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Non-apoptotic functions of caspase-7 during
osteogenesis

OPEN

E Svandova'?, H Lesot®*, T Vanden Berghe®S, AS Tucker’, PT Sharpe’, P Vandenabeele®® and E Matalova*'?

Caspase-3 and -7 are generally known for their central role in the execution of apoptosis. However, their function is not limited to
apoptosis and under specific conditions activation has been linked to proliferation or differentiation of specialised cell types. In
the present study, we followed the localisation of the activated form of caspase-7 during intramembranous (alveolar and
mandibular bones) and endochondral (long bones of limbs) ossification in mice. In both bone types, the activated form of
caspase-7 was detected from the beginning of ossification during embryonic development and persisted postnatally. The bone
status was investigated by microCT in both wild-type and caspase-7-deficient adult mice. Intramembranous bone in mutant mice
displayed a statistically significant decrease in volume while the mineral density was not altered. Conversely, endochondral
bone showed constant volume but a significant decrease in mineral density in caspase-7 knock-out mice. Cleaved caspase-7
was present in a number of cells that did not show signs of apoptosis. PCR array analysis of the mandibular bone of caspase-7-
deficient versus wild-type mice pointed to a significant decrease in mRNA levels for Msx1 and Smad1 in early bone formation.
These observations might explain the decrease in the alveolar bone volume of adult knock-out mice. In conclusion, this study is
the first to report a non-apoptotic function of caspase-7 in osteogenesis and also demonstrates further specificities in
endochondral versus intramembranous ossification.
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Caspase-7 belongs to the trio (caspase-3, -6, -7) of execu-
tioner cysteinyl aspartate-specific proteases and can also act
as a pro-inflammatory factor. Caspase-7 is involved in
apoptosis in a number of tissues. 2 Among these, the cleaved
(activated) form of caspase-7 has been detected in the
primary enamel knot of the first molar, a site where apoptosis
takes place. However, caspase-7 was also detected in
non-apoptotic areas of differentiating odontoblasts and
ameloblasts.® This observation was further emphasised by
the fact that caspase-7 knock-out (Casp7 —/ — ) mice showed
a significant decrease in the amount of enamel deposition in
mouse incisors.* Furthermore, non-apoptotic effects of other
caspases have also been reported in other tissues, including
a role in proliferation of T cells, in cell-cycle regulation,
differentiation of keratinocytes, formation of erythrocytes or
platelets, lens development, and skeletal muscle maturation.®

Along with its presence in teeth, the activated form of
caspase-7 was observed in the forming alveolar processes
developing from the mandibular bone of mouse embryos.®
In the present work, we investigated the role of caspase-7 in
two types of bone; intramembranous bones (mandibular and
alveolar) and endochondral bones (front and hind limbs).
In the former type, osteoblasts directly differentiate from the

condensed mesenchyme, while in the latter a cartilaginous
anlage initially forms that is later replaced by bone.®
Osteogenesis consists of several successive steps and is
regulated by complex molecular interactions, involving products
of genes such as bone morphogenetic proteins — Bmps,”
fibroblast growth factors — Fgfs,® hedgehog genes,®
vascular endothelial growth factor — Vegf,'®'" transforming
growth factor — Tgf$ pathway,'? and transcription factors such
as Msh homeobox — Msx1,'®> SRY-box — Sox9,'* and
runt-related transcription factor — Runx2.'® In this study, the
distribution of caspase-7 was investigated during bone
development and the effect of caspase-7 deficiency on bone
formation was assessed. The findings uncover novel roles of
caspase-7 in bone formation, and reveal differences in action
dependent on the developmental history of the bone.

