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ABSTRACT: Vomocytosis is a process that occurs when internalized fungal pathogens escape from phagocytes
without compromising the viability of the pathogen and the host cell. Manual quantification of time-lapse
microscopy videos is currently used as the standard to study pathogen behavior and vomocytosis incidence.
However, human-driven quantification of vomocytosis (and the closely related phenomenon, exocytosis) is
incredibly burdensome, especially when a large volume of cells and interactions needs to be analyzed. In this study,
we designed a MATLAB algorithm that measures the extent of colocalization between the phagocyte and fungal cell
(Cryptococcus neoformans; CN) and rapidly reports the occurrence of vomocytosis in a high throughput manner.
Our code processes multichannel, time-lapse microscopy videos of cocultured CN and immune cells that have each
been fluorescently stained with unique dyes and provides quantitative readouts of the spatiotemporally dynamic
process that is vomocytosis. This study also explored metrics, such as the rate of change of pathogen colocalization
with the host cell, that could potentially be used to predict vomocytosis occurrence based on the quantitative data
collected. Ultimately, the algorithm quantifies vomocytosis events and reduces the time for video analysis from over
1 h to just 10 min, a reduction in labor of 83%, while simultaneously minimizing human error. This tool
significantly minimizes the vomocytosis analysis pipeline, accelerates our ability to elucidate unstudied aspects of this phenomenon,
and expedites our ability to characterize CN strains for the study of their epidemiology and virulence.
KEYWORDS: Vomocytosis, Algorithm, Detection, Fluorescence, Time-Lapse Microscopy, Quantification, Macrophage,
Cryptococcus neoformans, Cell Tracking

■ INTRODUCTION
Innate immune cells, such as macrophages (MΦs) and dendritic
cells (DCs), use a mechanism called “phagocytosis” for the
ingestion and elimination of microorganisms, foreign sub-
stances, and apoptotic cells larger than 0.5 μm in diameter.1

Consequently, this phenomenon plays a crucial role in both the
innate and adaptive immune response. To study phagocytosis
and determine its occurrence quantitatively, time-lapse micros-
copy is often used.2 Although time-lapse microscopy has served
as a powerful tool for identifying and visualizing phagocytic
events, manual evaluation of these time-lapse videos is time-
consuming, laborious, and error-prone.3 The limitations of
conventional quantification methods for phagocytosis events
have led to an increased effort over the past decade to create high
throughput computer algorithms that recognize phagocytosis
events and replace manual quantification.4

A more recently discovered phenomenon known as
“vomocytosis” has also garnered attention in quantitative
studies. Vomocytosis is where an internalized fungal pathogen
escapes from a phagocyte without compromising the viability of
both the pathogen and the host cell.5 This mechanism has been
observed and measured in Cryptococcus neoformans (CN)
infections of macrophages, neutrophils, and dendritic cells.6−8

CN infections are known to affect immunocompromised
patients, disseminating from the lungs to the central nervous
system. Notably, vomocytosis is thought to be one of CN’s core

mechanisms of immune evasion that allows for traversal through
the blood−brain barrier and eventual dissemination into the
brain environment.9 Therefore, elucidating the mechanisms
behind vomocytosis may lead to cures for Cryptococcal
Meningitis and could even influence other fields, such as drug
delivery.

Similar to phagocytosis, time-lapse microscopy is primarily
utilized to visualize and quantify vomocytosis events by CN in
vitro. Since vomocytosis events occur over a range of 5 to 12 h
after coincubation, long-term tracking of immune cells and fungi
is required.10 Predictably, human quantification of vomocytosis
occurrence can become burdensome, especially when a large
volume of cells and interactions needs to be analyzed. The
dependence on human quantification greatly impedes progress
toward comprehensive understanding of vomocytosis and stunts
advancement toward the development of effective medicines for
CN-related infections.

The difficulties in manual quantification of large-scale cell
microscopy videos have sparked interest in algorithmic or other
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objective methodologies to investigate cell tracking and
interactions. To expedite and homogenize quantification of
phagocytosis events, several pre-existing methods in the
literature use algorithms to recognize phagocytosis events. An
algorithm to investigate the phagocytosis of the fungus
Aspergillus fumigatus conidia by macrophages in a confrontation
assay was conducted through the use of thresholding,
segmentation, and object-based classification from confocal
laser microscopy images.11 Another algorithm focused on
tracking and identifying the phagocytic interactions between
polymorphonuclear neutrophils and the fungus Candida
glabrata through multichannel time-lapse microscopy.4

Although algorithms to identify phagocytic events exist, there
are no algorithms allowing for automated cell tracking and
quantification of vomocytosis in time-lapse microscopy videos.
Interestingly, a multi-fluorophore reporter system composed of
two in situ staining steps and a flow cytometry readout was
developed to measure vomocytosis rates, bypassing the need for
microscopy imaging altogether.12

Although the methods used to track cells are transferable from
phagocytosis applications, techniques to quantify phagocytosis
events cannot be used to quantify vomocytosis events.
Fundamentally, in phagocytosis, immune cells must be tracked
until evidence of pathogen internalization is seen. Therefore,

there is no need to track the particulate after internalization and
colocalization occurs with the host cells.13 This differs with
vomocytosis where immune cells with colocalized pathogens
must be tracked until evidence of pathogen escape is observed.
Once expelled from the cell, the pathogen no longer requires
tracking, as the goal is to identify the expulsion event.

