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Human noroviruses (NoV) are the leading cause of foodborne gastroenteritis and endemic
diarrheal disease across all ages in the United States, cause nearly 50% of all gastroenteritis out-
breaks worldwide, and are rapidly replacing rotavirus as the predominant gastrointestinal
pathogen in pediatric populations [1]. Modelling studies show that vaccination can offer signif-
icant healthcare and economic benefits, depending on vaccine cost, protective efficacy, and
protection duration [2]. We stand at the threshold of exciting progress in NoV vaccine evalua-
tion, with several vaccine candidates in development. Furthest along are virus-like particles
(VLPs), composed of the NoV major capsid protein and produced in a recombinant baculo-
virus expression system. VLP vaccines are safe, immunogenic, and were efficacious in a proof-
of-principle human experimental infection study [3]. As development transitions from small
preclinical and clinical studies to larger clinical trials—and eventually to applications for licen-
sure—it is important to review the current knowledge on correlates of protection (CoPs)
against NoV infection and disease (Table 1), as well as to identify and address the remaining
challenges (Table 2). This is critical to understand the basis of vaccine efficacy and to provide
direction for the design and implementation of future NoV vaccine studies.

How Do Host Genetics Influence Protection from NoV Infection?
Human experimental challenge studies conducted in the 1970s identified individuals resistant
to infection with the prototype strain, Norwalk virus (NV, genotype GI.1); the protective effect
could not be attributed to the presence of serum antibodies [4]. Evidence for the involvement
of host genetics came in the early 2000s, when an association between an individual’s ABO his-
toblood group antigen (HBGA) type and risk of NV infection was identified [5]. HBGAs are
blood group antigens present on epithelial cell surfaces and in mucosal secretions, and the
expression profile is based on an individual’s ABH secretor and Lewis genotypes. HBGAs are
cell attachment factors for NoVs [6]. Resistance to NV is mediated by the absence of a func-
tional fucosyl transferase 2 (FUT2) gene (secretor-negative genotype) [7]. The association
between HBGA expression and susceptibility to specific NoV genotypes is now well established
[1]. Apart from isolated cases, functional FUT2 gene expression is required for infection with
most variants of the predominant NoV genotype, GII.4. This genotype binds a diverse range of
HBGAs compared to other genotypes, possibly explaining its predominance. The epidemiology
of NoV is complex, with more than 30 genotypes known to cause infections in humans [8].
Since HBGA specificity varies among different NoV genotypes, it is likely that most persons
will be susceptible to at least some genotypes [9].

PLOS Pathogens | DOI:10.1371/journal.ppat.1005334 April 26, 2016 1 / 6

OPEN ACCESS

Citation: Ramani S, Estes MK, Atmar RL (2016)
Correlates of Protection against Norovirus Infection
and Disease—Where Are We Now, Where Do We
Go? PLoS Pathog 12(4): e1005334. doi:10.1371/
journal.ppat.1005334

Editor: Rebecca Ellis Dutch, University of Kentucky,
UNITED STATES

Published: April 26, 2016

Copyright: © 2016 Ramani et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Funding: The work was supported by grants from
the National Institutes of Health to MKE (P01-
AI057788, P30-DK56338) and RLA (P01-AI057788),
the United States Department of Agriculture National
Institute of Food and Agriculture to MKE and RLA
(Agriculture and Food Research Initiative Competitive
Grant 2011-68003-30395) and the John S. Dunn
Research Foundation to RLA. The funders had no
role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Competing Interests: I have read the journal's policy
and have the following conflicts: MKE is named as an
inventor on patents related to cloning of the Norwalk
virus genome and has served as a consultant to
Takeda Vaccines, Inc. RLA has received research
grant funding from and is an unpaid consultant to

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1005334&domain=pdf
http://creativecommons.org/licenses/by/4.0/


What Immune Effectors Are CoP against NoV Infection and
Disease?
Current knowledge on immune responses to human NoVs comes predominantly from experi-
mental human infection models and clinical studies with VLP vaccines. The first immune CoP
against NoV gastroenteritis was identified in a NV human volunteer challenge study, in which
prechallenge serum levels of functional antibodies that block binding of NV VLPs to HBGAs
correlated with lower risk of illness [10]. HBGA-blocking antibodies were also a CoP against
NoV infection and disease following vaccination with monovalent (GI.1) and bivalent (GI.1
and GII.4) VLP vaccine formulations [3,11]. However, following intramuscular immunization
with the bivalent vaccine and challenge with an infectious virus, a discordance was observed
between the levels of HBGA-blocking antibodies required to achieve protection in vaccinees
and placebo recipients [11]. Infectious virus challenge in placebo subjects showed that high lev-
els of HBGA-blocking antibodies were associated with a lower frequency of infection and

Table 1. Correlates of protection.

