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Abstract: In this paper we study the release of cargo from polymeric nano-carriers under shear.
Vesicles formed by two star block polymers—A12B6C2 (ABC) and A12B6 A2 (ABA)—and one
linear block copolymer—A14B6 (AB), are investigated using dissipative particle dynamics (DPD)
simulations. A- and C-blocks are solvophobic and B-block is solvophilic. The three polymers
form vesicles of different structures. The vesicles are subjected to shear both in bulk and between
solvophobic walls. In bulk shear, the mechanisms of cargo release are similar for all vesicles,
with cargo travelling through vesicle membrane with no preferential release location. When sheared
between walls, high cargo release rate is only observed with ABC vesicle after it touches the wall.
For ABC vesicle, the critical condition for high cargo release rate is the formation of wall-polymersome
interface after which the effect of shear rate in promoting cargo release is secondary. High release
rate is achieved by the formation of solvophilic pathway allowing cargo to travel from the vesicle
cavity to the vesicle exterior. The results in this paper show that well controlled target cargo release
using polymersomes can be achieved with polymers of suitable design and can potentially be very
useful for engineering applications. As an example, polymersomes can be used as carriers for surface
active friction reducing additives which are only released at rubbing surfaces where the additives are
needed most.

Keywords: polymer vesicles; shear-induced; cargo release; confined shear; additive carriers;
soft nanoadditives

1. Introduction

Nano-carriers are nanoscale containers which can enclose small molecules and protect inclusions
from reactions with the outer environment or help separate incompatible components in different
compartments [1]. Vesicles are a popular type of nano-carriers with membranes made of lipids or
polymers [2] which can encapsulate cargo such as drugs [3–6] or agrochemicals [7] during formation.
These cargo could then be released steadily or quickly (controlled release) when desired conditions
are reached. Cargo release can be triggered by a number of factors, such as temperature [5,8–10], pH
value [3,11–13], light [14,15], shear stress [4,13,16–19], voltage [6], solid support [20] or magnetic field [21].

Mable et al. [8,9] encapsulated silica nanoparticles with vesicles made of poly(glycerol
monomethacrylate)-poly(2-hydroxypropyl methacrylate) diblock copolymers. They showed that
vesicles encapsulating 5% w/w silica nanoparticles underwent a vesicle-to-micelle transition and
released their cargo upon cooling. Wu et al. [6] studied drug release from polymersomes (vesicles
made of polymers) using electric fields. They found that the polymersomes partially collapsed and
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expelled their cargo after being electrochemically oxidized. Lomas et al. [22] studied polymersomes
for controlled release of DNA under pH stimulus. By changing pH value from the physiological value
to the cellular endocytic value, polymersomes dissolved into individual polymer chains and released
the cargo. In the studies mentioned so far, the integrity of the membrane is permanently lost upon
release of the cargo.

Changing vesicle membrane permeability can also be an effective way to control release whilst
preserving the integrity of the carriers. Forming pores on the membrane is one way to tune membrane
permeability. In Mable et al. [8], the membranes of vesicles with 20% w/w encapsulated silica nanoparticles
perforated upon cooling, allowing the release of the cargo. Liu et al. [5] investigated temperature sensitive
polymersomes made of poly(N-vinylcaprolactam)n-poly(dimethylsiloxane)65-poly(N-vinylcaprolactam)n

(PVCLn-PDMS65-PVCLn) for controlled anticancer drug delivery. By increasing temperature to or
above that of the PVCL phase transition, PVCL block chains gradually collapsed, leading to an increase
in membrane porosity. Wang et al. [14] synthesized a polymersome with a membrane of switchable
permeability using an amphiphilic poly(ethylene oxide)-b-PSPA (PEO-b-PSPA) diblock copolymers,
where SPA is a spiropyran (SP)-based monomer and is light sensitive. By changing the wavelength
of irradiation, the hydrophobic SP moieties transform to hydrophilic zwitterionic merocyanine (MC)
moieties and change the permeability of the vesicle membrane. Cargo were released when hydrophilic
MC moieties dominated.

Mechanical shear is also known to affect cargo release but the behaviour of polymersomes under
shear has rarely been studied. Recently, Poschenrieder et al. [19] studied polymersome stability in
stirred-tank reactors. They found that the dye-encapsulated polymersomes were stable under the
conditions typically encountered in reactors for the biological industry and that dye release occurred
mainly through membrane defects. More work has been done with liposomes and potentially the
behaviour of liposomes and polymersomes may be similar. Some researchers suggested that the
formation of transient pores allows cargo to be released under shear [4,16,17]. Other mechanisms are
also possible. Bernard et al. [18] studied vesicles made of lipids (EPC) and detergent molecules (Brij76)
under shear. When the vesicle was deformed, the detergent molecules, which have a larger spontaneous
curvature, aggregated at the locations with the largest curvature on the membrane and induced pore
formation. Researchers have also tried to emulate in polymersomes the transport mechanisms of living
cells [23] by adding transmembrane proteins to enhance membrane permeability [23–25]. However,
inserting channel proteins to fully span the whole polymersome membrane is challenging [26–28]
because polymersomes possess thicker and more viscous [29] membranes than liposomes.

