD likely reflects impaired photoreceptor cells
and/or bisretinoid lipofuscin photodegradation processes.

9. Conclusions

In addition to metabolic sources of reactive forms of oxygen, photo-oxidative pro-
cesses initiated by RPE bisretinoid lipofuscin contribute to oxidative stress within the RPE.
These bisretinoid fluorophores form due to non-enzymatic reactions of retinaldehyde in
photoreceptor cells, and are transferred to the RPE in the phagocytosed outer segment
membrane. While these compounds can be acted upon by the hydrolytic enzymes phos-
pholipase D and phospholipase A2 at phosphodiester and fatty acid linkages, respectively,
these compounds appear to be otherwise refractory to lysosomal enzyme degradation.
Nevertheless, they are depleted by photo-oxidation and cleavage.
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