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Abstract: The development of additive manufacturing technology leads to new concepts for design
implants and prostheses. The necessity of such approaches is fueled by patient-oriented medicine.
Such a concept involves a new way of understanding material and includes complex structural
geometry, lattice constructions, and metamaterials. This leads to new design concepts. In the article,
the structural design method is presented. The general approach is based on the separation of the
micro- and macro-mechanical parameters. For this purpose, the investigated region as a complex
of the basic cells was considered. Each basic cell can be described by a parameters vector. An
initializing vector was introduced to control the changes in the parameters vector. Changing the
parameters vector according to the stress-strain state and the initializing vector leads to changes in
the basic cells and consequently to changes in the microarchitecture. A medium with a spheroidal
pore was considered as a basic cell. Porosity and ellipticity were used for the parameters vector.
The initializing vector was initialized and depended on maximum von Mises stress. A sample
was designed according to the proposed method. Then, solid and structurally designed samples
were produced by additive manufacturing technology. The samples were scanned by computer
tomography and then tested by structural loads. The results and analyses were presented.

Keywords: structural design; porous constructions; additive manufacturing; CT

1. Introduction

The modern approach for design implants and prostheses implies patient-oriented
solutions. Such an approach involves not only new manufacturing methods but also a
new vision of the product. Additive manufacturing allows production constructions with
complex geometry. However, the solution for the automation of the design of such products
is still open. So, nowadays lattice constructions have become popular for this purpose. Yet,
the dependence between the different geometries of the lattice, the mechanical properties,
and the biological adaptive is being researched [1–3]. Additionally, a manifestation of the
brittle properties and the geometry deviations after manufacturing is still an issue of the
day [4–7]. By changing the materials and melting modes [8–10], the mechanical parameters
can be improved or vice versa. Despite the aforementioned difficulties, it is obvious that
additive manufacturing and patient-oriented design can notably increase the quality of the
medical treatments.

This article is focused on an approach for the structural design method. Previously, a
method for designing a lattice endoprosthesis for long bones was developed [11]. The en-
doprosthesis was manufactured and passed clinical experiments. The developed approach
was generalized. The main idea is based on the bone adaptation analogy. It is known that
adaptation can be formulated by Wolff’s law [12]. To describe bone tissue orthotropy, a
fabric tensor is used. The fabric tensor is also used to calculate the stiffness tensor [12,13].
The foundation of the adaptation model is an alignment of the stress and stiffness tensors.
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In terms of the fabric tensor, it means that the orthotropic directions are equal to the stress
principal directions [13,14]. The widespread approach is to use representative volumes to
determine the fabric tensor and the effective mechanical properties [15,16].

It has been shown [17–19] that implants interact with bone tissue and that the structure
and the microstructure of the implant influence the quality of this interaction. Additive
manufacturing allows the generation of solid irregular or lattice geometry [20,21], but on
the other hand, local microporosity decreases fatigue resistance. Classical post-processing,
such as tempering, allows the counteraction of the negative sides of the technology [22,23].
Despite the aforementioned technological barriers, the opening opportunities are promising.
The ability to design material within a product opens up new possibilities in patient-
specific prostheses [24,25]. The complexity of such an approach appears in defining the
external loads and the formulation criteria of the design [26,27]. A novel approach is the
use of additive manufacturing technology for liquid crystal elastomers, the exceptional
properties of which show good usage in a range of applications in the fields of biology
and medicine [28–30].

In this article, a method of structural design is presented. An example of structurally
designed construction is presented. The designed and regular constructions were manufac-
tured and compared in natural experiments.

2. Materials and Methods
2.1. Problem Formulation

The mechanical behavior of the region V in R3 with the boundary ∂V, within the linear
theory of elasticity, can be described by the following system of equations [11]:

∇ · σ̃ = 0, ∀→x ∈ V0 (1)

ε̃ =
1
2

(
∇→u +

(
∇→u

)T
)

, ∀→x ∈ V0 (2)

σ̃ = C̃ : ε̃, ∀→x ∈ V0 (3)
→
u = 0, ∀→x ∈ Skin (4)

σ̃ ·→n =
→
p , ∀→x ∈ Ssta (5)

Ssta ∪ Skin = ∂V (6)

where V◦ = V ∪ ∂V; u is the displacement vector; σ is the stress tensor; ε is the elastic strain
tensor; and C is the stiffness tensor. Ssta is the surface on which static boundary conditions
are specified, and Skin is the surface on which kinematic boundary conditions are specified
(see Figure 1).