Polymersomes possess distinct advantages over liposome including better mechanical and
structure stability [10,19,22,30,31], tunable architectural parameters [32,33] and properties [19,29,30],
reduced permeability [10,26,31]. While research on vesicles have mainly focused on biological
applications, the mechanical stability of polymeric vesicles open opportunities for their use in
engineering applications, where targeted cargo delivery can be useful. Such applications include
lubrication where local shear rate is high (up to 108 s−1). One can envision additives encapsulated
inside polymeric vesicles being transported to rubbing contacts and released where critical conditions
are met. If successful, this may allow additives that are previously not suitable due to their poor
solubility to be encapsulated in polymersomes, which will then be dispersed in base lubricants, leading
to larger range of available lubricant additives. The amount of additives in lubricants can also be
reduced, thereby reducing costs and potential for pollution. With this prospect in mind, this paper
examines how cargo are released from polymersomes at high shear rates. We investigate how the
cargo release mechanisms are affected by the architecture of the polymer chains, the structure of the
polymersomes and the presence of solid surfaces. Three polymer architectures are used: a familiar AB
diblock copolymer, an ABA terpolymer and finally an ABC terpolymer.
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2. Methodology

Dissipative particle dynamics (DPD) simulation was used to study the cargo release process
of polymeric vesicles under shear. DPD is a particle-based mesoscopic simulation technique first
introduced by Hoogerbrugge and Koelman [34]. In DPD simulations all polymers are coarse-grained
and are composed of DPD particles of equal size (see Table 1). The motion of each DPD
particle is governed by Newton’s equation of motion. The total force acting on each particle i is
→
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rc is the cut-off radius with value 1.0. The
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ij follows a harmonic potential and is introduced between
beads connected by covalent bonds to simulate polymer chains. The dissipation strength is set as 4.5
and random noise strength is 3.0 [35,36].

Table 1. Interaction energy parameters.

Interaction Parameter,
aij (in DPD Units) A B C S (Water) W (Wall)

A 25.0
B 38.5 25.0
C 78.0 89.4 25.0

S (water) 97.9 26.0 125.0 25.0
W (Wall) 200 200 200 200 18

Number of monomer in one
coarse-grained bead (900 Å3) 7.3 14 6 30

The model systems consist of block copolymers made of A-, B- and, for one system, C-beads in a
solvent S. A block is made of multiple beads of the same chemistry. B-beads are solvophilic. Polymers
and the solvent are coarse grained so each DPD bead has a volume of 900 Å3. The interaction
parameters aij are chosen so that A-, B- and C-blocks corresponded to poly(ethylethylene),
poly(ethylene oxide), and poly(perfluoropropylene oxide) blocks in water S (see Table 1; further
details can be found in [37,38]). The interactions between the wall and A-, B-, C- and S-beads are all
strongly repulsive. So, the wall is highly solvophobic and the energy cost per bead for polymer-wall
and solvent-wall interactions are the same.

The spring constant k for the spring force
→
F

S

ij is set at k = 25.0. This allows experimentally observed
aggregates of A4B6C2 terpolymer in water to be reproduced accurately [37,39] (see Figure S1. n.b.
figures and tables denoted with ‘S’ can be found in the supplementary materials available online).

All simulations are conducted in the NPT conditions at 298 K and 17.5 MPa. The conditions of the
simulations and the layout of the computational domain are shown in Figure 1. These conditions are
close to those observed in tribological contacts. While the pressure applied in this work is in the low
end of those normally encountered in engineering applications, the low pressure-viscosity coefficient
of water [40] means that the results are not very sensitive to pressure.

Three block copolymers are studied. They are two star terpolymers-A12B6C2, and A12B6A2- and one
diblock copolymer-A14B6 (see schematics in Figure 2). The polymer volume concentration ϕp = 5% is
used for all simulations. Initially homogeneous solutions of polymer chains in S-beads are allowed
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to reach equilibrium in a periodic box of size 80.0rc × 40.0rc × 30.0rc (112× 56× 42 nm3), as detailed
in [38]. All three polymers form vesicles with hollow cores.Polymers 2018, 10, x  4 of 18 
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Figure 2. Equilibrium vesicle structures formed by block copolymers (a) A12B6C2 (ABC); (b) A12B6 A2

(ABA); and (c) A14B6 (AB). Top row: schematics of the block copolymers and colour codes of individual
polymer blocks. Middle row: cross-sections of the vesicles. The red beads are encapsulated S-beads
(So) and grey beads are free S-beads (Sn). Bottom row: schematics highlight the morphology of the
vesicle membrane. r0 and h are the radius and the membrane thickness of the vesicle (see Figure S2
for definitions). The number of encapsulated So beads differ among vesicles. Note for (b), the long
A-block and the short A-block are green and magenta. They have the same monomer chemistry but
differ in block length.

Vesicles are exposed to shear both in the bulk and between walls. These two conditions are
referred to as bulk shear and wall shear respectively. Bulk shear computations are carried out in a box
of size 80.0rc × 40.0rc × 30.0rc. Periodic boundary conditions are applied in the x- and y-directions.
In the z-direction, periodicity is modified by altering the momentum of particles across the z-boundary
so that a velocity gradient develops.
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Wall shear is applied by adding walls to the domain at the top and bottom boundaries (z-direction)
as shown in Figure 1. The walls are 11.2 nm (8rc) thick and are built with a face centered cubic structure
with (001) plane facing the fluid. The lattice spacing is 0.855rc. The interaction parameter between wall
beads is 18 to ensure the wall is impenetrable. The DPD thermostat and Berendsen barostat [41,42] are
applied to the outer layers (about 2.5 nm) of walls (see dash-line rectangles, Figure 1). The desired
temperature and pressure are established in approximately after 500,000 time steps, each time step
∆t = 0.04, after which a constant velocity in x-direction is applied to the upper wall. A steady state
flow profile is typically achieved after 2,000,000 time steps. All results presented are from at least two
initialisations and are reproducible.

3. Results and Discussions

To facilitate the following discussion, some nomenclature is introduced. The radius of the vesicle
r0 is defined as the minimum distance between the centre of mass of the aggregate and the nearest
solvophilic B-beads in the outer skin of the aggregate. r′0 defines the cavity of the vesicle and is the
maximum distance between the centre of mass of the vesicle and the B-beads forming the inner skin.
The thickness of the membrane is h = r0 − r′0. The definition of the membrane excludes the solvated
layers. S-beads encapsulated by the vesicle before shear is applied are labelled S0, all other S-beads
are labelled Sn. Details of definitions of parts of a vesicle and its dimensions are in Figure S2. Unless
otherwise stated, the time t = 0 is the time when shear is applied.