To address this strategic difference between the two
phenomena, we designed a novel MATLAB algorithm that
tracks immune cells throughout a time-lapse microscopy video.
This computational process measures the extent of colocaliza-
tion between the phagocyte and CN and rapidly reports the
occurrence of vomocytic events in a high throughput manner.
Our code processes multichannel, time-lapse microscopy videos
of cocultured CN and immune cells that have each been
fluorescently stained with unique dyes. Applied computer vision
principles were then used to empower the programmatic
derivation of image meaning from our visual microscopy data.
This derivation elucidated key features of image frame(s), such
as cell boundaries, cell shape, and cell movement. Afterward, we
performed a pixel-by-pixel analysis that provided quantitative
representations of spatiotemporal processes in real time (Figure
1).

Ultimately, we anticipate that the development of this novel
tool will greatly minimize the vomocytosis analysis pipeline,

Figure 1. Process workflow for a facile vomocytosis quantification algorithm. A) .avi files were exported from the BZ-X analyzer, and individual image
frames were extracted from the movie. Host immune cells (red/green) and fungal pathogens (green/blue) were viewed through two separate
fluorescent channels. Each image was then segmented, cellular entities were tracked, and pixel data were quantified with the objective of evaluating
vomocytosis incidence. B) Representative diagrams showing how fungal pathogen colocalization changes during vomocytosis and phagocytosis.
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accelerate our ability to elucidate unstudied aspects of this
phenomenon, and expedite our ability to characterize CN strains
for the study of their epidemiology and virulence.

■ METHODS

Cell Culture
Bone marrow derived macrophages (BMDMs) were obtained from 8−
12 weeks old, male and female, C57BL/6J mice in accordance with
guidelines approved by the University of California, Davis, Animal Care
and Use Committee (IACUC) using a modified 10-day protocol.14 For
reference, the IACUC protocol number is 21840.Mice were euthanized
by CO2 asphyxiation followed by cervical dislocation, and the tibias and
femurs were harvested for the isolation of bone marrow cells. The bone
marrow cells were obtained by flushing the shaft of the long bones with
a 25G needle using RPMI medium with L-glutamine and 25 mM
HEPES (Mediatech, Manassas, VA) containing 1% fetal bovine serum
(Mediatech) and 1% penicillin/streptomycin (Hyclone) and mixed to
make a homogeneous suspension. The suspension was then strained
using 70 μm cell strainers (Becton Dickinson, NJ, United States), and
cells were collected at 1800 rpm for 5 min. The red blood cells (RBCs)
were lysed with ACK lysis buffer (Lonza, Walkersville, MD) followed
by centrifugation at 1800 rpm for 5 min to recover leukocytes.
Leukocytes were then resuspended in DMEM/F-12 1:1 with L-
glutamine (Cellgro, Herndon, VA), 10% fetal bovine serum, 1% sodium
pyruvate (Lonza, Walkersville, MD), 1% nonessential amino acids
(Lonza,Walkersville,MD), 1% penicillin/streptomycin (Hyclone), and
L929 conditionedmedia. These cells were plated on tissue culture flasks
for 2 days to remove adherent cells. At 2 days, the nonadherent cells
were transferred to low attachment plates and cultured in fresh BMDM
media for expansion of macrophage precursor cells. At 6 days, cells were
transferred to tissue culture plates to allow for cell adhesion and
proliferation. At 10 days, the cells were seeded on 8-well chambered
slides (Nunk Lab-Tec II, ThermoFisher) at a cell density of 75,000 cells
per well for DCs or 50,000 cells per well for MΦs and used for CN
infections and time-lapse studies.

C. neoformans Infections and Time-lapse Imaging
Experiments
C. neoformans strain H99, graciously provided by the Gelli Lab at UC
Davis, was used to infect mammalian cells. For reference, we received
biological user authorization to use the fungus Cryptococcus neoformans
for our investigations (Protocol # BUA-R2542). These fungal cells were
initially grown on yeast extract peptone dextrose (YPD) agar at 30 °C
until visible colonies formed. Next, a single colony of C. neoformans was
grown overnight in 10 mL of YPD broth at 30 °C in a shaking incubator
at 150 rpm. The next day, macrophages seeded the day before at a cell
density of ∼2.5 × 104 cells/cm2, were stained with 1 μM lipophilic dye
that integrates into the cell plasma (CellMask Deep Red Plasma
Membrane Stain, Invitrogen, USA).

These cells were coincubated with CNs opsonized with pooled
human antibody serum and 18B7 antibody and stained with calcofluor
white stain (Sigma, USA) at a 5:1 fungal cell:phagocyte infection ratio
for 2 h. Extracellular fungi were removed by washing five times with a
warm and fresh medium.

Subsequently, fluorescent time-lapse microscopy videos of the
coincubated culture were performed for 14 h using the Keyence BZ-
X700 Series Microscope. Samples were kept at 37 °C and 5% CO2 in
themicroscope imaging chamber under sufficient humidity provided by
a water bath. Images were taken every 4 min for 14 h and compiled into
single movie files (.avi) for analysis using BZX-Analyzer (Figure 2A).