Results

Activation of caspase-7 during the development of
intramembranous and endochondral bones

Intramembranous  ossification (mandibular and alveolar
bones): At embryonic day (ED) 12.5, condensed mesenchymal
cells lateral to Meckel’s cartilage were in evidence at the site
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of the developing jaw bones, and both the activated form of
caspase-7 and osteocalcin, a marker of osteogenesis, were
absent (data not shown). The activated form of caspase-7
appeared first at ED13.5 (Figures 1e and f) coincident with
osteocalcin expression (Figures 1n and o), as the bone
matrix of the developing mandible started to become
apparent (Figure 1a). During further embryonic development
(ED15.5 and ED17.5), localisation of the activated form

of caspase-7 remained similar (Figures 1g-k). Meckel’s
cartilage was negative at ED17.5 (Figure 1j), which was
similar also at earlier stages (data not shown).
The activation of caspase-7 was localised particularly
to the cytoplasm and positively correlated with osteocalcin
expression (Figures 1p-s). As development progressed
(ED15.5 and ED17.5), the size of the mandibular bone
increased (Figures 1b and c). Caspase-7 was apparent also
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Figure 1 Localisation of activated caspase-7 and osteocalcin in mandibular and alveolar bones at embryonic and postnatal stages. Morphology of mandible visualised by
haematoxylin-eosin staining at ED13.5 (a), ED15.5 (b), ED17.5 (c), and P5 (d). Localisation of activated (cleaved) caspase-7 in cells of mandibular bone at ED13.5 (e and f),
ED15.5 (g and h), ED17.5 (i-k), and alveolar bone at P5 (I and m). Expression of osteocalcin in cells of mandibular bone at ED13.5 (n and o), ED15.5 (p and q), ED17.5
(rands), and alveolar bone at P5 (t and u). Arrows point to the positive cells (brown); alv (alveolar bone), C7 (caspase-7), | (incisor), M1 (first molar), mand (mandibular bone),
mec (Meckel’s cartilage), and OS (osteocalcin). Scale bar =100 um in figures: a, b, ¢, d, e, g, i, j, I, n, p, r, t; scale bar =50 um in figures: f, h, k, m, 0, g, s, u
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at postnatal day (P) 5 in the alveolar bone (Figures 1l and m)
and still synchronised with osteocalcin expression
(Figures 1t and u). The precursor cells of the alveolar bone
originate from the dental follicle."® During early postnatal
development, the alveolar bone forms and becomes a part of
the mandible (Figure 1d). While osteocalcin was observed in
the cytoplasm of bone cells and also in bone matrix, the
activated form of caspase-7 was observed predominantly in
the cytoplasm at all stages studied.
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Endochondral ossification (bones of front limbs): At ED13.5,
neither the activated form of caspase-7 nor osteocalcin was
detected in the -cartilaginous ulna and radius of the
developing forelimb, agreeing with the fact that no bone
tissue was visible at this stage (data not shown). When bone
formation started, at ED14.5 (Figure 2a), the activated
form of caspase-7 was detected in a thin cellular layer
(periosteum) adjacent to the surface of hypertrophic
chondrocytes (Figures 2e and f). Osteocalcin was detected
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Figure 2 Localisation of activated caspase-7 and osteocalcin in long bones of front limb (ulna, radius) at embryonic and postnatal stages. Morphology of bones of front
limb visualised by haematoxylin-eosin and Alcian blue staining at ED14.5 (a), ED15.5 (b), ED17.5 (c), and P6 (d). Localisation of activated (cleaved) caspase-7 in areas of
ossification at ED14.5 (e and f), ED15.5 (g and h), ED17.5 (i and j), and P6 (k and I). Expression of osteocalcin in areas of ossification at ED14.5 (m and n), ED15.5 (o and p),
ED17.5 (q and r), and P6 (s and t). Arrows point to the positive cells (brown); C7 (caspase-7), hc (hypertrophic chondrocytes), OS (osteocalcin), pb (primary bone),