3.1. Characterisation of Vesicle Structure at Equilibrium

The equilibrium structures, size and encapsulation capacity of the vesicles depend on their
constituent copolymers. The amount of S0 beads encapsulated by ABC, ABA and AB vesicles are 170,
210 and 266 respectively (see Figure 2). In all cases, the inner leaflet of the bilayer membrane is made of
solvophobic A-beads (green, Figure 2) while the inner and outer shells of the membrane are solvophilic
B-bead skins (yellow, Figure 2) surrounded by solvated B-bead layers (yellow ‘hairs’, Figure 2). Both
ABA and AB vesicles are bilayer vesicles (see Figure 2b,c respectively). The difference in polymer chain
architecture, causes the ABA vesicle to be slightly smaller (see r0 in Figure 2). As a result, the ABA
vesicle encapsulates fewer S-beads than the AB vesicle. The ABC vesicle has nanodomains composed
of solvophobic C-beads (blue, Figure 2a) on the outer and inner skins of its bilayer membrane, making
it a raspberry vesicle [43,44]. The existence of solvophobic domains on the solvophilic surfaces causes
the ABC vesicle to encapsulate the least amount of S-beads out of the 3 vesicles investigated.

The effectiveness of S-bead encapsulation of the tested vesicles is investigated by monitoring
how the amount of S0 changes with time in bulk solutions in the absence of shear, as shown in
Figure S3. In 2 µs, only 3 (1%), 4 (2%), 2 (1%) S0-beads have leaked out of the AB, ABA and ABC
vesicles respectively.

3.2. Cargo Release in Bulk Shear Condition

Cargo release under bulk shear is investigated at shear rates
.
γ = 1 × 107 and 1 × 108 s−1.

In all cases, very few encapsulated S0-beads are released, so only results from the highest shear
rate

.
γ = 1× 108 s−1 are presented. The shear flow profiles presented in Figure S4a show the inclusion

of a vesicle does not change the profile, which remains approximately linear.
The shear stress experienced by the vesicles are about 0.1 MPa in all cases. Shear deforms the

vesicles by slightly stretching them in the flow direction. The stretching of the vesicles by the shear
flow can be detected by comparing the radius rθ of the vesicles projected on the x-y plane with the
radius rϕ projected in the orthogonal direction (see Figure S2c on definitions of rθ and rϕ and Figure
S5e–g for values of rθ and rϕ). As a result of the deformation, the average surface stresses of the
membrane are higher in the θ direction than in the ϕ direction (see Figure S5a–c).

S0-beads are released from all 3 vesicles under bulk shear in microseconds. In a tribological
contact with a diameter in the order 10−5 ∼ 10−3 m, and fluid entrainment speed in the order of
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1 m/s, a release time of 1 µs is reasonable. The rate of cargo release is examined by monitoring how the
fraction of encapsulated S0-beads changes with the duration of shear (see Figure 3a). All vesicles have
similar cargo release rate, with AB vesicle showing a slightly lower release rate than the other two (see
solid circles, insert in Figure 3a). At time t = 2 µs, 3% of S0 beads for AB vesicle and 4.5% for ABA
and ABC vesicles have been released. Comparing these release rates with those without shear (1, 2,
and 1% for AB, ABA and ABC vesicles respectively, Figure S3) shows that bulk shear only marginally
facilitates cargo release. After shearing the vesicles for 3.5 µs, about 5.7% of S0-beads in AB vesicle
and 6.7% in ABC and ABA vesicles are released.

Polymers 2018, 10, x  6 of 18 

 

a release time of 1 μs is reasonable. The rate of cargo release is examined by monitoring how the 
fraction of encapsulated -beads changes with the duration of shear (see Figure 3a). All vesicles 
have similar cargo release rate, with  vesicle showing a slightly lower release rate than the other 
two (see solid circles, insert in Figure 3a). At time  = 2 , 3% of  beads for  vesicle and 4.5% 
for  and  vesicles have been released. Comparing these release rates with those without 
shear (1, 2, and 1% for ,  and  vesicles respectively, Figure S3) shows that bulk shear 
only marginally facilitates cargo release. After shearing the vesicles for 3.5 μs, about 5.7% of -beads 
in  vesicle and 6.7% in  and  vesicles are released. 

 
Figure 3. The fraction of encapsulated -beads remained in a vesicle at shear rate  = 1 × 108  
under (a) bulk shear and (b) wall shear; and for  vesicles (c) at different shear rates. Note (c) is 
in log-linear scale and data represented with open symbols has been offset so time  = 0 corresponds 
to the time  vesicles touch the wall. 

While -beads are being released, small numbers of -beads, i.e., -beads initially outside the 
vesicles, find their way inside (see Figure S6b). This is not surprising as in this study there is no 
chemical or geometric difference between - and -beads. The amount of -beads entered the 
vesicles is comparable to the amount of  beads released so that the total amount of -beads inside 
each vesicle remains relatively constant (see Figure S6c). All 3 vesicles having similar release rate 
suggests they have similar cargo release mechanisms. 

To gain insights into the cargo release mechanisms of the three vesicles, positions of individual 
-beads are tracked during their release. At every time step, the identities of beads surrounding the 

tracked -beads are recorded. At any time , a bead  is considered a neighbour of a tracked -
bead  if the distance between  and  is less or equal  (see Figure 4a). As a  bead moves, the 
composition of its neighbourhood changes (see Figure 4a). Thus one can count the number of -, -, 

- and -neighbours (if any) of a -bead at a given time . The composition of the neighbourhood 
crossed by a -bead reveals the path it follows during its release. Typical results from -beads 
released from , , and  vesicles under bulk shear are shown in Figure 4b–d respectively. 
Focusing on the  vesicle (Figure 4b), the released -bead is initially surrounded mainly by -
beads (yellow) with few -beads (green) (solid yellow arrow region, Figure 4b). The bead then 
crosses a region made of -beads only (green dash arrow region, Figure 4b) and finally enters a 
region composed mainly of -beads (grey) (grey dotted arrow region, Figure 4b). All released -
beads from all three vesicles experience similar environments in the same sequence, although the 
time spent in each region may differ (see Figure 4c,d for  and  vesicles respectively). These 
results indicate that when an encapsulated molecule -bead is being released, it travels through the 
membrane. 