Movies were blinded by a third party before manual scoring for
vomocytosis and macrophage integrity. Vomocytosis was scored
visually on select videos using the following preset guidelines:

(1) A vomocytosis event was defined as the expulsion of internalized
CN from an infected MΦ or other innate immune cell,
regardless of the number of CN expelled, if expelled
simultaneously.

(2) Vomocytosis events were scored as independent phenomena if
they occur in different frames or from different MΦ.

(3) Vomocytosis events were discounted if the host BMDM
subsequently undergoes lysis or apoptosis within 30 min.

Image Segmentation and Tracking
Each image of the time-lapse imaging experiment went through image
segmentation. This process was implemented via thresholding and
ultimately promoted a more accurate programmatic understanding of
the image and the extraction of regular patterns. As depicted in Figure
2B and 2C, segmentation divided a frame into two distinct regions
based on various parameters, most notably through a threshold value T.
A segmented image clearly differentiates the regions of interest (ROI)
from the background. Dark and homogeneous pixel subsets in the
image delineated areas of interest, or cells.

By comparing the image intensity at every pixel location Ii,j with T,
the program determined whether to turn the pixel at position i,j either
black or white, binarizing the entire image. Along with the removal of
image noise and background, cell boundaries were easily determined via
edge detection strategies due to the high signal-to-noise ratio and high
contrast created by the prior segmentation process. Because it is
difficult to analyze raw image data without preprocessing the image to
automate the analysis process, through the process of image
segmentation via thresholding, the image becomes much easier and
more accurate to process programmatically. Specifically, in the case of
the cells stained with CellMask Deep Red, a T value was compared to
each pixel location in the red color channel to binarize the image in
preprocessing. After testing several different integer values from 0 to
255, a T value of 20 was selected. If Ii,j > 20, the corresponding pixel
becomes white. Conversely, if Ii,j < 20, the corresponding pixel becomes
black. After segmenting the image, cell boundaries are traced, and each
object is given a numeric ID, as shown in Figure 2D.

A size-based checkpoint was also used to enhance the clarity of the
segmented images. To distinguish macrophages from fluorophore
residue and cellular debris, an area of 100 pixels was set as the floor
threshold.15 A floor threshold area of 100 pixels translates to a diameter
of 11.28 pixels for a circular cell. We found that this baseline effectively
eliminated any artifacts or smaller debris from the processed image. The
macrophage pictured in Figure 2G with a diameter of approximately 17
pixels provides insight into the average size of an immune cell under our
microscopy and algorithmic settings.

Tracking these cells over multiple image frames and eventually
through an entire video was the next step. In order to best identify
vomocytic events, experiments were run with relatively low cell density
(26,300 cells/cm2), which translated to 50−75 cells in the viewing
frame using a 10× objective. These parameters allowed for the effective
implementation of a nearest neighbor linking approach (NNA), which
employs an assessment of distance minimization, for cell tracking.16

With NNA, each cell’s boundary information was stored as a polygonal
shape, which allowed for ease of centroid analysis and the application of
the Euclidean strategy over multiple frames. This methodology stored
the centroid location of all cells in Frame n − 1 and compared these
coordinate pairs with the centroid location of the cell in question in
Frame n. The centroid location (point A at the center of Cell A) in
Frame n − 1 that has the smallest Euclidean distance to the centroid of
interest (point B at the center of the cell in question) in Frame n would
indicate that the cell in question is likely Cell A. NNA allowed for a
higher degree of confidence when determining cell identity
preservation over time by minimizing the occurrence of two or more
cells being assigned the same ID due to having Euclidean distances
similar to the same predecessor cell in Frame n − 1. Our program sorts
through and delineates the identities of each cell in Frame n, allowing
for comprehensive tracking of each cell. This NNA is depicted in Figure
2H.
Pixel-by-Pixel Color Analysis
After validating both the cell identification and tracking components of
the algorithm, we derived pixel-based information that offered
quantitative data about the occurrence of a vomocytic event. The
previously discussed segmentation and tracking procedures were
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applied to the fluorescent image overlay of the coincubated mammalian
cells and pathogen, stained with CellMask Deep Red and calcofluor,
respectively (Figure 2E and 2F). This overlay enables a programmatic
assessment of the extent of pathogen internalization in the host cell.

The color map information on the overlay, which contained an RGB
value for each pixel in the image, was stored. Then, for a given

mammalian cell #X, the fluorescence intensity of the pathogen’s
corresponding RGB component was extracted within its established
boundaries, and this pixel data was represented with their arithmetic
mean. For instance, in the case of the experiment in Figure 3 in which
green was applied to differentiate calcofluor fluorescence, we calculated

Figure 2. Methods: cell culture, image processing, and nearest neighbor linking. A) Experimental procedure for cell staining, culturing, and imaging.
MΦs and CNs were stained with different dyes and were coincubated for 2 h. Noninternalized CNs were removed by washing with fresh medium.
Time-lapse microscopy was performed for 14 h, immediately after washing. B) Unprocessed grayscale image of immune cells with internalized CN. C)
Segmented image. D) Labeled image after boundary evaluation and cell identification. E) Image overlay of red fluorescent channel (host immune cell)
and green fluorescent channel (CN). F) Segmentation and labeling of fluorescent image. G) Diameter of a macrophage measured in pixels. H)
Visualization of the nearest neighbor linking strategy used to track cells across multiple frames. TheNNAmeasures Euclidean distances from the cell of
interest in Frame n to the centroid of all of the labeled cells in Frame n − 1. It follows that the cell in Frame n − 1 which has the smallest distance to the
cell of interest in Frame n would likely be its temporal predecessor. In this manner, the identities of cells can be linked through time.
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“how green” the red host immune cell was at each frame of the
microscopy video.