pc (proliferating chondrocytes), and pm (perichondrium). Scale bar =100 um
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at the same time and spatially co-distributed with caspase-7
(Figures 2m and n). Later, at ED15.5 (Figures 2g and h),
caspase-7 was visualised in the enlarging zone of ossifica-
tion, at ED 17.5 (Figures 2i and j) caspase-7 was localised
in the region of the bone collar. A similar pattern was
observed for osteocalcin (Figures 2o—r). During this period
(ED15.5-ED17.5), the size of the bone tissue progressively
increased (Figure 2b). From ED17.5, proliferating, pre-
hyperthrophic, and hyperthrophic chondrocytes as well as
primary bone were clearly detectable (Figure 2c). Finally, at
P6, caspase-7 (Figures 2k and I) and osteocalcin (Figures 2s
and t) were detected in forming primary bone (Figure 2d). The
proliferating and hypertrophic zones of the cartilage were
caspase-7 negative at all stages examined. As observed in
the alveolar bone, the activated form of caspase-7 was
detected particularly in the cytoplasm at all stages.

Correlation between caspase-7-positive cells and
apoptosis in the alveolar bone. Apoptosis is associated
with bone remodelling during postnatal stages of tooth and
jaw development.'” At PO, apoptosis was observed
in the alveolar bone (Figure 3b), where activated cas-
pase-7 was also present (Figure 3a). Not all caspase-7-
positive cells, however, were associated with the terminal
deoxynucleotidyl transferase dUTP nick end labelling
(TUNEL)-positive regions. In some TUNEL-positive cells,
the nucleus showed positive staining for active caspase-7
(Figures 3a and b), indicating that apoptosis was working
through this caspase, which was also documented in our
previous study on primary enamel knot.® However, in those
cells with active caspase-7 in the cytoplasm no TUNEL
staining was observed, indicating a dual function for
caspase-7 depending on its subcellular localisation
(Figures 3a and b).

Influence of caspase-7 deficiency on intramembranous
and endochondral bone formation in adult mice -
morphological aspects

Alveolar bone: The length of molar row and cusps
pattern were not altered in caspase-7-deficient mice
(Figure 4d) compared with wild types (Figure 4a), as
observed from 3D reconstructions of micro-computed
tomography (microCT) images. Sagittal and frontal

sections in the molar region of the jaw did not reveal any
striking difference in the alveolar bone organization in
compared with wild

Casp7 —/— mice (Figures 4e and f)
type (Figures 4b and c).

Femur: 3D reconstruction of the distal femur showed
different organisation of trabeculae in Casp7 —/— mice,
as observed in longitudinal (Figure 5f) or transversal
(Figure 5e) sections, when compared with wild-type mice
(Figures 5b and a). Changes in endosteal (Figure 5g) and
periosteal (Figure 5h) surfaces were also recognised in
Casp7 —/ — mice, where a smoothed surface was observed,
in contrast to the greater porosity observed in the cortex in
wild-type mice (Figures 5c and d).

Influence of caspase-7 deficiency on intramembranous
and endochondral bone formation of adult mice -
quantitative analysis

Alveolar bone (intramembranous): MicroCT analysis of the
alveolar bone of the mandible in Casp7 —/— mice showed a
statistically significant (P=0.024) decrease (Figure 6b) in
bone mineral content (BMC). The bone mineral density
(BMD), however, was not decreased (Figure 6c¢). Interest-
ingly, the bone volume in Casp7 —/— mice appeared to be
significantly (P=0.024) decreased (Figure 6a) which was not
clearly apparent from the morphological assessment. These
results point to an overall decrease in alveolar bone volume.
The decrease in alveolar bone volume was estimated to be
around 24%. Therefore, reduction in one dimension would
appear to be <3%, which is difficult to recognise by
morphological assessment. Similar trends were obtained by
examination of the whole mandible (data not shown).

