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Progestogens [progesterone (P4) and its products] play fundamental roles in the develop-
ment and/or function of the central nervous system during pregnancy. We, and others,
have investigated the role of pregnane neurosteroids for a plethora of functional effects
beyond their pro-gestational processes. Emerging findings regarding the effects, mech-
anisms, and sources of neurosteroids have challenged traditional dogma about steroid
action. How the P4 metabolite and neurosteroid, 3α-hydroxy-5α-pregnan-20-one (3α,5α-
THP), influences cellular functions and behavioral processes involved in emotion/affect,
motivation, and reward, is the focus of the present review. To further understand these
processes, we have utilized an animal model assessing the effects, mechanisms, and
sources of 3α,5α-THP. In the ventral tegmental area (VTA), 3α,5α-THP has actions to facil-
itate affective, and motivated, social behaviors through non-traditional targets, such as
GABA, glutamate, and dopamine receptors. 3α,5α-THP levels in the midbrain VTA both
facilitate, and/or are enhanced by, affective and social behavior. The pregnane xenobiotic
receptor (PXR) mediates the production of, and/or metabolism to, various neurobiological
factors. PXR is localized to the midbrain VTA of rats.The role of PXR to influence 3α,5α-THP
production from central biosynthesis, and/or metabolism of peripheral P4, in the VTA, as
well as its role to facilitate, or be increased by, affective/social behaviors is under inves-
tigation. Investigating novel behavioral functions of 3α,5α-THP extends our knowledge of
the neurobiology of progestogens, relevant for affective/social behaviors, and their connec-
tions to systems that regulate affect and motivated processes, such as those important for
stress regulation and neuropsychiatric disorders (anxiety, depression, schizophrenia, drug
dependence).Thus, further understanding of 3α,5α-THP’s role and mechanisms to enhance
affective and motivated processes is essential.
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INTRODUCTION
Steroids play fundamental roles in the development and/or func-
tion of the central nervous system (CNS) and exert both orga-
nizational and activational effects. During pregnancy, levels of
progestogens [i.e., progesterone (P4) and its metabolites] are high
and have well-known effects to maintain pregnancy and may alter
brain development of the gestating offspring. We, and others, have
investigated the role of pregnane neurosteroids for a plethora of
functional effects beyond their pro-gestational processes in adult-
hood. Some of these effects are those involved in emotion/affect,
motivation, and reward, which will be the focus of this review.

Emerging findings regarding the effects, mechanisms, and
sources of steroids have challenged traditional dogma and revealed
non-traditional actions of hormones to influence cellular func-
tions and behavioral processes. First, some of the most salient
effects of steroids are to change the threshold for a biological or

behavioral response to appropriate stimuli. We now know that
steroid levels can change in response to environmental and/or
behavioral situations and, thereby, influence the likelihood of sub-
sequent steroid-mediated processes occurring. There is now a
greater understanding of subtle, and dynamic changes in steroids
to mediate homeostatic processes [e.g., hypothalamic-pituitary–
adrenal (HPA) axis function], which may exert proximate and
discrete effects on physiological and/or behavioral processes. Sec-
ond, the classic mechanisms of steroids are considered to involve
their binding to cognate, intracellular steroid receptors, which are
present throughout the brain in hypothalamic and limbic regions
(Shughrue et al., 1997; Osterlund et al., 2000), and modulate tran-
scription and translation (Pfaff et al., 1976), a process which takes
10 min to days. Steroids can also act in the CNS via membrane
targets or rapid-signaling actions, which occur within seconds to
minutes. Neuro(active) steroids produce rapid effects on neuronal
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excitability and synaptic function that involve direct or indi-
rect modulation of ion-gated or other neurotransmitter receptors
and transporters, rather than classic nuclear hormone receptors.
Third, steroids are typically thought to be secreted from periph-
eral endocrine glands into circulation, whereupon they can exert
effects at target sites in the body and brain that are distant from
the endocrine gland source. However, the brain, like the gonads,
adrenals, and placenta, can be considered an endocrine organ.
That is, the brain requires coordinated actions of steroidogenic
enzymes in neurons and glia to metabolize peripheral steroids
to products that act in the brain (“neuroactive steroids”), or to
produce steroids de novo in the brain independent of periph-
eral gland secretion (“neurosteroids”). In this view, steroids exert
intracrine effects to mediate intracellular events, and paracrine,
or neurotransmitter-like, effects to induce biological responses in
adjacent cells. This review will focus its discussion on the effects,
mechanisms, and sources of the P4 metabolite and neurosteroid,
5α-pregnan-3α-ol-20-one (3α,5α-THP, a.k.a. allopregnanolone),
for affective, motivated, and reward processes. As discussed as
follows, we examine effects, sources, and mechanisms of progesto-
gens in rats, which have demonstrated similar effects and patterns
of progestogen secretion as is seen in people (Holzbauer, 1975,
1976; Holzbauer et al., 1985; Frye and Bayon, 1999), and, thus, can
provide insight into progestogens’ role in these processes.

MODEL SYSTEM TO INVESTIGATE PROGESTOGENS’
EFFECTS, MECHANISMS, AND SOURCES FOR AFFECTIVE
AND MOTIVATED BEHAVIORS
We have utilized an animal model to elucidate the effects, mech-
anisms, and sources of progestogens to influence affective and
motivated behaviors of rodents. Progestogens may have a role in
the etiology, expression, and/or therapeutic treatment of anxiety,
stress, and/or mood (dys)regulation, as discussed below. Mating
is a sexually dimorphic and progestogen-mediated behavior. To
be able to determine necessary mechanisms for this behavior, we
have utilized lordosis (the posture that female rodents assume to
enable mating to occur, which can be considered a consummatory
aspect of mating for the female) as an ethologically relevant bioas-
say for progestogens’ actions. In this regard, we have examined
progestogens’ physiological and ethological role to mediate lordo-
sis, as well as neuroendocrine and behavioral processes relevant for
social interactions and/or affect, which can be considered appet-
itive aspects of mating. In this model, lordosis is both a sensitive
measure of progestogens’ effects as well as an experiential factor in
the rodent’s life that can be manipulated to alter subsequent neu-
roendocrine and behavioral responses. As such, the directionality
of the effects of progestogen production and affective and moti-
vated responding can be examined. Thus, investigating behaviors
commonly disrupted in neuropsychiatric disorders (affect, social,
and reproductive endocrine function), using an ethologically rel-
evant model of rodent behavior, can elucidate the functional role
of progestogens, such as 3α,5α-THP, for mental health.

In this model system, we have focused to date on actions of
progestogens in the midbrain ventral tegmental area (VTA). The
VTA is a target of interest for several reasons including its role in the
mesolimbic dopamine system. Natural fluctuations in progesto-
gens, and administration of progestogens to the VTA, produce

robust behavioral effects, such as enhancing affect and facili-
tating reproductive and other motivated behaviors (Frye et al.,
2006a; Frye, 2009). For example, central infusions of 3α,5α-THP
to VTA (but not to nearby regions, such as central gray, raphe
nucleus, substantia nigra) of non-sexually receptive rats signifi-
cantly enhances affective and social behavior to levels commen-
surate with those observed in sexually receptive rats (Frye and
Rhodes, 2006a, 2007a,b, 2008). The VTA is largely devoid of P4’s
traditional cognate steroid receptor targets, progestin receptors
(PRs). 3α,5α-THP has lower affinity for PRs than it does for γ-
aminobutyric acid (GABAA), glutamatergic, and dopaminergic
receptor targets, which are highly expressed in the VTA (Frye and
Walf, 2008a). As well, blocking 3α,5α-THP targets, such as GABAA

receptors, in the VTA attenuates anti-anxiety and social behav-
ior among sexually receptive females (Frye et al., 2006b,c; Frye
and Paris, 2009). This is not observed when blockers are adminis-
tered to nearby missed sites, such as the substantia nigra or central
gray (Frye and Paris, 2009). As such, actions of 3α,5α-THP in the
VTA to enhance anti-anxiety and pro-social motivated behaviors
may be specific to the VTA and its connections. Enzymes, such
as 5α-reductase and 3α-hydroxysteroid dehydrogenase (3α-HSD),
that are necessary for the metabolism of P4 to 3α,5α-THP, and
de novo synthesis of 3α,5α-THP, are highly expressed in the VTA
(Li et al., 1997; Frye, 2001a,b), suggesting that this is a region
to investigate to further understand the sources of progestogens.
Indeed, P4, from central or peripheral sources, is readily metabo-
lized to 5α-pregnane-3,20-dione-dihydroprogesterone (DHP), by
actions of 5α-reductase, and 3α,5α-THP, by actions of 3α-HSD, in
the VTA. Blocking P4’s metabolism to 3α,5α-THP in the VTA, or
blocking de novo production, or neurosteroidogenesis, of 3α,5α-
THP in the VTA, attenuates affective and social behavior among
sexually receptive rats (Frye and Petralia, 2003a,b; Frye et al.,
2008b). Reinstating 3α,5α-THP concentrations via enhancement
of neurosteroidogenesis, or 3α,5α-THP add-back, reinstates these
behaviors (Petralia et al., 2005; Frye et al., 2009). Thus, we can use
behavioral endpoints of female rodents to ascertain the sources,
effects, and mechanisms of progestogens in the midbrain VTA,
and determine the extent to which these actions are relevant in
other brain regions and systems. What follows is a discussion of
findings from our laboratory, and others, regarding the effects,
mechanisms, and sources of 3α,5α-THP for affect, motivation,
and reward processes.