After the acquisition of pixel data, a process needed to be established
to streamline vomocytosis event determination. To do this, we
calculated the minimum value of the derivative of each cell’s internal
fluorescence over time (the total green pixel summation inside the host
immune cell at each frame). We hypothesized that for a vomocytic
event the green internal fluorescence of a host immune cell will rapidly
decrease over ∼5 image frames as the fungal pathogen leaves the cell
boundary. This will lead to highly negative raw derivative values. If a
vomocytosis event does not occur, then the cell’s internal fluorescence
may still decay, but the magnitude of the rate of decay would be
significantly less than an expulsion event. The integral area between the
derivative curve and a horizontal line at = 500df

dx
was also tested. The

definite integral of the time derivative gives the total duration of the
potential vomocytosis event. In other words, we are able to see how
much time the cell experienced a rate of decay larger than −500 px/
frame. A large area symbolizes a large net change in the internal
fluorescence. Using a combination of these metrics allows the algorithm

to gate for true vomocytosis events with a higher probability while
filtering out some false positives, which may have large negative
derivative values but small area under the curve.

Data and Statistical Analysis

GraphPad Prism 9 was used to create all column graphs and perform all
statistical analyses. Continuous data of fluorescence metric values in the
different sample groups were determined to be non-normal using a
Shapiro−Wilk normality test. Therefore, statistical comparisons
between groups were conducted using a nonparametric Kruskal−
Wallis test corrected for multiple comparisons using Dunn’s test. For
comparisons between only two groups, a statistical evaluation was
completed using a nonparametric Mann−Whitney test. Original time-
lapse movies, upon which manual scoring was performed, are freely
available upon request. All column graphs, generated on GraphPad
Prism 9, display the individual data points, mean, and standard error of
the mean (SEM).

Figure 3.Corroboration of photographical and analytical evidence of vomocytosis. A) Macrophage #6 captured at regular intervals between Frames 1
and 25. B) Graph of green internal fluorescence (px) vs time. Red points on the plot denote frames (12−14) in which the fluorescence value is
dropping rapidly. C) Derivative of green internal fluorescence (px/frame) vs time. Red points on the plot denote frames (12−14) in which the
derivative value is the most negative. D) Macrophage #12 captured at regular intervals between Frames 1 and 25. E) Graph of green internal
fluorescence (px) vs time. F) Derivative of green internal fluorescence (px/frame) vs time.
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■ RESULTS

Validation of ‘Rate of Fluorescence Decay’ as a Metric of
Vomocytosis

Wepresent internal fluorescence data (green channel only) from
two different macrophages, one that participated in a
vomocytosis event and another that did not, to study whether
any differences in acquired metrics emerged from the
comparison. Figure 3 provides both visual and quantitative
insight into how the algorithm converts image data into
quantitative numerical readouts. In Figure 3A, we observe
Macrophage #6 at different time points between Frames 1 and
25 in a time-lapsemicroscopy video. In Frame 1, it is evident that
the 2 CNs are well within the boundaries of the host immune
cell. However, in Frame 20, the C. Neoformans cell, which was
previously within the blue boundary line of the host cell, has
escaped. This vomocytosis event is clearly captured by the
corresponding plots. Figure 3B shows a graph of internal
fluorescence (px) vs time. For clarity, all references to
“fluorescence” or “internal fluorescence” relate only to the
specific color layer that corresponds to the fungal pathogen, and
not all 3 color layers (red, green, and blue) together.
Furthermore, the “time” axis can be easily read in units of
frame number as well as minutes. Each tick mark represents 5
frames, which is equal to 20 min in real time. In this graph, a
precipitous decrease in fluorescence of 4721 px is observed from
Frames 12 to 14, signaling that a significant amount of “green”,
or fungal pathogen, is leaving the boundaries of the host immune
cell. A similar conclusion can be drawn by looking at the graph in
Figure 3C, in which the large negative value of the derivative
(−1307 px/frame) indicates that the internal fluorescence of the
host immune cell is rapidly decaying near the Frame 12 time
point. This observation corroborates our hypothesis that a
vomocytic event has occurred.