Femur (endochondral): In femoral trabecular bone of
Casp7 —/— mice, microCT analysis revealed a statistically
significant (P=0.009) decrease in BMC (Figure 6f) and a
significant (P=0.009) decrease in BMD (Figure 6g). Analysis
of the cortex also showed a significant (P=0.011) decrease
in BMC (Figure 6d) and a significant (P=0.009) decrease in
BMD (Figure 6h). In contrast to the alveolar bone, the volume
of bone was not reduced (Figure 6e) and the bone volume/
tissue volume (BV/TV) ratio (Figure 6i) was unaffected
(P=0.886). Trabecular separation and thickness were not
impacted by caspase-7 deficiency (data not shown).

Caspase-7 versus caspase-3 in bone. To assess whether
any other caspases compensated for the loss of caspase-7,
we analysed the activation of the effector caspase, caspase-3.
Immunohistochemical analysis of mandibular bone at stage
ED 15.5 (Figures 7a and b) did not show any apparent
increase in activation of caspase-3 in the caspase-7-deficient
mandibular bone (Figures 7c and d) compared with wild type
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Figure 3 Co-localisation of caspase-7-positive cells and apoptosis in alveolar bone at P0. Localisation of activated (cleaved) caspase-7 in cells of alveolar bone (a),
apoptotic cells visualised by TUNEL assay (b). White arrows point to the positive cells (brown), red arrows point to apoptotic cell (b) and cell with nuclear localisation of

caspase-7 (a); C7 (caspase-7). Scale bar =50 um
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Figure 4 Morphological evaluation of alveolar bone in adult Casp7 —/— and wild-type mice. Row of three mice molar in wild type and (a) and Casp7 —/— (d),
sagittal section of mandible in wild type (b) and Casp7 —/— (e), frontal section of the middle part of the first molar region in wild type and (c) and Casp7 —/— (f);

wt (wild type)

(Figures 7e and f). In keeping with this finding, the distribution
of caspase-7 did not always overlap with that of caspase-3
(see Figures 70 and p). In addition, we observed no decrease
in the distribution of apoptotic cells in caspase-7-deficient
mice (Figures 7g-j), nor in the expression of osteocalcin
(Figures 7k—n). At PO, activation of caspase-3 and -7 was
found in a similar number of osteoclasts (activated caspase-3
was detected in 54% of osteoclasts and activated caspase-7
was detected in 50% of osteoclasts). However, activation of
both caspases was different in osteoblasts (activated
caspase-3 was detected in 28% of osteoblasts and activated
caspase-7 was detected in 71% of osteoblasts). Overall, our
data indicate that caspase-3 probably does not compensate
for the loss of caspase-7 as a general mechanism during
bone formation.

Impact of caspase-7 deficiency on osteogenic gene
expression. Gene expression changes in isolated
mandibular bone were assessed using a PCR array
comprised of 84 genes involved in osteogenesis

(Figures 8a—c). Caspase-7-deficient mandibular bone
showed a statistically significant decrease in the expression
of Msx1 (fold change: —2.17; P=0.0058) and Smad1 (fold
change: —2.2; P=0.0147) in early development (ED15.5).
In contrast, an increase in liver/bone/kidney form of alkaline
phosphatase — Alp (fold change: 2.14; P=0.0438) was found
in the Casp7 —/ — mandibular bone. Moreover, a decreasing
trend but not a statistically significant drop was observed in
other important genes implicated in ossification such as
ameloblastin — Ambn (fold change: —2.99), bone morpho-
genetic protein receptor — Bmpria (fold change: —2.18),
dentin matrix protein — Dmp1 (fold change: —4.64), Fgf2
(fold change: —2.29), fibroblast growth factor receptor —
Fgf2r (fold change: —2.02), matrix metalloproteinase —
Mmp8 (fold change: —3.21).