The initial -bead environment (solid yellow arrow region, Figure 4) encountered by the 
tracked -bead is the solvated -bead layer in the cavity of the vesicle as the inner shell of the 
membrane is made of mainly solvophilic (and solvated) -beads. The -bead region (green dash 
arrow region, Figure 4) that follows shows that the -bead goes through the inner leaflet of the 
vesicle membrane. Finally, the bead is released and is surrounded by -beads (grey dotted arrow 

Figure 3. The fraction of encapsulated S0-beads remained in a vesicle at shear rate
.
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under (a) bulk shear and (b) wall shear; and for ABC vesicles (c) at different shear rates. Note (c) is in
log-linear scale and data represented with open symbols has been offset so time t = 0 corresponds to
the time ABC vesicles touch the wall.

While S0-beads are being released, small numbers of Sn-beads, i.e., S-beads initially outside the
vesicles, find their way inside (see Figure S6b). This is not surprising as in this study there is no
chemical or geometric difference between S0- and Sn-beads. The amount of Sn-beads entered the
vesicles is comparable to the amount of S0 beads released so that the total amount of S-beads inside
each vesicle remains relatively constant (see Figure S6c). All 3 vesicles having similar release rate
suggests they have similar cargo release mechanisms.

To gain insights into the cargo release mechanisms of the three vesicles, positions of individual
S0-beads are tracked during their release. At every time step, the identities of beads surrounding
the tracked S0-beads are recorded. At any time t, a bead X is considered a neighbour of a tracked
S0-bead Y if the distance between X and Y is less or equal rc (see Figure 4a). As a S0 bead moves,
the composition of its neighbourhood changes (see Figure 4a). Thus one can count the number of A-,
B-, S- and C-neighbours (if any) of a S0-bead at a given time t. The composition of the neighbourhood
crossed by a S0-bead reveals the path it follows during its release. Typical results from S0-beads
released from AB, ABA, and ABC vesicles under bulk shear are shown in Figure 4b–d respectively.
Focusing on the AB vesicle (Figure 4b), the released S0-bead is initially surrounded mainly by B-beads
(yellow) with few A-beads (green) (solid yellow arrow region, Figure 4b). The bead then crosses a
region made of A-beads only (green dash arrow region, Figure 4b) and finally enters a region composed
mainly of Sn-beads (grey) (grey dotted arrow region, Figure 4b). All released S0-beads from all three
vesicles experience similar environments in the same sequence, although the time spent in each region
may differ (see Figure 4c,d for ABA and ABC vesicles respectively). These results indicate that when
an encapsulated molecule S0-bead is being released, it travels through the membrane.
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Figure 4. (a) Schematic showing the neighbour particles that a tracked encapsulated So-bead (red
bead with arrow) encountered when it migrates out of the vesicles. Neighbour particles are particles
that locate within distance rc from the centre of mass of the tracked particle. The numbers of A-, B-
and S-neighbour particles vs. time for a representative encapsulated S0-bead during its release from
AB, ABA, and ABC vesicles under (b–d) bulk shear and (e–g) wall shear. Solid yellow, dashed green,
and dotted grey arrows are the solvophilic B-bead region, solvophobic A-bead region, and the solvent
region. For (b–f), the solid yellow arrow corresponds to regions of the inner shell and the dashed green
arrow the A-bead inner leaflet of the vesicle membrane. For (g), the solid yellow arrow corresponds to
the solvophilic pathway.

The initial B-bead environment (solid yellow arrow region, Figure 4) encountered by the tracked
S0-bead is the solvated B-bead layer in the cavity of the vesicle as the inner shell of the membrane
is made of mainly solvophilic (and solvated) B-beads. The A-bead region (green dash arrow region,
Figure 4) that follows shows that the S0-bead goes through the inner leaflet of the vesicle membrane.
Finally, the bead is released and is surrounded by Sn-beads (grey dotted arrow region, Figure 4),
the solvent outside of the vesicles. Snapshots presented in Figure 5 show examples of released
So-beads (red beads highlighted with black circles) before entering the membrane, in the membrane
and just outside of the vesicle confirm that released So-beads have to travel through the A-bead
inner leaflets (green) of the membrane. Analysis of the coordination numbers of A-beads shows that
the structure of the membrane is not significantly affected by shear (See Figure S7). Furthermore,
analysis of the membrane density shows no correlation between the passage of S0-beads being released
and the local density fluctuations (See Figure S8). These findings exclude the formation of pores as
release mechanism.
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Figure 5. Snapshots showing a representative encapsulated S0-bead (circled) before it enters the
membrane, in the A-bead inner leaflet and out of the vesicle for (a–c) AB; (d–f) ABA; and (g–i) ABC
vesicles. They are under bulk shear, shear rate = 1 × 108 s−1. Shear is applied along x direction from
left to right (see arrows). The dot in the circle means shear is applied outwardly from the paper.

The topology of the vesicle membranes can also be monitored to probe the release mechanism
under bulk shear. This involves counting the number of interconnected B-beads from the inner shell
(see Figure 6). Before shear is applied, the number of interconnected B-beads in the inner shell n is
n = ni (Figure 6a). A change in membrane topology changes the number of interconnected B-beads.
The maximum number of interconnected B-beads nmax is reached when the inner and outer B-bead
shells are linked (Figure 6b). The numbers of interconnected B-beads are presented in Figure 6c–e as
functions of time when bulk shear is applied to ABC, ABA, and AB vesicles respectively. In all cases,
n remains constant and is equal to ni thus confirming that no pathway through the thickness of the
membrane for the release of S0-beads has been created. This explains the slow release of S0-beads: it is
energetically unfavourable for S0-beads to enter the A-bead inner leaflet and a significant fraction of
the S0-beads entering the A-bead layer return back into the vesicle core very quickly. (See Figure S10).
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Figure 6. Schematics showing for a generic vesicle (a) no connection between the inner and outer
B-bead shells and n = ni is defined as the number of interconnected B-beads that constitute the inner
shell at static conditions and (b) the inner and outer B-bead shells are linked. As a result the number of
interconnected B-beads increases to n = nmax. For (a,b), yellow regions are solvophilic B-bead region,
i.e., the inner and outer shells; while the green region is the solvophobic A-bead region, i.e., the inner
leaflet of a membrane. Note hydrated layers and any solvophobic domains exist on the inner and
outer shells are omitted. Number of interconnected B-beads starting from the inner shells for vesicles
(c–e) under bulk shear, and (f–h) under wall shear. Red dash and blue dotted lines shows the possible
minimum ni and maximum nmax number of interconnected B-beads in the vesicle.