Contrary to Macrophage #6, it is evident that Macrophage
#12 in Figure 3D does not demonstrate a vomocytic event
during the 25 frames shown in the figure. However, there is still
observable fluorescence decay. The notable difference between
the decays exemplified in Figure 3B and 3E is their rate at
distinct points. Figure 3E illustrates a more gradual decline of
internal fluorescence from a value of 7779 to 3636 px over 20
image frames due to nonvomocytosis factors such as photo-
bleaching or fluorophore reactivity. Furthermore, the derivative
plot in Figure 3F oscillates at near-zero values, demonstrating
that the decay in the internal fluorescence was gradual.
Exploring Impacts of Noise on Long-Term Fluorescence
Tracking
After testing the algorithm on a shorter video with a length of 20
image frames, we then evaluated the algorithm’s capacity to
analyze longer videos with a length of 100 frames (400 min or
6.67 h). After this time point, we found that the fluorescence
intensity in the time-lapse microscopy video diminished
significantly, to where vomocytic fluorescence decay and
nonvomocytic fluorescence decay are indistinguishable. In
Figure 4, raw fluorescence data for all immune cells in a time-
lapse microscopy video is displayed. The graph in Figure 4A
features data from a heat-killed control and shows that no
vomocytosis events occurred, which correlated to no large
declines in internal fluorescence over 100 frames. Conversely, in
Figure 4B (live CN), several trajectories are distinct. For
instance, the topmost trajectory (boxed in red and visualized in
Figure 4E) experiences a steep decline in fluorescence from
Frames 70 to 100 and does indeed experience a vomocytosis
event (based on visual inspection). It is also interesting to note
that the internal fluorescence value of Macrophage #6 is
significantly higher than all other cells in the video.

One observation that was particularly striking in the data was
the consistency of the noise across cells. Many of the sharp peaks

Figure 4. Reducing noise in long-term fluorescence tracking. A) Fluorescence trajectories of all macrophages, which were coincubated with heat-killed
CN, present in a time-lapse microscopy video. B) Fluorescence trajectories of all macrophages, which were coincubated with live CN, present in a time-
lapse microscopy video. C) Fluorescence trajectories of all macrophages, which were coincubated with heat-killed CN, present in a time-lapse
microscopy video after being convolved with a 7-frame blurring function. D) Fluorescence trajectories of all macrophages, which were coincubated
with live CN, present in a time-lapse microscopy video after being convolved with a 7-frame blurring function. E) Macrophage #6 captured at regular
intervals between Frames 1 and 100, which corresponds to the trajectory in the red box. F) Quantitative metrics that compare heat-killed trajectory
data before and after the noise-filtering function is applied. G) Quantitative metrics that compare live trajectory data before and after the noise-filtering
function is applied.
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or valleys in the raw fluorescence data were seen in most cells
with nonresidual levels of fluorescence and occur at the same
time point. We considered convolving the raw data with a
blurring function as a potential strategy for removing higher
frequency noise in the data.17 For simplicity, we employed a
moving rectangular pulse with a width of 7 units (Figure 4C and
4D). In effect, this convolution produces a 7-frame moving
average, which removes the frame-to-frame fluctuations that are
primarily caused by changes in microscope focus or alterations
in Z-stack selections.18 To determine whether convolution
affected the quantitative metrics used to screen for vomocytosis
events, the fluorescence range and minimum derivative value
were calculated for both the raw and convolved data.

Beginning with the heat-killed scenario, it is evident that the
blurred trajectory in Figure 4C is less jagged compared to that in
Figure 4A. The table in Figure 4F presents a numerical analysis
that compares the raw and convolved trajectory in the blue
boxes. We see that the fluorescence range in Frames 50−80 is
−5185 px for the raw trajectory and −2753 px for the convolved
trajectory, which gives a percent change of 46.9%. This is what
we would expect, given that the convolution removed many of
the sharp peaks and valleys and ultimately resulted in a flatter
curve. Similarly, the minimum value of the derivative also drops
from −827.5 to −269.6143 px/frame after convolution. This
approach silences the incidence of sudden frame-to-frame
variations in fluorescence, which is reflected in the lower
magnitude of the derivative.

Comparing the two plots for live CNs (Figure 4D and 4B), we
see that convolution results in a smoother curve. More
importantly, blurring does not distort the overall shape of the
curve. The convolved trajectory maintains both the steepness of
the fluorescence drop(s) and the rough plateau in Frames 80−

90. The table in Figure 4G presents a numerical analysis that
compares the raw and convolved trajectory in the red boxes. The
fluorescence range in Frames 70−100 is −24,920 px for the raw
trajectory and −24,394 px for the convolved trajectory. Contrary
to the heat-killed scenario, the fluorescence range before and
after convolution does not vary significantly and comes out to
approximately a 2.11% change. The minimum value of the
derivative is −1661.3 px/frame before convolution and becomes
−1693.2 px/frame after convolution, equaling a 1.92% change.

Based on these results, we conclude that the employment of a
7-frame blurring function effectively lowers the fluorescence
range and (magnitude of) the minimum value of the derivative
in nonvomocytic trajectories while maintaining the values of the
parameters in vomocytic trajectories. This noise-filtering
approach, as well as other advanced signal processing methods,
may serve to exacerbate the quantitative differences between
cells that are involved in vomocytosis and cells that have
internalized CN but do not exhibit vomocytosis.
Applying Fluorescence vs Time Data to Verify Coincubation
Protocol and Phagocytic Uptake

We quantitatively assessed the efficacy of the coincubation
protocol, including the infection ratio of CN to immune cells,
the extent of phagocytic uptake by immune cells, as well as other
parameters. When trajectories for all cells in the video are
graphed, 2 populations of cells emerge (Figure 5). Below the
horizontal line (∼5000 px) is the average inherent fluorescence
of phagocytes, meaning that these immune cells do not have any
internalized CNs. This 5000 px benchmark became visually
apparent when plotting trajectories of cells from several different
experiments on the same graph.