EFFECTS OF 3α,5α-THP
GENDER DIFFERENCES FOR AFFECTIVE AND MOTIVATED PROCESSES
Depression and anxiety are serious and wide-spread disorders,
with effects on emotion as well as motivation- and reward-related
processes. Incidence and expression of these disorders are greater
among women compared to men, and may be related to fluctu-
ations in P4 and 3α,5α-THP. Over their lifetime, mature women
experience greater variations in, and higher levels of, progesto-
gens than do men, and they are more susceptible to depres-
sion and/or anxiety disorders (Weissman and Klerman, 1977;
Kessler et al., 1994; Seeman, 1997; Wittchen and Hoyer, 2001).
During the follicular phase of the menstrual cycle, circulating
progestogen levels of women are low (similar to men); how-
ever, luteal phase circulating levels are two to fourfold higher
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(2–4 nmol/l) than follicular phase levels (∼1 nmol/l; Genaz-
zani et al., 1998; Purdy et al., 1990; Sundström and Bäck-
ström, 1998a,b; Wang et al., 1996). During pregnancy, circulat-
ing levels of progestogens rapidly increase to peak in the third
trimester (50–160 nmol/l), and reach nadir within a day post-
parturition (Sundström et al., 1999; Luisi et al., 2000; Herbison,
2001). The onset and/or expression of depression and/or anxi-
ety can be mediated by some of these changes in progestogen
levels over natural cycles. In support, premenstrual syndrome,
premenstrual dysphoric disorder (PMDD), post-partum depres-
sion, and menopause, are associated with negative affect/mood,
and occur when progestogen levels are low (Glick and Bennett,
1981; Angold et al., 1999; Endicott et al., 1999; Chaudron et al.,
2001; Girdler et al., 2001; Soares and Cohen, 2001; Freeman
et al., 2002, 2004; Rapkin et al., 2002; Bäckström et al., 2003;
Markou et al., 2005; Pearlstein et al., 2005). Moreover, substance
abuse disorder is often co-morbid with depression and anxi-
ety (Regier et al., 1990), especially among women compared to
men (Brady and Randall, 1999). Natural fluctuations in progesto-
gens across the menstrual cycle alter responses to drugs of abuse,
such as alcohol, cocaine, and nicotine (Sofuoglu et al., 1999;
Pomerleau et al., 2000; Nyberg et al., 2004). Understanding the
effects, mechanisms, and sources of neurosteroids, such as 3α,5α-
THP, may provide insight into gender/sex differences, etiology,
expression, progression, and/or treatment of some mental health
disorders.

In addition to gender/sex differences for affective and motivated
processes as discussed above, there may are gender/sex differ-
ences in normal stress responding of males and females. Males
may be more likely to cope by mounting a “fight-or-flight” type
response toward stressors, whereas females may cope better with a
“tend-and-befriend”response (Taylor et al., 2000). Although many
neurobiological factors clearly differ between males and females,
and likely contribute to these differences in pathophysiological and
normative responding, the focus of this review is on how 3α,5α-
THP has such actions. Thus, findings of 3α,5α-THP’s role in stress,
affect, and motivated processes follow.

3α,5α-THP ALTERS THE HPA AXIS
3α,5α-THP has agonist-like actions at inhibitory GABA recep-
tors and can dampen stress-induced HPA activity, which may
mitigate parasympathetic tone. 3α,5α-THP’s anesthetic proper-
ties have been recognized for some time (Selye, 1941), related
to its potency at enhancing GABA function (Majewska et al.,
1986). Administration of 3α,5α-THP reduces adrenocorticotropin
secretion in response to acute stress, and blocks adrenalec-
tomy (ADX)-induced increases in corticotrophin releasing factor
mRNA (Patchev et al., 1994, 1996). When 3α,5α-THP levels are
elevated, during proestrus or pregnancy, or when ovariectomized
(OVX) rats are administered 3α,5α-THP, there are robust anti-
anxiety and anti-stress effects (Harrison and Simmonds, 1984;
Majewska et al., 1986; Lambert et al., 2003; Belelli and Lam-
bert, 2005; Martín-García and Pallarès, 2005; Frye et al., 2006a;
Frye, 2009). Blocking formation of 3α,5α-THP, or its actions
at GABAA receptors, prevents anti-anxiety and anti-depressant
behavior, as well as glucocorticoid secretion following stressor
exposure (Rhodes and Frye, 2001; Reddy, 2002; Verleye et al.,

2005; Walf et al., 2006; Frye, 2009). Thus, 3α,5α-THP may have
homeostatic effects by restoring parasympathetic tone following
stressor exposure.

STRESS ALTERS 3α,5α-THP
Stressor exposure has salient effects to alter 3α,5α-THP through-
out the lifespan. Brain levels of 3α,5α-THP are measurable as early
as embryonic day 14 in rats (Kellogg and Frye, 1999). By postna-
tal day 6, 3α,5α-THP increases in the brain of rats in response to
maternal separation stress (Kehoe et al., 2000; McCormick et al.,
2002). In adult rodents, 3α,5α-THP increases in response to a
variety of acute stressors (cold-water swim, restraint, foot-shock,
loud noise, carbon dioxide inhalation, ether exposure, or admin-
istration of anxiogenic drugs) occur in intact, gonadectomized
(GDX), and/or ADX rodents (Erskine and Kornberg, 1992; Paul
and Purdy, 1992; Barbaccia et al., 1996, 1997; Frye, 2001a,b; Serra
et al., 2002). Stimuli that can be considered more subtle than these
aforementioned acute stressors, such as social challenge and/or
mating, alters production of 3α,5α-THP (as described in further
detail below; Frye, 2001a,b; Miczek et al., 2003; Frye and Rhodes,
2006a). Increases in 3α,5α-THP produced by such experiences are
conserved across species, enhance GABA function, increase anxi-
olysis, and reduce HPA responses (Paul and Purdy, 1992; Patchev
and Almeida, 1996; Barbaccia et al., 2001; Frye, 2001a,b, 2009;
Reddy, 2003). Thus, 3α,5α-THP is expressed early in development
and can be altered by stress at this time and during adulthood.

SEX/PROGESTOGEN EFFECTS ON STRESS
There are sex differences in the 3α,5α-THP response to stres-
sors. Maternal separation stress produces greater increases in brain
3α,5α-THP levels of male, compared to female, pups between post-
natal day 7 and 10 (Kehoe et al., 2000; McCormick et al., 2002).
In male rats, non-stress, basal 3α,5α-THP levels are higher at an
early juvenile age (postnatal day 14), whereas in females, basal
3α,5α-THP levels are higher at postpubertal ages (42 and 60 days).
Although it is currently unclear what role higher 3α,5α-THP levels
in males at early juvenile ages, or in females at late adolescent/early
adult ages, may have in adults, evidence indicates that progesto-
gens modify stress responses. Post-partum women, who have
increased estradiol (E2), but decreased progestogens, have greater
HPA response to stressors (Altemus et al., 2001). Stress responses
of women may be increased when progestogens are decreased post-
menopause (De Leo et al., 1998). In premenopausal women, oral
contraceptives, or progestogens, decrease cortisol levels (Hellman
et al., 1976; Jacobs et al., 1989). Thus, there are gender/sex differ-
ences in stress responding, and stress responses can be modulated
by progestogens.