Discussion

Caspases have been described as taking part in both
apoptotic and non-apoptotic processes.'®®  Previous

o
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Figure 5 Morphological evaluation of distal femur in adult Casp7 — / — and wild-type mice. Transversal section of femur in wild type (a) and Casp7 —/ — (e), longitudinal
section of wild type (b) and Casp7 — / — (f), endosteal surface of wild type (c) and Casp7 —/ — (g), periosteal surface of wild type (d) and Casp7 —/ — (h); wt, wild type

investigations have shown that caspases have a role in
cell differentiation either involving incomplete apoptosis (e.g.,
cells of the lens) or by completely non-apoptotic pathways
(macrophages and skeletal muscles).'® With reference to
non-apoptotic functions, caspase-7 was proposed to be
involved in hard tissue formation,* as immuno-
staining for caspase-7 showed its presence in developing
mandibular bone.® This observation led us to investigate the
localisation of caspase-7 in cells of the intramembranous
bones of the mandible from ED12.5 to P5 and the bone
phenotype in adult (P28) Casp7 —/ — mice.

In the present work, the activated form of caspase-7 was
detected in the mandibular bone from early stages of
development (ED13.5). At this stage, the developing man-
dibular bone can be identified as emerging from a mass of
condensed mesenchymal cells.2® Activated caspase-7 was
present at the same time as osteocalcin, used as a marker for
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osteogenesis. This pattern for the activated form of caspase-7
in mandibular bone, and later also in alveolar bone, persisted
at postnatal stages. Caspase-7-positive cells predominated in
non-apoptotic regions. This activation pattern therefore
indicates that caspase-7 might have a role in both early bone
formation and later bone development.

Analysis of Casp7 —/— mice showed that the BMD was
comparable to that of wild-type animals. However, the BMC
and volume of the alveolar bone were significantly decreased,
when compared with wild types suggesting an overall
decrease in alveolar bone volume. Similar trends were
obtained also by examination of the mandible. Thus, data
from immunohistochemistry and microCT analysis pointed to
the role of caspase-7 in the formation of the alveolar bone.

The bones of the lower jaw form by intramembranous
ossification, as a comparison we therefore also investigated
long bones, which form by endochondral ossification.
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Figure 6 MicroCT analysis of bone parameters of alveolar bone and femur in
Casp7 — / — and wild-type mice. Bone volume of alveolar bone (a) and femur (e),
BMC of alveolar bone (b) and femur (f), BMD of alveolar bone (c) and femur (g),
BMC of femoral cortex (d), BMD of femoral cortex (h), and BV/TV ratio of femur (i);
wt (wild type)

The activated form of caspase-7 was detected in long bones
throughout embryonic and early postnatal development. The
first time point of detection was ED14.5, when the centres of
ossification initiate in the mouse front limbs.2" The timing of
initiation of active caspase-7 in mandibular and long bone
reflects the distinct timing of ossification in both models.
A similar delay of 1 day between the jaw primordia (ED11.5)
and femur (ED12.5) has also been reported for the expression
of Core binding factor alpha — Cbfa1 (Runx2), a marker of
osteoblast differentiation.?
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MicroCT analysis showed differences in bone organisation,
as the trabeculae system was decreased and changes
in endosteal and periosteal surfaces were apparent in
Casp7 —/— mice. In contrast, microCT analysis showed that
parameters such as trabecular thickness and separation,
bone volume, or BV/TV ratio were not altered in Casp7 —/ —
mice. However, a significant decrease in BMC and BMD was
detected in both cortical and trabecular bones.

The effect of caspase-7 deficiency, as observed by
microCT, was quite distinct in intramembranous and endo-
chondral bones. One explanation for this may relate to the
different characteristics of both types of ossification.??
Developmental differences in intramembranous and endo-
chondral ossification have been reported when comparing
gene expression patterns of periostin,?® Bmps,2* or variation
in the vascularisation.?® Furthermore, deficiency of Bmp2/6
resulted in reduced endochondral bone formation, but had no
impact on intramembranous bone.?® Therefore, the expres-
sion or/and function of distinct genes in both models may
differ, which may also be the case for caspase-7.