Figure 5. Line of demarcation separating macrophages with and without internalized CNs. A) This line at 5000 px offers quantitative insight into the
success of the coincubation protocol used and can be used to adjust the CN:phagocyte ratio in future experiments. B) Macrophage #16, which has no
internalized CNs, captured at regular intervals between Frames 1 and 100. C) Macrophage #36, which has internalized CNs, captured at regular
intervals between Frames 1 and 100.
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Contrarily, all trajectories above the horizontal line
correspond to cells with internalized fungal pathogens. The
ratio of the number of trajectories above the line of demarcation
to the number below provides a way to numerically determine
the extent of phagocytosis. Depending on the experimental
design, a lower ratio can suggest that the coincubation procedure
needs to be modified due to poor phagocytic uptake or that the
experiment needs to be repeated. In the example given in Figure
5A, 7 trajectories are above the line of demarcation, and 30 fall
below, indicating that roughly 18.9% (7 out of 37) of host cells
were infected with at least one CN. This percentage is a metric of
phagocytic uptake and is comparable to phagocytosis rates
found in literature. Nelson et al. quantified the percent of
cryptococcal uptake by various macrophage subsets and found
that phagocytosis rates broadly range from ∼5−100%.19 For
instance, the macrophage subtype CD14+CD1c− had a mean
percent cryptococcal uptake of 40%.19 To corroborate the
graphical data in Figure 5A, visual evidence of two macrophages,
one with CN internalization and another without, are shown in
Figure 5B and 5C along with their corresponding mean internal
fluorescence values over the 100 frames of analysis. These two
macrophages were chosen from the 63 that were visually
analyzed. The mean internal fluorescence value of Macrophage
#16 (no CN internalization) was 1820.24 px while the mean
internal fluorescence value of Macrophage #36 (CN internal-
ized) was 12,024.18 px.
Distinguishing between Event Categories

Trajectories from vomocytosis time-lapse videos fall into three
generic categories: (1) vomocytosis event, (2) internalized CN
with no vomocytosis events, and (3) no internalized CN. In
Figure 6A, five trajectories that clearly represented each category
were selected to be analyzed further. The blue lines represent
cells with no internalized CN. Distinguishing characteristics of
trajectories in this category are the near-zero value of
fluorescence, lack of noise/fluctuations, and no sharp declines

in fluorescence value. The green lines represent cells with
internalized CN that did not perform a vomocytosis event.
Distinguishing characteristics of trajectories in this category are
the nonzero value of fluorescence, presence of noise/
fluctuations, and no sharp declines in fluorescence value. Finally,
the red line represents a cell with internalized CN that
performed a vomocytosis event. Distinguishing characteristics
of trajectories in this category are the nonzero value of
fluorescence, presence of noise/fluctuations, and sharp decline
in fluorescence value during the event. Each event category and
its corresponding trajectory characteristics are summarized in
Figure 6B. Snapshots of the cells analyzed in the plot are shown
in Figure 6C.
Contrasting Metrics across Event Categories

To fully validate whether the metrics acquired by our algorithm
can be used to classify vomocytosis events, we manually
evaluated 63 cells across ten different time-lapse microscopy
videos frommultiple experiments and appropriately placed each
cell into one of the 3 event categories. Manual evaluation of
time-lapse microscopy videos was performed until at least 10
vomocytosis events were recorded. The 5000 px filter in Figure
5A was applied to remove the “No CN Internalization” group
before downstream analysis.

To discriminate between the “CN Stays Internalized” and
“CN Vomocytosed” groups, several different metrics were
assessed. Figure 7A depicts the minimum derivative value of the
internal fluorescence. The “CN Vomocytosed” group possessed
the most negative minimum derivative values, which were
significantly different from those of cells where only
phagocytosis was observed. A second metric for distinguishing
vomocytosis through this algorithm is measuring the range of
raw fluorescence values for each cell (maximum minus
minimum). The bar graph on the right (Figure 7B) depicts
this data. The “CN Stays Internalized” group has a lower range
compared to the “CN Vomocytosed” group.

Figure 6.Characterization of the event categories. A) Fluorescence trajectories of 5 macrophages, categorized by event type (red = vomocytosis event,
green = internalized CN with no events, blue = no CN internalization), across 100 frames. B) Trajectory characteristics (near-zero fluorescence value,
presence of noise/fluctuations, and sharp decline in fluorescence) whose presence or absence define the 3 classifications of events. C) Corresponding 4
macrophages captured at regular intervals between Frames 1 and 100, each boxed in the color of the category within which it falls.
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Ultimately, comparing the local (± 5 frames) fluorescence
range surrounding the point with the most negative
(normalized) percent change in fluorescence yielded the best
separation between the two groups, as shown in Figure 7C.
Calculating the local fluorescence range around the point with
the most negative percent change for the “CN Stays
Internalized” and “CN Vomocytosed” groups results in a false
positive rate of 13.3% and a false negative rate of 18.2%.