Study
Design

Correlate of protection Time Outcome Reference

Human Host genetics Preexposure Infection and illness [5,7] (and other
studies)

Experimental Serum histoblood group antigen (HBGA)-blocking
antibody

Preexposure Infection and illness [10]

Challenge Serum hemagglutination inhibition antibody Preexposure Illness [23]

Salivary Immunoglobulin A (IgA) Preexposure Illness [14]

Postexposure (rapid
response)

Infection [7]

Fecal IgA Preexposure Peak virus shedding [14]

Postexposure (day 7) Duration of virus
shedding

[14]

Virus-specific memory Immunoglobulin G (IgG) cells Preexposure Illness [14]

Vaccine Serum histoblood group antigen (HBGA)-blocking
antibody

Prechallenge Infection and illness [3]

Studies Serum IgA Prechallenge Infection and illness [11]

doi:10.1371/journal.ppat.1005334.t001

Table 2. Questions for future NoV vaccine studies.

Key Questions Implications

What is the relative importance of the different
immune CoP?

• Provide insight into mechanism(s) of protective immunity to NoV

• Influence methods of endpoint assessments in future vaccine studies

• Define choice of adjuvants and route of immunization in vaccine studies

Is immune response to NoV heterotypic? • Influence the number of NoV targets to be included in vaccine formulations

• Indicate if vaccines will need to be updated frequently

What is the duration of protective immunity to NoV? • Define frequency of vaccination

• Utility at broad (population) level versus specific settings (e.g., cruise ship travelers, military
personnel, nursing homes, etc.)

What is the influence of age at vaccination on
immune response?

• Define the applicability of NoV vaccines in extremes of age among the groups with greatest
disease burden

Is immunological priming required for robust
immunity?

• Influence the applicability of NoV vaccines to pediatric populations

doi:10.1371/journal.ppat.1005334.t002
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illness. However, the same pattern did not hold true in the vaccine recipients. In this group, the
prechallenge levels of HBGA-blocking antibodies were significantly higher than those in the
placebo recipients, but these higher titers were not necessarily associated with reduction in
infection or illness. In the vaccinated group, the levels of HBGA-blocking antibodies required
to achieve protection was greater than the placebo recipients. The overall immune response to
the bivalent vaccine in the challenge study was similar to a previous study assessing immunoge-
nicity of this formulation [12]. This finding mimics results seen with parenteral, inactivated
influenza virus vaccines [13] and is a potential barrier for the broad use of HBGA-blocking
antibody titers as CoP in NoV vaccine studies. Mucosal and cellular immunity also appear to
be important in protection against NoV disease. In NV experimental challenge studies, pre-
challenge levels of virus-specific salivary IgA and IgG memory B cells are a CoP against illness
[14]. Prechallenge, NV-specific salivary IgA levels also correlate with reduced severity of gas-
troenteritis. Rapid salivary IgA response following NV challenge was previously demonstrated
to be protective against infection [7]. Prechallenge, NV-specific fecal IgA levels are associated
with a lower peak viral load, while levels on day seven postinfection correlate with a shorter
duration of virus shedding [14]. The CoPs against NoV infection and disease identified thus
far are summarized in Table 1.

Identification of Multiple Immune CoP: One Too Many to Test?
While several immune CoP have been identified, none were an absolute CoP. Some are protec-
tive against disease, while others are protective against both infection and disease. Most CoPs
were identified from a single human challenge study involving a small number of participants.
It is likely that at least some CoP covary, making it difficult to identify the best predictor of pro-
tection. This raises fundamental questions about the mechanisms of protective immunity
against NoV. Analyzing the relative contribution of each CoP will be important in order to
make decisions on immunization route and adjuvant use and is likely to add complexity to vac-
cine study designs. It is also possible that studies on little-explored aspects of NoV immunity,
such as T cell and cytokine responses, will lead to new discoveries. In persistent murine NoV
infections, mice treated with exogenous interferon lambda (IFN-λ) showed viral clearance, sug-
gesting a role for innate immunity [15]. Antibiotic treatment of mice increased this effect, sug-
gesting a role for microbiome-mediated alterations in innate immune response [16]. In a
recent study, the presence of HBGA-expressing enteric bacteria was found to be important for
infection of B cells with human and mouse noroviruses [17]. While murine NoV infections are
clinically different from human NoV disease, these studies suggest the possibility of additional
effectors as CoP that could influence vaccine evaluation.