During mineralisation of the long bone, caspase-7 as a
protease may be involved in specific transcription factor
cleavage,®” which might induce a specific cell lineage
programme in bone cells. Caspase-7 does not, however,
seem to be a critical factor for early stages of bone formation.
Our studies show decreased bone density in the femur and
decreased volume of alveolus in adult Casp7 —/ — mice.

Structural similarities®® and tissue-specific functional
redundancies between caspase-7 and caspase-3 have
previously been reported.®2° In contrast to the relatively
mild effect of caspase-7 deficiency in the femur, caspase-3-
deficient mice showed a reduction in trabecular thickness and
decreased BV/TV ratio.®° In Casp7 — / — mandibular bone, an
increase in the activation of caspase-3 was not observed
compared with wild-type mice. Moreover, the expression of
activated caspase-3 and caspase-7 did not overlap comple-
tely in wild-type tissue, with activated caspase-7 being
detected in a larger number of osteoblasts compared with
caspase-3. We therefore conclude that the relatively mild
bone phenotype we describe in the caspase-7 knock-outs was
not due to compensation by caspase-3. Previous studies also
delineated partial differences in the protease activities,®' in
substrate specificity and localisation of the two activated
caspases as described in murine liver after Fas stimula-
tion.®23 From these observations, caspase-3 appeared more
effective in the cleavage of molecules with low molecular
weight,®'** and was also more promiscuous.®* Therefore,
caspase-7 in the femur may have a much more specific effect
on bone mineralisation. The importance of caspases in bone
formation is also supported by studies where overexpression
of Bcl-2 was shown to result in the inhibition of osteoblast
differentiation.®®

To try to better understand the effect of caspase-7,
osteogenic signalling was investigated in Casp7 —/— and
wild-type mice. PCR array analysis of genes involved in
osteogenesis was performed on total RNA obtained from the
mandibular bone (including also developing alveolar pro-
cesses) at ED15.5. At this early stage of mandibular bone
formation in caspase-7-deficient mice, several genes involved
in osteogenesis (Bmpria, Ambn, Dmp1, Fgf2, Fgfr2, and

~
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Figure 7 Activation of caspase-3 (c—f), distribution of apoptotic cells (g-j), and expression of osteocalcin (k—n) in Casp7 —/ — (a, c,d, g, h, k1) versus wild-type mice
(b, e, f,i,j, m, n) at ED15.5, and spatial correlation of caspase-3 (0) and caspase-7 (p) in wild-type mice at P0. Morphology of mandible visualised by haematoxylin-eosin staining in
Casp7 —/ — (a) and wild-type mice (b). White arrows point to the positive cells (brown), yellow arrows point to cells with activation of caspase-3 and caspase-7, red arrows point to
cells where solely caspase-7 is activated; C3 (caspase-3), C7 (caspase-7), man (mandibular bone), mec (Meckels cartilage), OS (osteocalcin). Scale bar =100 um

Mmp8) showed a decreasing trend, although this was not
statistically significant. All these genes are involved in
different periods of bone formation.”-8-36-38

Moreover, there was a statistically significant decrease in
Msx1 and Smad1, both of which are involved in bone
formation.'®%® Smad1 is one of the key players in BMP
pathway and induces bone formation.*® In vitro studies point
to a role for Smad1 in osteoblasts terminal differentiation*!
and inhibition of Bmp6, which acts upstream of Smad1, results
in the inhibition of osteogenesis in alveolar bone.*? Moreover,
a decrease in BMP signalling has been suggested to result in
a decreased bone volume in young adult mice.*?

Therefore, the reduced levels of Smad? and Msx1 products
during embryonic development support the significant
decrease in intramembranous bones volume that we
observed in adult Casp7 —/ — mice.