■ DISCUSSION
In this work, we propose a novel methodology for quantifying
the occurrence of vomocytosis, or nonlytic exocytosis of CNs
from innate immune cells, based on measuring the extent of
colocalization between the fungal pathogen and the host cell.
This method records pathogen fluorescence data within the
boundaries of each host cell across time and offers a way to
discriminate between the different trajectory types based on
fluctuations in internal fluorescence. Considering that the
desired application of the algorithm was to screen many videos
quickly, reducing the computational burden was paramount to
minimizing the runtime for each video. Eliminating the need to
precisely track each pathogen by using fluorescence as an
indicator of pathogen presence significantly lowered the
algorithm’s complexity.

The first step in our algorithm’s workflow is threshold-based
segmentation. In order to compensate for variability in

microscopy recording conditions and innate levels of
fluorescence in the images, adaptive thresholding is vital to
ensure consistency in the data the algorithm processes.20

Currently, our algorithm does not have a set procedure to
determine optimal thresholding and leaves it up to the user to
manipulate the threshold level used for cell segmentation. In the
future, the algorithm can be improved and made more versatile
with the addition of automated and optimized thresholding.
Automated cell segmentation has been implemented in
algorithms that identify objects with areas that vary widely in
time.20 In these instances, the assumption that the total ROI area
remains constant over time is invalid. An example of such an
application is segmenting calcium-imaging data sets of neurons
that change in brightness on a frame-to-frame time scale.20 An
automated approach eliminated the high level of tuning that was
previously required for each individual data set and was even
able to detect low-intensity neurons that were initially
undetected by human eyes.20 Considering the global pixel
intensities of each image before separating static background
from relevant data provides a way to remove frame-to-frame and
video-to-video variance and consequently increase the precision
of segmentation.

Initially, the algorithm was trained on bright-field microscopy
images with the rationale of presenting a more difficult
environment to uncover and identify any areas of ambiguity.
Since the purpose of this research is more focused on elucidating

Figure 7. Functional quantitation of vomocytosis using algorithm. A) Bar graph that compares theminimum derivative value ofMΦs with CN that stay
internalized for the duration of analysis and CN vomocytosed. (Comparison of two samples was performed using a nonparametric Mann−Whitney
test.) B) Bar graph that compares the fluorescence range (maximum fluorescence value minus minimum fluorescence value) ofMΦs with CN that stay
internalized for the duration of analysis and CN vomocytosed. (Comparison of two samples was performed using a nonparametric Mann−Whitney
test.) C) Bar graph that compares the local (± 5 frames) fluorescence range surrounding the point with the most negative (normalized) percent change
of MΦs with CN that stay internalized for the duration of analysis and CN vomocytosed. (Comparison of two samples was performed using a
nonparametric Mann−Whitney test.).
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fungal behavior (vomocytosis) rather than on the optimization
of image detection and tracking, we chose to utilize simple yet
effective methodologies. Threshold-based segmentation pro-
vided sufficient resolution on the image frames for the algorithm
to delineate the host immune cell boundaries. By binarizing only
the fluorescent channel images corresponding to the immune
cell, our algorithm isolates host cell boundaries and can apply
those boundaries in relation to the location of the pixels in the
fluorescent channel corresponding to the fungal pathogens.
Separately investigating the two channels at the same time point
(immune cell and pathogen) allows for the ease of segmenting
cell boundaries. Algorithms that solely rely on bright-field time-
lapse microscopy videos often segment both the host cell as well
as the particulate or pathogen and differentiate them based on
size or shape, which adds an additional layer of complexity. Dual
segmentation of both the host and pathogen has been used to
study interactions of macrophages and Conidia.15 Mech et al.
developed an algorithm that discriminates immune cells from
Conidia based on their clearly distinct areas, computed to be
3800 ± 1400 px and 180 ± 30 px, respectively.15 The threshold
area was set to be 450 px.15 All objects with areas larger than 450
px were classified as macrophages, and all objects with areas
below the threshold were considered to be Conidia.15 Unlike the
methodology used for the quantification of phagocytosis events,
vomocytosis quantification requires tracking the current
internalization state of the pathogen within the immune cells
and utilization of that data to evaluate the occurrence of an
expulsion event. Simply applying threshold-based segmentation
to bright-field time-lapse microscopy images would not be
possible due to the high spatial resolution needed to quantify the
internalized fungi.

In addition to threshold-based segmentation, nearest-
neighbor tracking (NNT) is highly accurate in low cell density
and low cell motion use cases.16 The frequency of frame capture
is chosen by the researcher and is limited only by the storage
capacity of the computer, as well as potential software
restrictions. With each frame of recordings in our experiments
taken 4min apart, the cells do notmigrate far enough during that
time, making NNT applicable. Furthermore, the viewing
window can be selected on the well plate to focus on areas
with fewer cells, providing a means of limiting the cell density.
We have found that the algorithm performs best in scenarios
with 50−75 cells and becomes less reliable as the number of cells
per frame increases past 100. Through this methodology, our
algorithm effectively delineates and tracks cells through multiple
frames. However, one of the unresolved challenges with NNT is
the computational burden of the approach. To analyze one time-
lapse microscopy video on the order of 215 image frames, the
algorithm takes roughly 10 min, depending largely on the cell
density in each frame. The nearest-neighbor algorithm is
computationally very expensive. If there are, on average, N
cells in each frame, the number of comparisons that the
computer must perform is NN. For an entire video, the number
of comparisons is amplified by the number of frames. If we
assume a cell density of 30 cells per frame and a video with a
length of 215 frames, we get a staggering 4.43 × 1046 iterations.
This number can be decreased by several orders of magnitude by
including a parameter called maximum displacement (mD) to
constrain the distance that a cell can move in one frame.16 The
algorithm will search for comparison targets only within a region
with a radius of mD instead of the whole frame altogether. This
approach has been used in particle tracking studies to “discard
unlikely bonds and reduce computation time.”16 However, it

was noted that careful adjustment and calibration of this
parameter is necessary based upon particle speed and density.