3α,5α-THP AND DEPRESSION
Neurosteroids, such as 3α,5α-THP, may play a role in depression.
Stressful life events can precipitate depression (Brown et al., 1994).
Individuals with depression often have difficulties in coping with
stress. Increased levels of corticotrophin releasing factor and cor-
tisol, and/or impaired glucocorticoid feedback to dexamethasone,
are observed in depression (Carroll et al., 1976, 1981; Halbreich
et al., 1985; Rubin et al., 1987; Nemeroff et al., 1988; Young et al.,
2000). Depression is a common side-effect of treatment of alope-
cia or benign prostate hyperplasia with finasteride, a 5α-reductase
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inhibitor, which decreases neurosteroids, such as 3α,5α-THP and
its androgen equivalent, androstanediol (Altomare and Capella,
2002; Clifford and Farmer, 2002; Townsend and Marlowe, 2004).
Thus, 3α,5α-THP inhibition can precipitate depression among
some individuals.

Findings from animal models also support a role of progesto-
gens in depressive behaviors. For example, when rodents are in
the proestrous phase of the estrous cycle and have high levels
of progestogens, they show less depressive behavior compared to
rodents that are in low progestogen phases of the estrous cycle
(Becker and Cha, 1989; Bitran et al., 1991; Frye et al., 2000b;
Frye and Walf, 2002; Gulinello et al., 2003). Pregnant rats, which
have sustained, higher levels of progestogens, show less depressive
behavior in the forced swim test than do post-parturient rats, with
lower levels of progestogens (Frye and Walf, 2004; Walf and Frye,
2006). Ovariectomy, removal of the primary source of endoge-
nous progestogens, increases depressive behavior among female
rats in the forced swim test (Frye and Wawrzycki, 2003; Walf et al.,
2006). Administration of P4 and/or 3α,5α-THP can reverse these
effects (Frye and Walf, 2002; Hirani et al., 2002; Frye et al., 2004a).
The anti-depressant effects of P4 are reduced when drugs that
block conversion of P4 to 3α,5α-THP, such as finasteride, are co-
administered (Frye and Walf, 2002; Hirani et al., 2002; Walf et al.,
2006). Similarly, the anti-depressive effects of P4 in the forced swim
test are attenuated among 5α-reductase knockout mice that cannot
readily convert P4 to 3α,5α-THP (Frye et al., 2004a). In another
animal model of depression, social isolation of mice, lower lev-
els of 3α,5α-THP have been reported (Dong et al., 2001; Guidotti
et al., 2001). Thus, some of progestogens’ anti-depressive effects in
rodents may be due to actions of 3α,5α-THP.

3α,5α-THP AND ANXIETY
3α,5α-THP’s role in various anxiety disorders have been investi-
gated. Baseline plasma levels of 3α,5α-THP are normal in patients
with generalized anxiety disorders and social phobia (Le Mellédo
and Baker, 2002). However, 3α,5α-THP levels are higher than nor-
mal among people with panic disorder (Brambilla et al., 2003;
Ströhle et al., 2003), and are reduced by infusions of sodium
lactate or cholecystokinin tetrapeptide, which can induce panic
attacks (Ströhle et al., 2003). In people without a history of panic
attacks, levels of neurosteroids are either not affected, or greater,
following administration of panic-inducing agents (Tait et al.,
2002; Zwanzger et al., 2004; Eser et al., 2005). In women with
panic disorder,perimenstrual,but not midluteal,3α,5α-THP levels
were significantly higher than controls, and correlated with their
panic–phobic symptoms (Brambilla et al., 2003). With Dr. John
Casada, we found that among men with post-traumatic stress dis-
order, those with higher 3α,5α-THP levels have lower state anxiety
following exposure to trauma-related stimuli (Frye, 2009). Thus,
there is some evidence for differences in 3α,5α-THP among those
with anxiety disorders.

Animal models also support a role of progestogens in anxiety
behavior (Guidotti and Costa, 1998; Bitran et al., 2000; Jain et al.,
2005). When P4 and 3α,5α-THP levels are high, such as during
proestrus and pregnancy, anxiety behavior is lower among female
rodents compared to when levels are declining or are low (Becker
and Cha, 1989; Bitran et al., 1991; Frye et al., 2000b; Gulinello

et al., 2003; Walf and Frye, 2006). Ovariectomy increases anxiety
behavior of female rodents (Frye and Walf, 2002; Walf et al., 2006)
and P4 or 3α,5α-THP reverses this (Frye and Walf, 2004; Frye et al.,
2004a; Walf et al., 2006), unless 3α,5α-THP formation is compro-
mised or 3α,5α-THP withdrawal occurs (Rhodes and Frye, 2001;
Frye and Walf, 2002, 2004). Thus, some of progestogens’ effects for
anxiety-related behaviors may be due to 3α,5α-THP.

3α,5α-THP AND MOOD DYSREGULATION
An example of a disorder in which mood changes may be altered by
3α,5α-THP is PMDD. PMDD is characterized by both debilitating
physical symptoms and negative mood state, which occurs when
E2 and progestogen levels fluctuate during the luteal phase (Bäck-
ström et al., 1983; Sanders et al., 1983; Hammarbäck et al., 1989,
1991; Ramcharan et al., 1992; Endicott et al., 1999; Sveindóttir
and Bäckström, 2000). Some women with PMDD report greater
positive, and negative, mood with ovarian suppression and admin-
istration of E2 and/or P4, respectively (Schmidt et al., 1998).
Among women with PMDD, there are also conflicting reports
that mood is more negative (Hammarbäck et al., 1989; Seippel
and Bäckström, 1998), or improved (Wang et al., 1996; Girdler
et al., 2001), when hormone levels are greater during the luteal
phase. There is greater consensus that there are few differences
among absolute levels of E2, P4, and/or 3α,5α-THP of women with
PMDD and those that do not have PMDD (Rubinow et al., 1988;
Halbreich et al., 1993; Schmidt et al., 1994; Wang et al., 1996, 2001;
Sundström and Bäckström, 1998a; Epperson et al., 2002). How-
ever, lower (Rapkin et al., 1997; Bicikova et al., 1998; Monteleone
et al., 2000), and higher (Girdler et al., 2001), concentrations
of 3α,5α-THP have been reported among women with PMDD.
There is evidence for differences in 3α,5α-THP among women
with PMDD treated with selective serotonin reuptake inhibitors
(SSRI). In support, there is clinical improvement among those
with stabilized 3α,5α-THP levels following SSRI treatment (Free-
man et al., 2002; Gracia et al., 2009). One explanation for some of
the heterogeneity in these findings is that there may be bimodal
responses associated with differences in sensitivity of GABA recep-
tors (Sundström et al., 1997a,b, 1998). Together, these data suggest
that 3α,5α-THP may underlie some effects on mood processes
among women.

3α,5α-THP AND SCHIZOPHRENIA
3α,5α-THP may play a role in the pathophysiology of schiz-
ophrenia, which is characterized by deficits in social, affective,
and cognitive functioning (Shirayama et al., 2002). Addition-
ally, schizophrenia is characterized by dysregulation of the HPA
axis (Lukoff et al., 1984; Malla et al., 1990; Norman and Malla,
1993; Myin-Germeys et al., 2001; Read et al., 2001) and psy-
chosis can be precipitated by stress (Read et al., 2001). Those
with schizophrenia may have altered stress-induced 3α,5α-THP
production, which is supported by a novel polymorphism in
the gene sequence encoding for enzymes involved in 3α,5α-THP
biosynthesis and may create a predisposition to over-sensitivity
to stress (Kurumaji et al., 2000; Myin-Germeys et al., 2001; Read
et al., 2001). Moreover, women have higher levels of 3α,5α-THP
and are more likely to have later onset schizophrenia, better
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prognosis, and therapeutic response to lower dosages of anti-
psychotics than do men (Usall et al., 2007; Abel et al., 2010).
When 3α,5α-THP levels are low perimenstrually, greater psy-
chotic episodes and more negative schizophrenia symptoms are
reported (Hallonquist et al., 1993; Hendrick et al., 1996; Huber
et al., 2001). Thus, schizophrenia may involve a reduced capacity
to synthesize 3α,5α-THP in the brain, which may increase sen-
sitivity to stress and, thereby, vulnerability to psychosis in this
population.