Despite a significant decrease in the volume of the alveolar
bone in adult Casp7 —/— mice, PCR arrays revealed a
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significant increase in Alp mRNA in Casp7 —/— mice at
ED15.5. ALP is present at the surface of osteoblasts and its
activity is required for production of high phosphate concen-
tration for bone mineralization.** Previous investigations
described a positive correlation between Alp mRNA levels
and ALP activity although contradictory results also exist.*>™”
Notably, higher levels of ALP activity were associated with
lower levels of Alp mRNA.*® ALP activity cannot thus be
determined from Alp mRNA synthesis. There may be several
post-transcriptional/post-translational modifications involved
in production of active ALP by osteoblast.

In conclusion, this study of Casp7 —/ — mice shows for the
first time that the presence of caspase-7 influences intramem-
branous and endochondral bone development in specific
ways. Previous studies have shown that executive caspases
are cleaved/activated in the cytoplasm.®349%0 Afterwards,
they are translocated to the nucleus to perform their function
by cleavage of poly(ADP-ribose) polymerase — PARP or other
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Fold-up or -down regulation of mMRNA of osteogenic genes in the mandibular

bone of Casp7-/- mice (ED15.5)
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Figure 8 Changes of osteogenic gene expression in Casp7 —/ — and documentation of mandibular bone separation for PCR array analysis. Frontal section of murine
head (ED15.5), haematoxylin-eosin (a), mandibular bone cut off the surroundings under stereoscopic conditions, haematoxylin-eosin (b). Examination of osteogenic gene
expression in Casp7 —/ — by PCR array (c), significant changes are marked by asterisk. Scale bar =100 um

proteins such as chromosomal passenger complex
members.®’=%® In the present study focusing on bone,
caspase-7 was not detected in the nucleus. Moreover, the
mandibular bone in the caspase-7 knock-out did not show any
apparent decrease in the distribution of apoptotic cells. These
observations further support the non-apoptotic functions
described above. A similar situation with a different context
has already been reported for p-catenin.®* Our study
highlights the fact that the nuclear or cytoplasmic localisation
of caspase-7 may impact on its mode of function (cell death,
inflammation, growth regulation, or differentiation), and it will
be important to investigate this further to try and understand
what determines subcellular localisation.

Materials and Methods

Samples. Mouse heads and front limbs at ED 12.5, 13.5, 14.5, 15.5, 17.5 and
P 5, 6 were used to investigate localisation of activated form of caspase-7 in bone
formation. Collected samples were fixed in 4% buffered paraformaldehyde for
24 h. For immunohistochemistry procedure dehydrated in ethanol gradient, treated
with xylene, and embedded in paraffin. Postnatal mouse heads or front limbs at
embryonic stages ED17.5 were decalcified in buffered EDTA before dehydration.
Frontal sections of heads and longitudinal sections of front limbs were prepared.
Mice were killed according to the experimental protocol 37/2011G approved by
Department of Physiology, UVP, Brno, Czech Republic.

Casp7 —/ — mice that had been backcrossed over at least 10 generations were
provided by Professor P Vandenabeele®® and samples processed as for wild-type
animals. Embryonic (ED15.5) and postnatal (P28) stages of caspase-7-deficient
mice and their littermates were involved in the study.

Immunohistochemistry. Slides were treated with xylene to remove the
paraffin, rehydrated through an ethanol series and pre-treated in citrate buffer
(pH=16.0) 15min/98°C. Endogenous peroxidase activity was eliminated by 3%
hydrogen peroxide in PBS (5min/room temperature). The primary antibodies
(9664-Cleaved caspase-3 and 9491S-Cleaved caspase-7, Cell Signaling,
Danvers, MA, USA; ab93876-Osteocalcin, Abcam, Cambridge, UK) were diluted
1:50 (caspase-7) and 1:100 (Osteocalcin) and applied overnight/4 °C,
peroxidase-conjugated streptavidin-biotin system (Vectastain, Burlingame, CA,
USA) and chromogen substrate diaminobenzidine (DAB, K3466, Dako,
Carpinteria, CA, USA) reactions were used to visualise positive cells as brown.
Slides were counterstained by haematoxylin to clearly distinguish the cell nuclei.
Negative control was performed by omitting the primary antibody, specificity of
anti-caspase antibodies was verified using caspase-7-deficient tissues. Counting

of caspase-3- and caspase-7-positive cells was carried out under magnification
x 1000 (for osteoclast, n=50; for osteoblasts, n=500).