Though we chose a nearest-neighbor tracking approach, there
are more advanced cell tracking algorithms that would allow the
algorithm to function without as many limitations. A more
complex example of such an algorithm is a network-based
approach, where information on the spatiotemporal relation-
ships of cells is stored graphically.21 Mathematical models
(partial differential equations) can also be used to predict cell
movement via a watershed transform.21 Choosing between the
various tracking methods boils down to a trade-off between
complexity, efficiency, and performance.

The current algorithm is limited to the analysis of fluorescent
microscopy videos because it relies on two separate fluorescent
channels to distinguish between host immune cells and fungal
pathogens. As a result, the fluorescence of the fungal pathogens
serves as a key marker or indicator for vomocytosis. Ultimately,
an algorithm that can take in brightfield (black/white or
grayscale) videos would decrease the time it takes to stain each
cell type before coincubation. However, this would require
additional evaluative strategies to discern differences between
immune cells and pathogens in the same frame as well as a
complex boundary analysis to determine expulsions. By applying
fluorescence markers and using multiple color channels to
analyze the expulsion events, we managed to greatly simplify the
algorithm and optimize the processing and segmenting
operations in the analysis of fluorescently stained cells and
pathogens.

However, choosing suitable fluorescent dyes is imperative for
the optimal functioning of the algorithm. We found that
lipophilic dyes that stained the cell membrane did not provide
enough clarity in the time-lapse microscopy images, especially
when working with irregularly shaped immune cells due to their
spine-like projections. The data that support this are not
included in the manuscript but are available from the
corresponding author upon request. We opted for cytoplasmic
staining (carboxyfluorescein succinimidyl ester, CFSE), which
significantly intensified fluorescence signals and allowed for a
clearer cellular view. The enhanced definition provided by the
CFSE greatly improved our algorithm’s detection of cell
boundaries. Although the different stains improved the quality
of visual definition, it is still important to regulate the exposure
time during imaging due to photobleaching, which negatively
affects the ability of our algorithm to threshold and segment cells
accurately.22

Other parameters also need to be calibrated when performing
the fluorescence microscopy experiment, such as the illumina-
tion power. An extremely high illumination power causes
photobleaching, which renders a large portion of the microscopy
unusable. However, a low illumination power provides low-
quality images and a low signal-to-noise ratio that makes most
image frames tough to analyze precisely. Another parameter is
the cell density. Choosing a well location where the spacing
between cells is apparent and the total number of cells in the
frame is not exorbitant again makes the algorithmmore efficient.
Balancing these parameters provides the rationale for our
experimental design of a lower cell density and lower exposure.

Even when parameters are balanced though, fluorescence
microscopy can be especially susceptible to nonhomogenous
staining due to differences in metabolism between internalized
CNs, differences in cells’ Z coordinates, and number of
pathogens internalized. These serve as possible explanations
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for the observation that Macrophage #6 in Figure 4E has a
heightened fluorescence value.

Finally, our pixel-based analysis approach has the potential to
be applied to other dynamic cellular processes, such as with
intracellular nucleic acids and protein expression. This approach
offers a quantitative way to digest microscopy images that can be
used to corroborate data from RNA-seq, Western blot, or flow
cytometry. Pixel-based counting also brings the additional
advantage of temporal data or how fluorescence changes with
time. An example of data that could be gathered via application
of our algorithm includes subcellular localization, especially
whether proteins are entering the phagosome, nucleus, or
mitochondria, and how the location of these molecules change
over time.23 We also foresee the algorithm providing deeper
insight into other processes where cellular boundaries are
breached or modified such as exocytosis, trogocytosis, and
extracellular vesicle formation.

■ CONCLUSION
In summary, this study documents the development of a
MATLAB algorithm that screens cellular time-lapse microscopy
videos in a high throughput manner. The algorithm measures
the extent of fungal pathogen colocalization in each host
immune cell across time with the rationale that large negative
rates of change in a host cell’s internal fluorescence indicate that
a CN is leaving the boundaries of the host immune cell. Using an
automated algorithm to intake image data and quantify
vomocytosis events consistently reproduced the results of a
more time-consuming manual quantification process of the
same time-lapse microscopy images. In utilizing an algorithmic
approach to process multichannel time-lapse microscopy
imaging, accurate, higher throughput, and less human error-
prone quantification can occur, acting as an effective method-
ology for analyzing vomocytosis events. In future investigations,
we aim to further validate the algorithm by using it to measure
vomocytosis rates in different conditions, such as varied
infection rates and drug treatments and cell types. We believe
that this tool, by facilitating the study of vomocytosis, could lead
to breakthroughs in finding a cure for cryptococcal meningitis
and has broad influence on other fields as well. To this end, we
hope to apply the algorithm to the quantification of other
expulsion processes, including those involving drug-loaded
fluorescent particles.
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