3α,5α-THP AND ACTIONS OF THERAPEUTICS
3α,5α-THP may underlie some of the effects of therapeutics
for stress-related, neuropsychiatric disorders. Anxiolytic effects
of etifoxine, correspond with increased levels of 3α,5α-THP in
sham-operated and GDX/ADX rats (Verleye et al., 2005). An atyp-
ical anti-psychotic drug, olanzapine, enhances social functioning
and increases 3α,5α-THP levels (Marx et al., 2000, 2003; Frye
and Seliga, 2003a,b). Fluoxetine increases the affinity of 3α-HSD
for DHP, which elevates 3α,5α-THP (Griffin and Mellon, 1999).
Some patients with depression have reduced plasma concentra-
tions and/or cerebrospinal fluid levels of 3α,5α-THP (Romeo et al.,
1998; Uzunova et al., 1998). Anti-depressants, such as fluoxetine or
fluvoxamine, normalize decreased 3α,5α-THP levels concomitant
with reducing depressive symptomology (Uzunova et al., 2004,
2006; Dubrovsky, 2006). Other treatments of depression, such as
sleep deprivation (Schüle et al., 2003), electroconvulsive therapy
(Baghai et al., 2005), and transcranial magnetic stimulation (Pad-
berg et al., 2002), modestly alter neurosteroids. Common features
of these therapeutic treatments include changes in steroid biosyn-
thesis and HPA function that may mitigate core symptoms of these
neuropsychiatric disorders described above (Dubrovsky, 2006).
Thus, 3α,5α-THP may underlie some actions of therapeutics.

3α,5α-THP AND DRUG ABUSE
Recent investigations assessing the mechanisms of reward asso-
ciated with drugs of abuse have revealed a role for progestogens.
There is evidence for menstrual cycle effects for measures related to
drug abuse, such as subjective feelings and craving and withdrawal
following abstinence. In support, women in the luteal phase report
lower rating for feeling high following smoking of cocaine than did
women in the follicular phase of the menstrual cycle (Sofuoglu
et al., 1999). Among cocaine-dependent women, circulating lev-
els of progesterone were associated with cocaine craving, such
that those with high progesterone had lower stress- and cocaine
cue-induced cravings for cocaine and reported less anxiety (Sinha
et al., 2007). Among women, there are menstrual cycle-related
differences in craving and withdrawal symptoms with nicotine
abstinence, which may be particularly strong among women with
severe menstrual symptomatology and/or co-morbid neuropsy-
chiatric disorders (Pomerleau et al., 2000; Carpenter et al., 2006).
There are also effects of progestogen administration. For exam-
ple, oral P4 to women reduces self-reported pleasurable effects of
cocaine (Sofuoglu et al., 2002, 2004). Animal models show sup-
port for a role of progestogens in drug reward. There are sex and
estrous cycle differences in behavioral effects and metabolism of
P4 to 3α,5α-THP following cocaine administration to rats (Frye,
2007; Quiñones-Jenab et al., 2008; Kohtz et al., 2010). Moreover,
systemic P4 administration to female rats blocks the rewarding

effects of cocaine (Russo et al., 2008) and administration of 3α,5α-
THP reduces cocaine self-administration (Anker et al., 2010).
As well, administration of 3α,5α-THP, and to a lesser extent
P4, reduced cocaine reinstatement following abstinence among
female, but not male rats (Anker et al., 2009). Effects of P4 were
attenuated with co-administration of the 5α-reductase inhibitor,
finasteride, which blocks P4’s metabolism to 3α,5α-THP (Anker
et al., 2009). Together, these data suggest a role of progestogens for
drug reward.

MECHANISMS OF 3α,5α-THP FOR AFFECT AND MOTIVATED
BEHAVIORS
Neurosteroids, such as 3α,5α-THP, can have more immediate,
rapid-signaling effects through ion channel-associated membrane
receptors within milliseconds to seconds than steroids secreted
by peripheral glands that act through classic nuclear steroid recep-
tors. The most extensively investigated actions of neurosteroids are
those at synaptic and extrasynaptic GABAA receptors, as described
below. 3α,5α-THP can also have actions through other non-
steroidal, ligand-gated, ion channels, and/or G-protein-coupled
receptors. Those that we have focused our investigations on to
date for affect, motivation, and reward are glutamate, dopamine,
and membrane PRs (Rupprecht and Holsboer, 1999; Zhu et al.,
2003; Frye and Walf, 2008a; Frye, 2011). A brief description of
some of progestogens’ actions at these non-traditional targets is
described as follows. For further discussion, the reader is referred
to other recent reviews (e.g., see others in this special issue; Frye,
2009, 2011).

P4 HAS NON-PR ACTIONS IN THE VTA
Among rodents, E2 and P4 initiate the facilitation of lordosis, in
part, through actions to increase PR expression in the ventrome-
dial nucleus (Schwartz-Giblin and Pfaff, 1986). In the VTA, P4

mediates the duration and intensity of lordosis. Receptor bind-
ing and immunocytochemistry experiments conducted in our lab,
and others, demonstrated that there are very few intracellular PRs
in the VTA of adult rodents (Warembourg, 1978; MacLusky and
McEwen, 1980; Blaustein et al., 1994; Frye and Vongher, 1999).
Further, the few PRs that exist in the VTA are not inducible by
E2, and reducing PR expression via infusion of antisense ODNs
to the VTA does not affect lordosis, as is the case with infusions
to the ventromedial nucleus (Frye and Vongher, 1999; Frye et al.,
2000a; Frye, 2001a). Intravenous or intra-VTA infusions of P4 to
hamsters or rats enhance firing of VTA neurons within 60 s (Rose,
1990; Frye et al., 2000b) and facilitates lordosis (Pleim et al., 1991;
DeBold and Frye, 1994). This effect occurs even when P4’s actions
are relegated to cell membranes because it has been bound to
a macromolecule like bovine serum albumin and is too large to
enter the cell (Frye et al., 1992; Frye and Gardiner, 1996). These
data suggest that progestogens’ actions in the VTA for lordosis
do not require traditional actions at PRs. Of interest is that E2-
stimulated neurosteroidogenesis of progesterone, via membrane
E2 signaling, was required in OVX/ADX for proceptive, rather than
receptive, behavior (Micevych et al., 2008; Micevych and Dewing,
2011). Together, these studies suggest that there are non-genomic,
or non-traditional, targets of neurosteroids, like 3α,5α-THP for
some of its functional effects. Some of these targets are described
as follows.
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3α,5α-THP ACTS AT GABAA RECEPTORS
In nanomolar concentrations, 3α,5α-THP directly activates
GABAA and is a positive, allosteric modulator. 3α,5α-THP
increases chloride channel currents and lowers neuronal excitabil-
ity with 20- and 200-fold higher efficacy than benzodiazepines
or barbiturates, respectively (Morrow et al., 1987; Gee et al., 1995;
Brot et al., 1997; Lambert et al., 2003; Reddy, 2004; Weir et al., 2004;
Belelli and Lambert, 2005). In the VTA, 3α,5α-THP facilitates lor-
dosis in part through its agonist-like actions at GABAA receptors.
Pharmacological blockade of GABAA receptors attenuates lordosis
of proestrous hamsters (or rats) over vehicle when administered to
the VTA, but not other regions outside the VTA, such as the ventro-
medial hypothalamus, central gray, or substantia nigra (Frye et al.,
1993; Frye and Vongher, 1999; Frye, 2001a,b; Frye and Paris, 2009,
2011a). Conversely, muscimol, which has agonist-like actions at
GABAA receptors, enhances P4-facilitated lordosis of hamsters or
rats, when infused to the VTA (Frye and DeBold, 1992; Frye and
Gardiner, 1996). Thus, 3α,5α-THP has actions in the midbrain
VTA in part through its agonist-like actions at GABAA receptors.

3α,5α-THP ACTS AT N -METHYL-D-ASPARTATE RECEPTORS
Many of the GABAergic neurons that exist in this region also
express N -methyl-d-aspartate receptors (NMDARs; Steffensen
et al., 1998). Autoradiography studies indicate OVX rats admin-
istered P4 and/or E2 have reduced NMDAR binding in cortex
(Wu et al., 1991; Cyr et al., 2000). Neurosteroids, such as 3α,5α-
THP, have actions involving NMDARs (Korinek et al., 2011).
Antagonizing NMDARs via intra-VTA infusions of MK-801, a
non-competitive NMDAR antagonist, enhances P4-facilitated lor-
dosis (Frye, 2001a,b; Petralia et al., 2007; Frye et al., 2008a; Frye
and Paris, 2011b). Thus, 3α,5α-THP in the midbrain VTA may act
in part through its antagonist-like actions at NMDARs.