TUNEL assay. Slides were treated with xylene, rehydrated in ethanol series,
and endogenous peroxidase was blocked by 3% hydrogen peroxide in PBS
(5 min/room temperature). Samples were pre-treated with proteinase K 20 mg/ml
(15 min/room temperature). The reaction mixture (TUNEL, S7100, Millipore,
Billerica, MA, USA) was prepared as follows: 3 ul TdT enzyme, 42 ul distilled
water, 105 ul reaction buffer, which was incubated for 45 min at 37 °C. An anti-
digoxigenin-peroxidase reaction was performed for 30 min/room temperature.
Positive cells were finally visualised by the chromogenic substrate diaminobenzi-
dine (DAB, K3468, Dako). Samples were counterstained by haematoxylin.

MicroCT analysis. Specimens for microCT were scanned using a GE Locus
SPmicroCT scanner (GE Healthcare, London, ON, Canada). The specimens were
immobilised using cotton gauze and scanned to produce 1 um voxel size volumes,
using a X-ray tube voltage of 80kVp and a tube current of 80 xA. An aluminium
filter (0.05mm) was used to adjust the energy distribution of the X-ray source.
CT attenuation values were calibrated to hydroxyapatite standards. In femur, bone
parameters were assessed in the distal part, the region of interest was restricted
under the growth plate extending 2mm proximally. Two bone compartments
(cortex and trabeculae) were separated by manual contouring that was outlined
adjacent to endocortical boundary. Alveolar bone was analysed as one domain.
Regions of interest were reconstructed and analysis of BMC, BMD, BV, and TV
was carried out using the Microview 2.2 software package (GE Healthcare).

The decrease in alveolar bone was calculated from the average values (four
samples in both groups) of bone volume analysed by microCT. When compared
with wild type (determined as 100% volume), the alveolar bone volume of caspase-
7-deficient mice was calculated as 76%. Therefore, the decrease was 24%.

3D images were post processed by the VGStudio MAX 2.2 software (VGStudio
MAX, Heidelberg, Germany). Statistical analysis was evaluated by Sigma Plot 11.2
(Systat software GmbH, Erkrath, Germany). T-test (P<0.05) was determined for
assessment of statistical significance in all cases except BV/TV ratio, where
Mann-Whitney test was used. Eight adult specimens were analysed in both alveolar
bone and femur (four wild types and four Casp7 —/ —).

RNA isolation. Before the processing, mice heads were stored in RNA Later,
washed in PBS and fixed in 4% paraformaldehyde up to 24 h. Samples were
dehydrated in ethanol gradient, treated with xylene, embedded in paraffin and
4 um slices were prepared. Samples embedded in paraffin were arranged during 1
week. Mandibular bones were accurately cut off each slice under stereoscopic
conditions as documented in Figures 7a and b. Selected parts of tissue were used
for RNA isolation by the RNeasy FFPE Kit (Qiagen, Valencia, CA, USA).
All procedures were carried out in RNAse-free conditions.
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PCR array. Expression of gene panel connected with osteogenesis was
assessed by PCR array. Examination of 84 genes was performed in the assay.
Total mRNA was transcribed into cDNA and used for the investigation by Mouse
Osteogenenic PCR array (PAMM-026A-24, SA Biosciences, Frederick, MD, USA).
Data were statistically evaluated by PCR array Data Analysis V4 (SA Biosciences).
Statistical significance was determined using a t-test (P<0.05). The threshold of
fold change was established as — 2/2 fold-change, that means decrease/increase
of 100% in investigated sample. Six embryonic specimens (ED15.5) were
analysed (3 wt, 3 Casp7 —/—).
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