What Is the Duration of Protective Immunity?
Early human experimental infection studies suggested that protective immunity to NoV is
short-lived and does not extend to strains beyond the challenge virus. While these results may
possibly be due to high inoculum dosages, they pose important questions to vaccine implemen-
tation. The duration of protection has not been assessed beyond six to 12 months in any recent
study. In a mathematical model, immunity following natural NoV infection was estimated to
last four to nine years [18], but this remains to be validated in field efficacy studies. Character-
izing the duration of persistence of different CoPs can identify the mediators of short-term and
long-term protection. Vaccines inducing long-term protection are likely to have broad, popula-
tion-level applications, while the induction of short-term protection may be valuable in specific
settings.
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Are There Epidemiological Challenges to Broadly Protective
Immunity?
NoVs evolve rapidly by antigenic drift and recombination, resulting in a complex epidemiology.
NoV disease in humans is caused by more than 30 genotypes in three genogroups, and this
genetic diversity poses a potential problem in developing vaccination strategies to prevent infec-
tion and illness. While most infections are caused by the GII.4 genotype, new variants emerge
every two to three years, replacing the previously dominant variant [1]. The epochal evolution of
strains and changes in HBGA-binding patterns pose important challenges to the development of
broadly effective vaccines. The lack of cross-protection and short-term protection observed in
early studies suggests a need for frequent vaccination as well as the inclusion of multiple geno-
types in a vaccine. In this context, perhaps the most exciting finding from recent challenge stud-
ies and vaccine trials is that immune responses to NoVs appear to be heterotypic. Following NV
infection or immunization with the GI.1 and GII.4 bivalent vaccine, HBGA-blocking antibodies
were induced to heterotypic GI and GII strains, including to GII.4 variants that were not in cir-
culation at the time of infection or sample collection [19,20]. Given that HBGA-blocking anti-
bodies are a CoP for noroviruses, these data suggest that vaccination could induce broadly cross-
reactive blocking antibodies, and thus protection could extend to genotypes apart from the ones
included in the vaccine formulation. Although the percentage of responders and the magnitude
of increase in heterotypic antibody titers were modest compared to the homologous response,
these results hold promise for the effectiveness of simpler vaccines rather than multivalent for-
mulations containing many genotypes. This remains to be tested in field efficacy studies. How
waning levels of protective antibodies influence the emergence of new variants is an important
question to address as the induction of broadly cross-reactive antibodies contrasts with reports
that immune, pressure-mediated antigenic variation in epitopes surrounding the HBGA-binding
domain of the capsid protein drives the emergence of new variants [21].

Will Clinical Trial Efficacy Results Translate to Populations at
Greatest Risk?
Human challenge studies and clinical trials with VLP vaccines have largely been conducted in
genetically susceptible, healthy adults in well-controlled environments. Following vaccination,
individuals were challenged with NoV genotypes included in the vaccine. These conditions are
different from field settings, where multiple NoV genotypes and variants co-circulate among
individuals with different levels of genetic susceptibility to NoV infection. This is particularly
relevant for populations at greatest risk of illness: infants less than five years of age, in whom a
high burden of disease has been demonstrated, and the elderly, in whom NoV infections result
in high morbidity and some mortality [1,22]. How the present findings will translate to these
populations remains to be elucidated, as most data are from healthy adults with preexisting
NoV-specific antibodies. The need for immunological priming for development of a robust,
broadly reactive immune response could have significant implications for vaccine efficacy in
young children. While priming may not be an issue for the elderly, protective responses could
be adversely affected by diminished immune responses in elders and those with other condi-
tions affecting immunity. Field efficacy studies are therefore required to obtain an accurate esti-
mate of protection in the natural environment.

Summary and Conclusions
Coordinated efforts of epidemiological studies and surveillance networks are establishing the
significant public health impact of NoVs as a gastrointestinal pathogen across different
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populations and age groups. This defining phase provides a platform to focus on pertinent
questions and challenges for future NoV vaccine studies. As promising vaccine candidates
move into field trials, corresponding studies to assess the relative importance of the different
CoPs will help identify the best correlates and lead to improved prevention strategies.
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