3α,5α-THP’s ACTIONS THROUGH DOPAMINE SIGNALING
The VTA is also a site of dopaminergic activity, and actions of
3α,5α-THP for socially relevant behavior. In support, dopamine
agonists can facilitate lordosis of rodents via phosphorylation of
PRs (Mani, 2003). We have investigated the role of D1 receptors
in the VTA for progestogen-facilitated lordosis. D1 receptors are
localized to the VTA (Boyson et al., 1986). As well, in the VTA,
where there are few PRs, infusions of D1 agonists and antago-
nists enhance and inhibit lordosis of E2- and progestogen-primed
rodents, respectively (Frye et al., 2004b, 2006b,c,d; Petralia and
Frye, 2004, 2006a,b; Sumida et al., 2005). Thus, it may be that
D1 activation downstream of GABAA receptors in the VTA (Lavi-
olette and van der Kooy, 2001; Laviolette et al., 2004; Frye et al.,
2006a) underlies some of the rewarding effects of social responding
among rodents.

RAPID ACTIONS OF 3α,5α-THP VIA GABA, NMDA, AND D1 RECEPTORS
REQUIRE ACTIVATION OF SIGNAL TRANSDUCTION CASCADES
Progestogens’ actions in the VTA involve activation of signal
transduction pathways. In brief, infusions of adenylyl cyclase, G-
proteins, protein kinase A (PKA), phospholipase C (PLC), or pro-
tein kinase C (PKC) inhibitors to the VTA attenuates the enhancing
effects of GABAA or D1 agonists for 3α,5α-THP-facilitated lor-
dosis (Fáncsik et al., 2000; Frye et al., 2004b, 2006b,d; Petralia

and Frye, 2004, 2006a,b; Sumida et al., 2005; Frye and Walf, 2007,
2008a,b,c). Moreover, increased progestogen levels of rodents are
associated with increases in levels of cyclic adenosine monophos-
phate (cAMP) in the cortex (Frye, 2001a,b; Frye and Walf, 2008a).
Thus, progestogens’ actions in the VTA require activation of these
signal transduction molecules.

SOURCES OF 3α,5α-THP
Beyond an understanding of the various effects of 3α,5α-THP and
the mechanisms for such effects, a critical question is the sources of
3α,5α-THP for these effects. Progestogen concentrations in brain
may be due to gonadal, adrenal, and central sources. One of the
rate-limiting factors in understanding more about the functional
significance of steroids lies in the challenge of parsing out the rel-
ative contributions of central versus peripheral endocrine glands.
Neurosteroids are synthesized in the CNS and/or peripheral ner-
vous system (PNS), rather than the gonads, adrenals, and/or pla-
centa (Baulieu, 1980, 1991). Levels of neurosteroids are typically
greater in the CNS and PNS than in circulation. Enzymes involved
in peripheral gland steroidogenesis have been identified in the
CNS and PNS (Li et al., 1997; Furukawa et al., 1998; Compagnone
and Mellon, 2000). As well, high CNS and PNS levels of neu-
rosteroids persist after extirpation of peripheral glands (i.e., GDX
and/or ADX; Baulieu, 1980, 1991; Majewska, 1992; Paul and Purdy,
1992; Mellon, 1994). Of continued interest are the factors that are
involved in neurosteroid formation.

The translocator protein (18 kDa TSPO; formally known as
the peripheral-type benzodiazepine receptor/recognition site)
binds cholesterol in nanomolar affinities and is essential for
neurosteroidogenesis. In 1977, the TSPO was first identified as
the binding site for diazepam in peripheral tissues. The most
extensively investigated functions of TSPOs are their role in
biosynthesis of steroids. The TSPO is a high affinity choles-
terol binding protein that imports cholesterol into the mito-
chondria (Papadopoulos et al., 2006). The steroidogenic acute
regulatory (StAR) protein is also involved in the importing of
cholesterol, but it is unclear if TSPO and StAR work together
(King et al., 2004). After its importation into the mitochondria,
cholesterol is then oxidized to pregnenolone by the cytochrome
P450-dependent side chain cleavage enzyme (P450scc; Mellon
and Deschepper, 1993). Pregnenolone, the precursor of all neu-
rosteroids, is metabolized to P4 by the 3β-hydroxysteroid dehy-
drogenase (3β-HSD), which can then be metabolized to form
DHP and 3α,5α-THP (Mellon and Deschepper, 1993). The CNS
expresses all of these enzymes that initiates steroidogenesis and
can be considered rate-limiting steps in 3α,5α-THP biosynthe-
sis (Braestrup and Squires, 1977; Benavides et al., 1983; Li et al.,
1997; Furukawa et al., 1998; Gavish et al., 1999; Compagnone
and Mellon, 2000; Chen and Guilarte, 2008). Some of the regions
with the highest expression of StAR, 3β-HSD, 5α-reductase, and
3α-HSD, all enzymes required for 3α,5α-THP formation, are
midbrain, cortical, and limbic regions and the cerebellum (Li
et al., 1997; Furukawa et al., 1998; Compagnone and Mellon,
2000), which are involved in the affective and motivated processes
of focus in this review. Indeed, the reader is referred to other
interesting and recent reviews on the role of neurosteroidoge-
nesis for functional processes (this volume; Rupprecht et al.,
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2010; Luchetti et al., 2011; Papadopoulos, 2011; Schüle et al.,
2011).

P4’s EFFECTS IN THE VTA REQUIRE FORMATION OF 3α,5α-THP
In the VTA, P4 facilitates lordosis subsequent to formation of
3α,5α-THP. Mating in rodents coincides with ovulation, when
circulating and midbrain levels of P4 and 3α,5α-THP are ele-
vated. The frequency of lordosis is greater among rats that have
higher 3α,5α-THP in the midbrain, such as those in proestrus
or OVX rats administered subcutaneous injections of E2 with P4

or 3α,5α-THP, compared to those in diestrus, older 12- to 14-
month-old rats, or OVX rats administered vehicle or E2 + P4 and
an inhibitor of 3α,5α-THP formation (Frye and Leadbetter, 1994;
Frye and Gardiner, 1996; Frye and Vongher, 1999; Frye, 2001a,b;
Frye and Walf, 2004; Frye et al., 2004b; Petralia et al., 2005; Walf
et al., 2011). Moreover, findings from a mutant mouse model sup-
port these data. Female wild-type, or 5α-reductase knockout mice,
which have perturbed function of the type II isoform of the 5α-
reductase enzyme, were OVX, E2-primed, and administered P4

(125, 250, or 500 μg, SC) or vehicle oil and assessed for social
responding. P4 dose-dependently enhanced lordosis among wild-
type, but not 5α-reductase knockout, mice (Figure 1). A similar
effect was observed for anxiety behavior among proestrous mice
or those that were hormone-primed (Koonce et al., 2012). These
data support the notion that P4’s metabolism to 3α,5α-THP is
critical for normative affective and motivated behaviors among
female rodents.

3α,5α-THP, INDEPENDENT OF E2, IS NECESSARY AND SUFFICIENT IN
THE VTA TO MEDIATE AFFECTIVE AND MOTIVATED BEHAVIORS
To address whether actions of 3α,5α-THP in the midbrain VTA
can influence exploratory, affective, and social behavior of rats,
proestrous, or diestrous rats were infused with a physiological
regimen of 3α,5α-THP (100 ng/μl) or β-cyclodextrin vehicle to
the VTA (or nearby missed sites, the substantia nigra, and central
gray) and were assessed in a test battery. Additionally, the role of
E2, given that E2 typically co-varies with progestogens and can
enhance 3α,5α-THP biosynthesis (Cheng and Karavolas, 1973),
was assessed among OVX rats that were E2-primed or not before

FIGURE 1 | Lordosis is enhanced dose-dependently when

progesterone (P4) is administered (SC) to wild-type mice but not those

deficient in 5α-reductase (KO). ∗ Indicates p < 0.05 differences from
wild-type mice administered vehicle.

infusions and assessment in the test battery. The test battery con-
sisted of rats being assessed in the open field and elevated plus maze
for anxiety-like behavior, the social interaction and social choice
tasks for social behavior, and paced mating for reproductive behav-
ior. Infusions of 3α,5α-THP to the VTA of diestrous rats enhanced
exploratory, anti-anxiety, social, and lordosis akin to that of proe-
strous rats infused with vehicle (Frye and Rhodes, 2008). 3α,5α-
THP infusions to the VTA of OVX rats enhanced exploratory,
anti-anxiety, and social behavior, independent of E2, whereas lor-
dosis required E2-priming for its full expression (Frye et al., 2006a,
2008b; Frye and Rhodes, 2007a). Interestingly, infusions of 3α,5α-
THP to the VTA resulted in higher levels of 3α,5α-THP in the
midbrain VTA, as well as the hippocampus, cortex, and striatum.
Infusions of 3α,5α-THP to nearby sites (substantia nigra, central
gray) neither significantly altered behaviors, nor 3α,5α-THP lev-
els, in these other regions. Thus, manipulating 3α,5α-THP in the
midbrain VTA enhances exploratory, anxiety, and social respond-
ing, and elicits progestogen biosynthesis in other areas which may
modulate some of these functional changes, independent of E2.