Without any specific pathway for the release of S0-beads, the question then is whether preferential
locations exist in the membrane for cargo release. The S0-bead release events are spread across the
duration of the simulations (Figure 7a–c) and are rare events. Figure 7d–f show how the angles ϕ

between the release paths and the z direction changes with time for all released S0-beads from the
three vesicles. For all three vesicles, S0-beads are released at various ϕ ranging from −π/2 to π/2,
suggesting there is no preferential location on the membrane for cargo release. This supports results in
Figures S6 and S7 that the positions of cargo release do not have a strong correlation with the local
particle density of the membrane. Furthermore, ϕ remains relatively constant for each path showing
that S0-beads travel radially through the membrane during release.



Polymers 2018, 10, 336 10 of 18
Polymers 2018, 10, x  10 of 18 

 

 
Figure 7. (a–c) The time at which -beads (which are subsequently released) enter vesicle membranes 
under bulk shear. Each individual symbol corresponds to one released -bead. (d–f) The direction at 
which released -beads taken during their release under bulk shear. Tracks with the same symbols as 
those from (a–c) of the same vesicle are from the same released beads. The -axis corresponds to the 
angle of the trajectory of -beads with respective to the -direction (see insert in (f)). 

3.3. Cargo Release under Wall Shear 

In the previous section, we show that ,  and  vesicles behave similarly when 
subjected to bulk shear. In this section, we present results obtained when these vesicles are being 
sheared between two walls under the conditions stated in Figure 1. Tests were conducted at = 0,1 × 10  and 1 × 10  s−1. As shown in Figure 3c, shear rate has marginal effect on the cargo release 
under wall shear, hence results from shear rate = 1 × 10   s−1 are presented. 

The rate of release of encapsulated -beads when the three vesicles are sheared between two 
walls are shown in Figure 3b. It is clear that  vesicle (squares) behaves very differently from both  (triangles) and  (circles) vesicles. Shearing  and  vesicles between walls give similar 

-bead release rates to those observed in bulk shear (Figure 3a), with both the release of -beads 
(Figure 3, triangles and circles) and the intake of -beads (Figure S6e, triangles and circles) being 
very slow. As a result, the total number of -beads (Figure S6f, triangles and circles) in the core of 
the vesicle remains relatively constant. Examining the constituents of neighbouring particles 
encountered by released -beads in these two vesicles (Figure 4e,f) shows features similar to those 
observed when the vesicles are under bulk shear (Figure 4a,b). This shows that the -bead release 
mechanisms for  and  vesicles under wall shear remain the same as those under bulk shear: 
the encapsulated -beads are released through the membrane and no significant changes in the 
structure of the membrane accompany the process. This is confirmed by examining the topology of 
the membranes of these vesicles, showing the same signature as that observed under bulk shear, with 
the number of interconnected -beads being constant and is  (Figure 6g,h). 

Examining the rate of cargo release from the  vesicle when sheared between walls shows 
two distinct regions (open squares, Figure 3b). For < 1 ,  vesicle shows a similar release rate 
to that observed in bulk shear. At this slow release stage, the released -beads first enter a 
solvophilic -bead zone (inner shell, yellow solid arrow, Figure S9). The -beads then proceed to 
the solvophobic -bead zone (inner leaflet, green dash arrow, Figure S9), until they are finally 
released and surrounded by external -beads (exterior of the vesicle, grey dotted arrow, Figure S9). 
This indicates that the cargo release mechanism for  vesicle at this slow release stage is similar 

Figure 7. (a–c) The time at which S0-beads (which are subsequently released) enter vesicle membranes
under bulk shear. Each individual symbol corresponds to one released S0-bead. (d–f) The direction at
which released S0-beads taken during their release under bulk shear. Tracks with the same symbols as
those from (a–c) of the same vesicle are from the same released beads. The y-axis corresponds to the
angle of the trajectory of S0-beads with respective to the z-direction (see insert in (f)).

The time taken by released S0-beads to cross the membranes are about 0.3 ns for ABC vesicles,
0.4 ns for ABA and 1 ns for AB vesicles. Membrane thicknesses of these vesicles are comparable (9.92,
9.37 and 9.87 nm, respectively) but membrane density (Figure S8) and A-bead coordination numbers
(Figure S7) are different and therefore the travel times are ascribable to differences in membrane
properties. It should also point out that travel times are very small compared to the average interval
between release events, which take place every few 100 ns.

3.3. Cargo Release under Wall Shear

In the previous section, we show that ABC, ABA and AB vesicles behave similarly when subjected
to bulk shear. In this section, we present results obtained when these vesicles are being sheared between
two walls under the conditions stated in Figure 1. Tests were conducted at

.
γ = 0, 1× 107 and 1× 108 s−1.

As shown in Figure 3c, shear rate has marginal effect on the cargo release under wall shear, hence
results from shear rate

.
γ = 1× 108 s−1 are presented.

The rate of release of encapsulated S0-beads when the three vesicles are sheared between two
walls are shown in Figure 3b. It is clear that ABC vesicle (squares) behaves very differently from
both ABA (triangles) and AB (circles) vesicles. Shearing AB and ABA vesicles between walls give
similar S0-bead release rates to those observed in bulk shear (Figure 3a), with both the release of
S0-beads (Figure 3, triangles and circles) and the intake of Sn-beads (Figure S6e, triangles and circles)
being very slow. As a result, the total number of S-beads (Figure S6f, triangles and circles) in the
core of the vesicle remains relatively constant. Examining the constituents of neighbouring particles
encountered by released S0-beads in these two vesicles (Figure 4e,f) shows features similar to those
observed when the vesicles are under bulk shear (Figure 4a,b). This shows that the S0-bead release
mechanisms for ABA and AB vesicles under wall shear remain the same as those under bulk shear:
the encapsulated S0-beads are released through the membrane and no significant changes in the
structure of the membrane accompany the process. This is confirmed by examining the topology of



Polymers 2018, 10, 336 11 of 18

the membranes of these vesicles, showing the same signature as that observed under bulk shear, with
the number of interconnected B-beads being constant and is ni (Figure 6g,h).

Examining the rate of cargo release from the ABC vesicle when sheared between walls shows two
distinct regions (open squares, Figure 3b). For t < 1 µs, ABC vesicle shows a similar release rate to
that observed in bulk shear. At this slow release stage, the released S0-beads first enter a solvophilic
B-bead zone (inner shell, yellow solid arrow, Figure S9). The S0-beads then proceed to the solvophobic
A-bead zone (inner leaflet, green dash arrow, Figure S9), until they are finally released and surrounded
by external Sn-beads (exterior of the vesicle, grey dotted arrow, Figure S9). This indicates that the
cargo release mechanism for ABC vesicle at this slow release stage is similar to those of ABA and AB
vesicles. While S0-beads are released, Sn-beads enter the vesicles slowly (Figure S6e, circles). At this
stage, the total number of encapsulated S-bead is relatively constant over time (Figure S6f, circles).

At t ∼ 1 µs, there is a sudden increase in cargo release rate, as observed by a rapid drop in the
fraction of S0-beads remaining in ABC vesicle (Figure 3b). Most of these fast released S0-beads are
first surrounded by solvophilic B-beads (yellow) then by Sn-beads (grey) outside of the vesicle (see
Figure 4g). Thus, unlike their slow-release counterparts in AB, ABA and ABC vesicles, fast-release
S0-beads from ABC vesicle encounter very few, if any, A-beads in their release paths. This is
counter-intuitive as the majority of the vesicle mass is A-beads. At this stage, the intake rate of
Sn-beads is also high. Indeed the amount of Sn beads intake (Figure S6e, circles) outweighs the
amount of S0-beads released. As a result, the total number of S-beads in ABC vesicles increases
with time during wall shear (Figure S6f, circles). The rate of increase however is decreasing and
then stabilises. All S0-beads are released by t = 3 µs while Sn-beads continue to enter the vesicles.
All these observations suggest that unique release mechanisms are in operation at the fast release
stage. Interestingly the sudden change in cargo release rate in ABC vesicle occurs shortly after the
vesicle touches the wall (see Figure 8b). While ABC vesicle reaches the wall at different times in
different simulation runs (with the same and different shear rates), the behaviour of the fast cargo
release remains the same (Figure 3c). This shows that for ABC vesicle, the critical event for fast cargo
release is the contact between the vesicle and the wall.
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Figure 8. Snapshots of (a–c) ABC, (d–f) ABA and (g–i) AB vesicles being sheared between walls, shear
rate = 1 × 108 s−1. The red beads are S0 beads released. Solvent beads are omitted for clarity. Arrows
on the shearing wall show the shear direction.
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No wall touching event is observed for AB vesicles (see Figure 8g–i). ABA vesicles only touch
the wall in longer simulation runs (see Figure 8d–f) and the results will be discussed in Section 3.3.2 on
the significance of the shearing wall.

3.3.1. Formation of Solvophilic Pathway in ABC Vesicles

Counting the number of interconnected B-beads for the ABC vesicles nABC shows that before
contact with the wall, there are nABC = 768 (Figure 6f). This is equal to the total number of B-beads on
the inner shell before shear ni. After contact with the wall, nABC is much larger than ni intermittently
(Figure 6f). For a significant amount of time nABC is at its maximum nmax = 4608 which is only possible
when the inner and outer B-bead shells are connected. At these occasions, a solvophilic path from the
cavity to the exterior of the vesicle is formed and acts as a preferential pathway for the fast release of
S0-beads. This is confirmed by snapshots of cross-sections of ABC vesicle after it has touched the wall,
see Figure 9. The cross-sections on the x-y plane (Figure 9a–d) show the interface between the vesicle
and the wall while those on the x-z (Figure 9e–h) and y-z (Figure 9i–l) planes are orthogonal to the
interface. When the vesicle touches the wall, a solvophilic zone made of B-beads (yellow) forms at
the vesicle-wall interface near the center of the contact (Figure 9a). The interfacial solvophilic zone
is surrounded by A-beads (green) which are also in contact with the wall. The contact line among
the wall, the vesicle and the solvent is made of B-beads which are part of the vesicle outer shell.
In some locations, the interfacial solvophilic zone and the contact line are bridged by C-domains (blue).
At t = 0.888 µs, So-beads (red) are contained in the vesicle cavity, separated from the newly formed
interfacial solvophilic zone by a plug made of C-beads (blue) (see Figure 9e,i). The morphology of the
interfacial region changes with time. At t = 0.896 µs, the interfacial solvophilic zone is connected with
the outer solvophilic shell (highlighted with a rectangle in Figure 9b). At the same time, a solvophilic
passage has formed between the cavity and the interfacial solvophilic zone (highlighted with rectangles
in Figure 9f,j), so a continuous solvophilic pathway that connects the cavity of the vesicle to the outer
shell is established. This pathway can act as a highway for cargo release as it screens S0-beads from
contacting A-beads during their release. Interestingly, there is no S0-bead at the interfacial solvophilic
zone at this particular time. This can be due to the dynamic nature of the pathways. These solvophilic
connections are temporary and can form in various locations (compare t = 0.896 with t = 0.901 and
t = 0.905 µs in Figure 9). In addition, a partial pathway can form. For example, at t = 0.901 µs a
solvophilic channel is formed between the inner shell and the interfacial solvophilic region (see dash
boxes in Figure 9g,k) such that So-beads can travel through this channel to the interfacial solvophilic
zone (see red beads in Figure 9c). These So-beads however are trapped because C-domains (blue) have
blocked their way out of the vesicle. At t = 0.905 µs, while the solvophilic passage between the cavity
and the interfacial solvophilic zone is closed, a solvophilic pathway is available between the interfacial
solvophilic zone and the outer shell (dash box in Figure 9d). As a result the trapped So-beads shown
in Figure 9c move out of the vesicle and are thus released. This highlights the release process can
potentially be 2-step, as well as a 1-step process.