DYNAMIC CONSEQUENCES OF AFFECTIVE AND SOCIAL RESPONDING
ON ENDOGENOUS 3α,5α-THP
Beyond being necessary to alter affective and motivated responses,
3α,5α-THP levels in the midbrain are particularly dynamic and
increase with challenges, such as social responding. In sup-
port, following mating, midbrain 3α,5α-THP levels are increased
over those of non-mated, naturally receptive, or E2 + P4-primed
rodents (Frye, 2001a,b). The rapidity of this increase in mid-
brain 3α,5α-THP, and independence of secretion from the
ovaries and/or adrenals, suggests that biosynthesis and, subse-
quent, metabolism, of central, rather than peripheral, progesto-
gens underlie these increases that we have observed among rats,
mice, and hamsters (Frye, 2001a,b). Increases in midbrain 3α,5α-
THP with E2, P4, and/or social responding suggest that 3α,5α-THP
in varying concentrations, or when derived from peripheral versus
central prohormones, may influence sexually dimorphic processes,
such as affective behavior, as well as social and sexual behavior.

ESTABLISHMENT OF WHETHER PACED MATING UNDERLIES
ENHANCEMENT OF 3α,5α-THP IN THE BRAIN
In order to elucidate the role of behavioral processes on central
levels of 3α,5α-THP, proestrous, or diestrous rats were allowed
to behave in the entire battery of tasks with or without engag-
ing in paced mating. This experiment revealed the dynamic role
3α,5α-THP plays in the midbrain. While proestrous rats had
greater 3α,5α-THP levels in serum and all brain regions stud-
ied than diestrous rats, irrespective of mating condition, only
diestrous rats that engaged in paced mating had enhanced 3α,5α-
THP levels in midbrain compared to non-mated diestrous rats
(Figure 2, top; Frye and Rhodes, 2006b). In follow-up experi-
ments, proestrous rats were allowed to engage in portions of the
battery (exploratory/anxiety tasks only or social tasks only or no
tasks), or engaged in only one task in the battery, with or with-
out paced mating. Irrespective of portion (Figure 2, middle), or
individual task engaged in (Figure 2, bottom), only paced mat-
ing was associated with 3α,5α-THP enhancement in every brain
region (but not serum) examined (Frye et al., 2007). As such, these
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FIGURE 2 | 3α,5α-THP levels are greater among proestrous rats in serum,

midbrain, hippocampus, diencephalon, and cortex than diestrous rats

irrespective of mating condition (top). 3α,5α-THP levels are enhanced in all
brain regions examined among proestrous rats that engage in paced mating
irrespective of exposure to exploratory (open field and elevated plus maze) or

social (partner preference and social interaction) tasks compared to
non-mated proestrous rats (middle). Among all tasks, only paced mating
enhances 3α,5α-THP levels of proestrous rats compared to non-mated
proestrous rats. Line indicates performance of non-mated diestrous (top) or
proestrous (middle, bottom) control. ∗ Indicates p < 0.05.

experiments revealed that engaging in paced mating uniquely pro-
duces progestogen biosynthesis in midbrain and hippocampus,
and to a lesser extent the striatum and cortex (Frye and Rhodes,
2007b). This complements findings that exposure to early life stres-
sors can alter neurosteroid formation in hippocampus and stress
responses mediated by the hippocampus (Frye et al., 2006e). Thus,
engaging in motivated, social responding can dynamically alter
progestogen synthesis in brain.

3α,5α-THP FORMATION AND REWARD PROCESSES
Central biosynthesis of 3α,5α-THP in response to environmental
stimuli may be a function of HPA regulation. 3α,5α-THP can act as
an endogenous modulator of the stress axis. 3α,5α-THP increases
in response to extreme stressors, such as foot-shock, ether expo-
sure, or cold-water swim (Purdy et al., 1991; Barbaccia et al., 1996).
3α,5α-THP has central actions to dampen HPA para/sympathetic
physiological responses, in addition to its anxiolytic psychological
effects (Patchev et al., 1994, 1996). Our data suggest that central
3α,5α-THP can be enhanced in response to a much more moderate
stressor, such as paced mating. Paced mating in particular is

rewarding and can be utilized to condition a place preference
among female rats (Frye et al., 1998; Martínez and Paredes, 2001).
3α,5α-THP has likewise been found to have hedonic effects. For
instance, rats will preferentially self-administer 3α,5α-THP over
water (Sinnott et al., 2002). To further explore 3α,5α-THP’s effects
associated with rewarding processes, we assessed effects of cocaine
on progestogen concentrations in brain. We found that a sin-
gle injection (5 mg/kg intraperitoneal-IP) of cocaine to female
rats increased P4 and 3α,5α-THP concentrations in hippocampus,
striatum, and circulation (Figure 3; Frye, 2007; Quiñones-Jenab
et al., 2008). These data support the notion that HPA-activating
stimuli may have rewarding effects associated with 3α,5α-THP
enhancement in brain.

3α,5α-THP BIOSYNTHESIS IN VTA IS ESSENTIAL FOR ENHANCED
AFFECTIVE AND MOTIVATED BEHAVIOR
Whether enhanced 3α,5α-THP in the VTA was due to central
biosynthesis, or dependent on ovarian sources, was of inter-
est. Proestrous rats were infused with inhibitors of 3α,5α-THP
formation to the VTA. Rats received VTA infusions of PK11195
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FIGURE 3 | Progesterone (P4; top) and 3α,5α-THP (bottom) levels are

increased in serum, hippocampus, or diencephalon of female rats

administered cocaine (5 mg/kg, IP) compared to saline. ∗ Indicates
p < 0.05.

(400 ng/μl), which inhibits 3α,5α-THP formation from choles-
terol, or were infused with indomethacin (10 μg/μl), which blocks
DHP metabolism to 3α,5α-THP, or received both inhibitors, or
were infused with β-cyclodextrin vehicle and behaviorally assessed
in the affective and social responding battery. Infusions of any
combination of inhibitor significantly attenuated midbrain 3α,5α-
THP levels of proestrous rats concomitant with reductions in
exploratory, anti-anxiety, social, and reproductive behavior (Frye
et al., 2008a). In order to assess whether central 3α,5α-THP is nec-
essary and sufficient for these effects, proestrous rats were infused
with all combinations of inhibitors described, or vehicle, and were
subsequently infused with a physiological dosage of 3α,5α-THP
(100 ng/μl) to the VTA. Proestrous rats that were infused with
3α,5α-THP subsequent to inhibitor infusions had a reinstatement
of exploratory, anti-anxiety, and social behavior that was commen-
surate to that of vehicle-infused controls (Frye and Paris, 2009). In
a follow-up study, effects of infusion of a neurosteroid enhancer
(FGIN 1,27; 5 μg/μl) following TSPO (PK11195, 400 ng/μl) or
3α-HSD (indomethacin, 10 μg/μl) inhibitor infusion was assessed
and revealed that enhancement of central biosynthesis via TSPO
could overcome effects of 3α,5α-THP inhibitors on these behav-
iors, as well as midbrain 3α,5α-THP levels (Frye et al., 2009). In
this study, it may be that FGIN 1,27 outcompeted PK11195 at
the TSPO in the VTA to overcome its inhibition and increase
3α,5α-THP levels. A question is whether FGIN 1,27 may have
had greater effects on DHP, compared to 3α,5α-THP, follow-
ing indomethacin administration levels given cross-reactivity of
these steroids in the radioimmunoassay utilized. Despite these
considerations that need to be addressed, these data suggest that
central biosynthesis of 3α,5α-THP in VTA is necessary and suffi-
cient to enhance expression of affective/motivated responding in
proestrous rats.

CHANGES IN GENE EXPRESSION WITH MATING
Pharmacological studies discussed above are corroborated by
experiments examining differences in gene expression in the
midbrain of naturally receptive rats that underwent paced mat-
ing or did not have this social experience. Among mated rats,
genes that were upregulated in the midbrain were primarily
related to those substrates that our past pharmacological studies
have elucidated as targets for progestogens’ to influence lordo-
sis. First, of the approximately 40 genes that were upregulated in
mated rats, many are relevant to downstream intracellular sig-
naling pathways involved in non-genomic action (Paris et al.,
2011). For example, there was upregulation of three genes (Calb3-
increased 32.0-fold, Ascl1- increased 7.3-fold, DRd2- increased
2.0-fold) involved in regulating dopamine activity in midbrain.
Ascl1 encodes for a protein that mediates neurogenesis and dif-
ferentiation of tyrosine hydroxylase-containing neurons during
development. Calb3 encodes for calbindin 3 and, calbindin can
modulate depolarization of dopamine cells. Drd2 encodes the
dopamine type 2 receptor, which is a known autoreceptor that may
modulate activity of dopamine cell bodies in the VTA. There was
increased expression of genes that have implications for G-protein
activity (i.e., guanosine-5′-diphosphate (GDP) and guanosine-
5′-triphosphate (GTP)- associated proteins), which substantiates
that G-protein activity in the VTA is involved in progestogens’
actions. Expression of two forms of ram, which encode for GTP
binding proteins, were increased 2.3- and 2.0-fold and expres-
sion of RAB3d, which encodes the GDP/GTP exchange protein,
was 2.5 times greater in mated versus non-mated rats. Sec-
ond, mating induces 3α,5α-THP biosynthesis and many genes
that were upregulated were those involved in steroid metabo-
lism (e.g., Fshb, Lhb, and Giot1). Third, genes involved in cell
proliferation and cell death were upregulated in the midbrain
VTA of mated versus non-mated rats. These findings support
a great deal of our prior research that has demonstrated a role
of steroid biosynthesis and actions at GABAergic, glutamater-
gic, dopaminergic substrates, and/or downstream signaling fac-
tors. Thus, mating alters expression of genes associated with
steroid biosynthesis and non-traditional steroid actions in rat
midbrain.

PXR, AN ENDOGENOUS TARGET OF 3α,5α-THP, MAY UNDERLIE
BIOSYNTHESIS IN RESPONSE TO MATING
The data discussed to this point suggest that 3α,5α-THP plays
a causal role in mediating expression of affective and motivated
behaviors. Further, paced mating is one behavioral stimulus that
underlies 3α,5α-THP biosynthesis in brain regions, such as the
midbrain VTA, cortex, hippocampus, and striatum, that are rele-
vant for these behaviors. Other factors that remain to be elucidated
in this regulatory circuit within the midbrain VTA to modu-
late affective and motivated behaviors are of great scientific and
clinical interest. The data that support involvement of a novel
pregnane mechanism, the pregnane xenobiotic receptor (PXR),
that has actions to modulate steroid synthesis within the brain are
discussed as follows.

3α,5α-THP is an endogenous positive activator of PXR. The
PXR receptor is a nuclear receptor that acts as a transcription fac-
tor, and facilitates the expression of several major families of genes.
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Genes of particular relevance are the cytochrome P450 (CYP)
enzymes (involved in steroid and neurosteroid biosynthesis, as
well as metabolism of a broad array of drugs), and of ATP-binding
cassette transporters, which also have broad functions in several
sites, including the blood–brain barrier. The rodent PXR is analo-
gous to the steroid and xenobiotic receptor in humans, a.k.a. the
human-PXR (Xie and Evans, 2002). Enhancing gestational levels
of 3α,5α-THP can increase whole brain expression of PXR mRNA
in offspring (Mellon et al., 2008). While PXR is most often studied
in the liver owing to its integral role in metabolism, PXR has been
found using real-time quantitative PCR (qPCR) and Western Blot-
ting in the rabbit cortex, midbrain, and cerebellum (Marini et al.,
2007), rat brain capillaries (Bauer et al., 2004), and various regions
of the human brain (Lamba et al., 2004). Moreover, we have found
that PXR is expressed in the midbrain of rats, as described as
follows.

We have recently conducted microarray analyses on flash frozen
midbrain tissue of rats that were paced mated or not mated.
mRNA was isolated from midbrain tissues, reverse transcribed
into labeled cDNAs, hybridized, and used to probe the Affymetrix
GeneChip Rat 230 2.0 arrays per Affymetrix protocol. Analysis
showed the presence of PXR gene in rat midbrain VTA (Table 1).
We have gone on to confirm this microarray data and taken it a
step further to investigate whether PXR RNA and protein, as well
as the protein and RNA from downstream metabolism enzymes
involved in 3α5α-THP formation that may be regulated by PXR,
are present in the VTA. We have used qPCR to confirm the pres-
ence of PXR, StAR, P450scc, 3α-HSD, and 5α-reductase seen in
our microarray studies. We isolated total RNA from flash frozen
rat midbrain tissue using Tri-Reagent (Ambion). We then used
the Ambion MicroPoly(A)Pure™(Ambion) and the iScript Select
RT (reverse transcriptase) kit (Bio-Rad) to generate cDNAs from
mRNA. Primers for PCR were designed to differentiate between
cDNAs and genomic contamination (we observed no contami-
nation). We found that PXR as well as StAR, P450scc, 3α-HSD,
and 5α-reductase mRNAs are all present in the rat midbrain VTA
(Figure 4; Table 1).

To see if these mRNAs are translated into protein, we used
dot blots and antibody staining to look for protein expression
in the rat midbrain VTA. For these studies, we homogenized
flash frozen rat midbrain VTA tissue in NuPAGE® sample buffer
(1X; Invitrogen), at a concentration of 1 mg tissue/100 μl buffer.
Samples were then dot blotted onto nitrocellulose by pipetting
2 μl of homogenized sample in sample buffer onto the mem-
brane. We then probed the blots with different concentrations
(1:1000–1:5000) of 1˚ antibodies to PXR, StAR, P450scc, or 5α-
reductase (all from Santa Cruz Biotechnology), and 3α-HSD, then

appropriate species-specific biotinylated 2˚ antibodies to deter-
mine the ideal concentration of antibodies. Blots were incubated
in Vector Duolux Reagent (Vector Labs), which binds to the sec-
ondary antibodies to produce a chemiluminescent peroxidase
reaction that was observed following exposure to film. The rep-
resentative results of these dot blots are depicted in Figure 5;
Table 1.

We observed expression of PXR, StAR, P450scc, 5α-reductase,
and 3α-HSD protein in the midbrain. We have more recently
investigated whether there are differences in expression of PXR
in diestrous and proestrous rats (Frye et al., 2010). These experi-
ments have shown that rats in proestrus have higher mRNA and
protein expression of PXR in the midbrain than do diestrous
rats (Frye et al., 2010). Indeed, mRNA and/or protein for PXR,
StAR, P450scc, 3β-HSD, 5α-reductase, and 3α-HSD are present
in the rat midbrain, and PXR expression is altered by hormonal
status.

Manipulating PXR in the midbrain alters affective and motivated
behaviors
We have begun to assess the functional effects of PXR in the VTA
for affective and motivated behaviors. In one study, we compared
the effects of PXR ligands to the VTA of OVX rats. In this study,
OVX, E2-primed rats were stereotaxically implanted with bilat-
eral guide cannulae aimed at the VTA. Rats were infused with
β-cyclodextrin vehicle or a positive modulator of PXR (3α,5α-
THP, 3α,5β-THP, 3β,5α-THP, or RU-486) and then tested in the
paced mating task 10 min later. Infusions of the PXR-positive
modulators, compared to vehicle, increased lordosis responding
(Frye, 2011).

Although the data above imply that activating PXR in the mid-
brain VTA may facilitate lordosis, the effects of knocking down
PXR in the VTA are of interest. To further assess the role of PXR
in the VTA for affective and motivated behavior, we infused OVX,
E2-primed (10 μg) rats with either a PXR antisense oligodeoxynu-
cleotides (ODN; 5′ CTTGCGGAAGGGGCACCTCA 3′; 250 ng)
or a scrambled mis-sense ODN (5′ CTCCGAAACGGACATCTGA
3′; 250 ng), or saline vehicle, bilaterally to the VTA. ODNs were
infused 44, 24, and 0 h prior to testing in the elevated plus maze
and paced mating tasks. The site-specificity for the effects of
these manipulations was determined. Brains of OVX, E2-primed
rats that had scrambled ODNs or PXR antisense ODNs infused
to the VTA were immediately collected after behavioral testing,
flash frozen on dry ice, and stored at −80˚C until prepared
for western blotting analyses. Tissues have only been analyzed
to date for those with confirmed infusions to the VTA. Briefly,
tissues were dissected by one of two methods. First, the block

Table 1 | Expression confirmed in midbrain VTA of proestrous rats for pregnane xenobiotic receptor (PXR) and biosynthesis and metabolism

proteins/enzymes required for 3α,5α-THP formation [steroid acute regulatory protein (StAR), P450 side chain cleavage enzyme (P450scc),

5α-reductase, and 3α-hydroxysteroid dehydrogenase (3α-HSD)].