The likelihood of the formation of a solvophilic pathway in ABC vesicle is revealed in Figure 6f,
which shows that the number of interconnected B-beads in the inner shell are almost always above 768
after the vesicle touches the wall, suggests a partial hydrophilic pathway is almost always available.
The formation of a partial pathway means cargo release take place in two steps. Occasionally
the number of interconnected B-beads reaches 4608, indicating the formation of a complete path.
These results highlight the dynamics nature of pathways promoting the release of So-beads.



Polymers 2018, 10, 336 13 of 18
Polymers 2018, 10, x  13 of 18 

 

 
Figure 9. Snapshots showing the formation of solvophilic paths after the  vesicle touches the 
wall. The vesicle is under wall shear at shear rate = 1 × 108 s . (a–d) are cross-sections at the vesicle-
wall interface ( -  plane); (e–h) cross-sections on -  plane; and (i–l) cross-sections on -  plane. 
The thick black solid lines in (e–l) denote the wall. The dashed rectangles highlight the solvophilic 
paths. Note the dynamic nature of the path. Shear is applied along -direction from left to right (see 
arrows). The dot in the circle means shear is applied outwardly from the paper. 

3.3.2. The Significance of the Shearing Wall 

Cargo in  vesicle is released through the membrane slowly under bulk shear, and through 
solvophilic pathways at a much higher rate with wall shear once the vesicle touches the wall. The 
shear rate only has a marginally effect (Figure 3c). The effect of the existence of a shearing wall on the 
release mechanism of  vesicle is unexpected. Why solvophilic pathways form in  vesicles 
after they reach the wall? 

Recall that in this study all beads have the same repulsive interactions with the wall ( == = = 200). -beads are solvophilic ( = 26), while - and -beads are solvophobic 
( = 97, = 125). Thus there is a substantial energy cost for the vesicle to be in contact with the 
wall. However if the vesicle is in contact with the wall, the solvent-vesicle interface and the solvent-
wall interface are removed in exchange for the generation of a vesicle-wall interface. That would lead 
to a reduction of overall potential energy of the system. 

The above discussion should apply to all three vesicles in this study. For  vesicles, the 
position of the centre of mass of the vesicle is about zero (equi-distance from the two walls) 
throughout the simulation run (Figure 10a). The closest distance between the wall and the vesicle 
remains about 4.5 DPD units (see Figure 10d). For a vesicle to touch the wall, the -beads between 
the vesicle and the wall must be removed. In the case of  vesicle, the outer shell is mainly -beads 
although some -beads at the proximity of the outer shell are also exposed to the solvent due to a 
shortage of -beads (as there are more -beads than -beads in the system. This has been observed 
with  vesicles [38]). The favourable interactions between -beads at the outer shell and -beads 
make it difficult to remove the -beads solvating  vesicles. Thus the contact between  vesicle 
and the wall is prevented. 

Figure 9. Snapshots showing the formation of solvophilic paths after the ABC vesicle touches the wall.
The vesicle is under wall shear at shear rate = 1 × 108 s−1. (a–d) are cross-sections at the vesicle-wall
interface (x-y plane); (e–h) cross-sections on x-z plane; and (i–l) cross-sections on y-z plane. The thick
black solid lines in (e–l) denote the wall. The dashed rectangles highlight the solvophilic paths. Note
the dynamic nature of the path. Shear is applied along x-direction from left to right (see arrows).
The dot in the circle means shear is applied outwardly from the paper.

3.3.2. The Significance of the Shearing Wall

Cargo in ABC vesicle is released through the membrane slowly under bulk shear, and through
solvophilic pathways at a much higher rate with wall shear once the vesicle touches the wall. The shear
rate only has a marginally effect (Figure 3c). The effect of the existence of a shearing wall on the release
mechanism of ABC vesicle is unexpected. Why solvophilic pathways form in ABC vesicles after they
reach the wall?

Recall that in this study all beads have the same repulsive interactions with the wall
(aAW = aBW = aCW = aSW = 200). B-beads are solvophilic (aBS = 26), while A- and C-beads are
solvophobic (aAS = 97, aCS = 125). Thus there is a substantial energy cost for the vesicle to be in
contact with the wall. However if the vesicle is in contact with the wall, the solvent-vesicle interface
and the solvent-wall interface are removed in exchange for the generation of a vesicle-wall interface.
That would lead to a reduction of overall potential energy of the system.

The above discussion should apply to all three vesicles in this study. For AB vesicles, the position
of the centre of mass of the vesicle is about zero (equi-distance from the two walls) throughout the
simulation run (Figure 10a). The closest distance between the wall and the vesicle remains about
4.5 DPD units (see Figure 10d). For a vesicle to touch the wall, the S-beads between the vesicle and
the wall must be removed. In the case of AB vesicle, the outer shell is mainly B-beads although some
A-beads at the proximity of the outer shell are also exposed to the solvent due to a shortage of B-beads
(as there are more A-beads than B-beads in the system. This has been observed with ABC vesicles [38]).
The favourable interactions between B-beads at the outer shell and S-beads make it difficult to remove
the S-beads solvating AB vesicles. Thus the contact between AB vesicle and the wall is prevented.

For ABC vesicle, the strong repulsive interaction between C- and S-beads means the vesicle may
be less solvated, making the removal of S-beads between the vesicle and the wall easier as compared
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to AB vesicles. Furthermore, the contact between the ABC vesicle and the wall removes some of the
energetically unfavourable C-S contacts. This allows the ABC vesicle to approach more closely and
subsequently contact the wall (Figure 10c,f).