PXR StAR P450scc 5α-Reductase 3α-HSD

mRNA on microarray √ √ √ √ √
mRNA confirmed with qPCR √ √ √ √ √
Protein on westerns √ √ √ √ √
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of midbrain tissue (inclusive of red nucleus, interpeduncular
nucleus, substantia nigra) was grossly dissected (typical weight
25–30 mg). Second, brains were sectioned anterior and poste-
rior to the infusion site and midbrain VTA was “punched out”
(typical weight 2–3 mg of tissue). PXR expression was deter-
mined in midbrain or VTA tissue via western blotting using the
same general techniques described above for tissue preparation,
antibody incubation, blocking, and visualization. Specific to this
experiment, to optimize concentrations of primary and secondary
antibodies for PXR, dot blot analyses on positive control tis-
sues (liver) were conducted first. These blots were blocked in
5% milk PBS-10% tween and then incubated in PXR mouse 1˚
(1:1000–1:5000; Santa Cruz Biotechnology) and HRP conjugated
goat anti-mouse 2˚ (1:5000–1:20000; Bio-Rad) antibodies. This
experiment determined that the ideal concentration for 1˚ PXR
antibody was 1:3000 and 2˚ was 1:5000. These concentrations
were then used to determine PXR protein concentrations in mid-
brain tissue samples with typical gel electrophoresis separation
and transfer to nitrocellulose (as described in Frye, 2011). VTA
punches, but not gross midbrain dissections, demonstrated that
PXR expression was reduced following infusions of the PXR anti-
sense ODNs compared to scrambled control infusions (Figure 6).
These data support the notion that VTA is a central area within
the midbrain underlying neurosteroidogenesis of 3α,5α-THP and
that PXR’s effects on associated behaviors are site-specific and
relegated to the VTA. These findings are congruous with the

FIGURE 4 | Agarose gels to visualize bands from qPCR confirming that

mRNAs for pregnane xenobiotic receptor (PXR) and its possible

downstream effectors, steroidogenic acute regulatory protein (StAR),

P450 side chain cleavage enzyme (P450scc), 5α-reductase (5α-red), and

3α-hydroxysteroid dehydrogenase (3α-HSD) are expressed in the rat

midbrain. Note: gels depicted are those run separately for each of these
targets.

FIGURE 5 | Dot blots demonstrating the presence of pregnane

xenobiotic receptor (PXR), steroidogenic acute regulatory protein

(StAR), P450 side chain cleavage enzymes (P450scc), 5α-reductase, and

3α-hydroxysteroid dehydrogenase (3α-HSD) in the rat midbrain VTA.

NP indicates no protein.

hypothesis that PXR is critical for 3α,5α-THP formation in this
region.

Rats infused with the antisense ODN spent significantly less
time on the open arms of the elevated plus maze, indicat-
ing less anti-anxiety behavior compared to controls (Figure 7).
Additionally, rats infused with PXR antisense ODN to the VTA
spent less time in social interaction with a conspecific and demon-
strated less lordosis compared to controls, indicating less pro-
social and motivated, and reproductive behavior among these
rats (Figure 8). Infusions outside the VTA did not produce the
same effects (Table 2). Together with the western blotting data,
these findings demonstrate that PXR knock-down can be achieved
locally in the VTA and that reduction of PXR protein in this area
is sufficient to attenuate 3α,5α-THP-dependent anti-anxiety and
social behavior.

FIGURE 6 | Western blots of pregnane xenobiotic receptor (PXR)

expression (top) and β-actin control (bottom) in the whole midbrain

(left) and punch VTA infusion site (right) of rats administered

scrambled control or PXR antisense oligodeoxynucleotides (ODNs).

FIGURE 7 | Affective behavior in the elevated plus maze of E2-primed

rats administered scrambled control or pregnane xenobiotic receptor

(PXR) antisense oligodeoxynucleotides (ODNs) to the midbrain VTA.

∗ Indicates different from all groups, p < 0.05.
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FIGURE 8 | Social behavior (top: social interaction; bottom: lordosis) of

E2-primed rats administered scrambled control or pregnane xenobiotic

receptor (PXR) antisense oligodeoxynucleotides (ODNs) to the

midbrain VTA. ∗ Indicates different from all groups, p < 0.05.

Table 2 | Data from missed-site controls do not demonstrate reliable

difference between rats infused with scrambled

oligodeoxynucleotides (ODN) versus antisense ODN in elevated plus

maze (open arm time), social interaction (interaction time), or paced

mating (lordosis frequency).

Behavioral measure Missed-site infusate

Vehicle Scrambled

ODN

PXR

ASODN

Time on open arm (s ± SEM) 31 ± 7 26 ± 13 41 ± 2

Interaction time (s ± SEM) 115 ± 10 101 ± 20 99 ± 5

Lordosis frequency (mean ± SEM) 30 ± 18 33 ± 13 27 ± 12

To further assess the importance of PXR in neurosteroid-
enhanced lordosis, an experiment was conducted in diestrous and
proestrous rats infused with PXR antisense or control conditions
to the VTA, using the methods described above. In this exper-
iment, proestrous rats infused with antisense oligonucleotides
against PXR had reduced anti-anxiety and pro-social behavior,
compared to rats infused with control conditions (Frye et al.,
2010). PXR antisense oligonucleotides to the VTA of diestrous
rats did not alter these behavioral endpoints. Western blot analy-
ses and qPCR demonstrated that these infusions to the VTA

of PXR antisense oligonucleotides were effective in knocking
down PXR protein and mRNA expression in the VTA (Frye
et al., 2010). Moreover, PXR antisense oligonucleotides to the
VTA of proestrous rats significantly reduced 3α,5α-THP lev-
els in the midbrain coincident with these behavioral changes.
Thus, PXR may be necessary for 3α,5α-THP formation in the
VTA, and its subsequent effects on affective and motivated
behaviors.

Together, these preliminary findings demonstrate that antisense
ODNs infused to the midbrain VTA knock-down PXR expres-
sion locally in the VTA and that this local PXR attenuation is
necessary for expression of anti-anxiety and motivated, social
behavior among OVX E-primed rats. Of continued interest in
the laboratory is the precise role of PXR. PXR expression studies
suggest that there may be positive feedback from gonadal hor-
mones and/or 3α,5α-THP on PXR in the midbrain, which in turn
regulates downstream enzymes required for 3α,5α-THP forma-
tion. Interestingly, these results suggest that there may be some
genomic signaling in the midbrain for non-traditional actions
of 3α,5α-THP, but that these occur through PXR, rather than
PRs (as discussed in see Mechanisms of 3α,5α-THP for Affect
and Motivated Behaviors). The extent to which these effects
are mediated by 3α,5α-THP, and the functional role of PXR
in this system, are currently being investigated further in our
laboratory.

SUMMARY
To summarize, the neurosteroid, 3α,5α-THP, has myriad effects,
mechanisms, and sources beyond the typically described actions
of progestogens. The VTA is a central target of progestogens for
their effects and mechanisms related to affective, motivated, and
reward processes. A compelling question is the source of progesto-
gens in the VTA for these processes. A focus has been on the role
of PXR in the midbrain VTA. The midbrain VTA expresses RNA
and proteins for PXR and downstream metabolism enzymes that
are rate-limiting factors for 3α,5α-THP production. Infusions of
positive modulators of PXR to the VTA facilitate sexual behav-
ior. Infusions of antisense ODNs targeted against PXR to the VTA
inhibit anti-anxiety and sexual behavior of rats. Together, these
data support the idea that PXR is expressed in the midbrain VTA
and that it may have a functionally relevant role in the affective
and social behaviors examined to date. Indeed, PXR may be a
powerful mechanism involved in the modulation of neurosteroid
effects, which may mediate diverse human behaviors and clinical
conditions (e.g., anxiety, depression, drug abuse). The previous
studies by our lab have elucidated a critical role of 3α,5α-THP in
the VTA in mediating a number of affective and social behaviors in
rats. The ongoing focus of our lab is the conditions under which
biosynthesis of 3α,5α-THP is initiated, and how these processes
result from environmental stimuli, behaviors and/or drugs, and
involve PXR.
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