The ABA vesicle has A-bead nano-domains on its outer shell, in addition to the exposed A-beads
underneath solvated B-beads. This makes the interactions between the outer shell of ABA vesicle and
the solvent slightly less and more favourable compared to that of AB and ABC vesicles respectively.
One may then expect ABA vesicle to take longer than ABC vesicle to touch the wall. This is confirmed
with longer simulation runs, where a sudden change and subsequent stabilization of the position of the
centre of mass of the vesicle, showing that ABA vesicle has reached the wall (Figure 10b,e). The time
when the ABA vesicle touches the wall differs among simulations with different initialization states.
The cargo release mechanisms of ABA vesicle is not affected by contact with the wall (Figure 11).
For ABC vesicle, the transition from slow to fast release mechanism occurs soon after the vesicle
touches the wall (see Figure 3b) and most of the encapsulated S0-beads are released in 1 µs. For ABA
vesicle, on the other hand, the release rate, even 2.5 µs after the vesicle touches the wall, is similar to that
before the vesicle touches the wall (Figure 11c). The number of interconnected B-beads counted from
the inner shell of ABA vesicle before and after the vesicle touches the well is the same (Figure 11b) and
is equal to the number before the vesicle is sheared. This means that unlike ABC vesicle, no solvophilic
pathway is found in ABA vesicle before and after the vesicle touches the wall. As a result, no fast
cargo release is observed.
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distance between the vesicle and the wall, defined as the closest distance between beads on the outer
skin (excluding the solvated layer) and the wall.

If both ABA and ABC vesicles touch the wall, why solvophilic pathways do not form in ABA
vesicle? Compare Figures 10c and 11a, the centre of mass of ABA vesicle (≈15 − 3.5 = 11.5 DPD units)
is further away from the wall than that of ABC vesicle (≈15 − 7 = 8 DPD units). A larger distance
of the centre of mass of ABA vesicle from the wall makes it more difficult for B-beads in the inner
skin to interact with the wall and form a solvophilic path. In the case of ABC vesicles, A-, B- and
C-beads are immiscible (see Table 1) and all have the same interaction energy with the wall. Therefore
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rearrangement results in the exposure of A-beads to the wall (see Figure 9a) while some of B-beads that
belong to the part of the outer shell that touches the wall either move to the contact line (reducing the
energy because aBS = 26 < aAB = 38.5 < aBW = 200) or become part of the interfacial solvophilic zone.
The rearrangement reduces the distance between the inner shell and the interfacial zone, and that
between the interfacial zone and the outer wall. This promotes the formation of solvophilic paths.

The findings that formation of solvophilic pathways in ABC vesicle under wall shear for cargo
release only occurs when the vesicle touches the wall highlights that using polymersomes is a promising
strategy for target additives delivery for lubrication. One can imagine that additive encapsulated
vesicles can be added in bulk lubricants and these additives are only released at rubbing contacts
where separations between rubbing walls are very small. This will reduce the use of additives while
potentially increasing their effectiveness.
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from the inner shell, with an increase signified the formation of solvophilic pathway; (c) the amount of
encapsulated S0 remained.
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4. Conclusions

Polymeric vesicles are promising candidates as nano-cargo carriers. However, an understanding
of cargo release mechanisms is lacking. In this work we focus on how we can use these vesicles in
engineering applications where cargo should be released at specific locations.

Vesicles made of three different polymer architectures, ABC, ABA and AB, experience bulk shear
and shear between walls. ABC and ABA are star terpolymers and AB is linear block copolymer. For all
three vesicles, cargo releases through the vesicle membranes under bulk shear very slowly. In the case
of shear between walls, depending on the polymers, two behaviours are observed. For the case of
vesicles made of ABA and AB polymers, there is no change in release mechanism as compared to
cases of bulk shear. For ABC vesicle, however, a much higher release rate is observed once the vesicle
contacts the wall. In this fast release mode, solvophilic paths are formed which allow cargo to travel
from the cavity to the exterior of the vesicle quickly. While ABA vesicle also touches the wall, only
the ABC vesicle approaches the wall close enough and makes a large contact region with the wall
due to the existences of solvophobic C-domains on its surfaces. The contact of the wall drives the
rearrangement of the polymer chains and promotes the formation of solvophilic pathways. This leads
to fast cargo release. Note the effect of shear rate is marginally in this study.

The effect on the polymer architecture, specifically the use of solvophobic block, to control cargo
release is an interesting option. In this work, the solvophobic block in the ABC vesicle allows precise
targeting (the wall) and high release rate of cargo to be achieved. This makes ABC vesicle a very
attractive option if one wants to delivery surface active ingredients (for example friction modifiers) to
specific locations.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/10/3/336/s1,
Figure S1: Nanostructured vesicle self-assembled from A4B6C2 star terpolymer replicating structures observed
experimentally; Figure S2: Definitions of (a) various parts and dimensions of vesicles; (b) definition of azimuth θ
and ( π

2− altitude) Ψ; and (c) projections of radius of a vesicle, rθ and rϕ; Figure S3: Cargo released from vesicles
in bulk solutions in static conditions; Figure S4: Velocity profiles resulted from the applied shear (shear rate
.
γ = 1× 108 s−1); Figure S5: The surface stresses and radii of the cross-sections of the vesicles in the θ- and
ϕ-directions; Figure S6: Cargo release and solvent uptake by vesicles under shear; Figure S7: The coordination
number of A-beads in the inner leaflets of vesicles under static and bulk shear conditions; Figure S8: particle
density distribution on the membrane surfaces while the vesicles experiencing bulk shear; Figure S9: The numbers
of A-, B- and S-neighbour particles vs. time for a representative encapsulated S0-beads exhibiting slow release
from the ABC vesicle under wall shear; Figure S10: The numbers of A-, B- and S-neighbour particles vs. time of
representative S0-beads which enter the membrane briefly and then returns to cavity for (a) and (b) ABA and (c)
and (d) AB vesicles under wall shear.
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