Figure 1. Scheme for problem formulation.
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It is necessary to find a distribution of the stiffness tensor C in the volume V such that
the stress invariant (in our case, the von Mises stress) reaches a minimum at the constant
boundary conditions.

C̃ = C̃(
→
x ), max

→
x∈V′
‖σ̃‖ → min (7)

Applying the design conditions, it is necessary to determine the region Vcon, in which
the components of the tensor of elastic properties remain unchanged:

Vcon ∈ V0 (8)

Let us call the region Vcon the constant region. So, V′ in (7) can be determined as
V◦\Vcon. Adding Equation (7) to Equations (1)–(6) allows the formulating of the optimiza-
tion problem for the structure.

2.2. Structural Problem Formulation

The general idea of the method is that the stress-strain state depends on some of
the parameters vectors. Assuming that the anisotropy of the material is provided by the
microarchitecture, we consider the forming material isotropic [13,16]. The parameters
vector λ describes the material microarchitecture and influences the macro-stiffness tensor.
On the other side, we should add an additional vector with initializing parameters, which
describe the stress-strain state of the microarchitecture. Let us call it the initializing vector γ,
which, obviously, depends on the invariants of the stress tensor f. The initializing vector can
be interpreted as the control function of the microarchitecture changes. So, we propose that
the stiffness tensor can be presented as a function of the parameters vector, the initializing
vector, and the spatial coordinate:

C̃ = C̃
(→

λ
(

γ,
→
x
)

,
→
γ
(

f (σ̃),
→
x
)

,
→
x
)

(9)

Let us consider region V as the number of basic cells. For each basic cell we assume:
→
λ
(

γ,
→
x
)
=
→
λ(γ)

→
γ
(

f (σ̃),
→
x
)
=
→
γ( f (σ̃))

(10)

This approach considers a basic cell as a micro-construction with constant macro-
properties. The parameters vector λ should be changed according to values of the initializ-
ing vector γ. So, if we introduce the control function U the problem can be rewritten:

→
λ
(

γ,
→
x
)
=
→
λ
(

γ, U
(→

x
))

U
(→

x
)
= f

(→
γ
(

f (σ̃),
→
x
))

C̃ = C̃
(→

λ
(

γ, U
(→

x
))

,
→
x
) (11)

This means that the state of the initializing vector γ determines the changes of mi-
croarchitecture in terms of the parameters vector λ, and the microarchitecture influences
the macro-stiffness tensor. Let us consider the investigated region as a composition of
basic cells; each one describes the microarchitecture of a material. Each basic cell can be
described by the parameters vectors and can be changed according to the initializing vector.
To implement such an approach, the basic cell should be determined in order to define the
parameters vector and its relationship with the stiffness tensor.
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2.3. Basic Cell

In the research unit, a cube with a spheroidal pore was used as a basic cell. In this
case, the parameters vector consists of porosity (λ) and the ellipticity coefficient (β). To
investigate the dependence between the stiffness tensor and the parameters vector, a
representative elements method was used [31–33]. For this purpose, the parameterized
finite element model of a cube with a spheroidal pore was implemented. Twenty-node
hexahedral finite elements were used. Kinematic loading was used in the numerical sim-
ulation. Uniaxial and shear loads in three directions were implemented. To clarify the
mechanical properties, additionally combined (uniaxial with shear) loads were imple-
mented [16,26,34,35]. The parameters were investigated in the interval (0; 1). According to
the received data, the functions describing the influence of the parameters on the mechani-
cal properties were found: 

→
λ =

→
λ(λ, β)

Eii = Eii

(→
λ

)
≡ Ciiii

(→
λ

)
Gij = Gij

(→
λ

)
≡ Cijij

(→
λ

)
νij = νij

(→
λ

)
≡ Ciijj

(→
λ

) (12)

For approximation, a fourth-degree polynomial function was used with an approx-
imation error threshold of about 0.9 [33–36]. In the calculations, some of the coefficients
were equal to zero, so a common form of the final calculated polynomial was as follows:

Cijkl(λ, β) = c00 + c10λ + c01β + c11λβ + c21λ2β + c31λ3β + c12λβ2 + c22λ2β2 + c13λβ3 (13)

where λ and β are components of the parameters vector—porosity and ellipticity,
respectively, cij are coefficients of the polynomial, where i shows the power of porosity and j
shows the power of ellipticity. The received values of the coefficients for the approximation
polynomial are listed in Table 1.

Table 1. The values of coefficients of approximation polynomial for stiffness parameters.

c00 c10 c01 c11 c21 c31 c12 c22 c13

E11, GPa 109 −3.9 −5.3 −192 287 −115 319 −209 −136
E22,33, GPa 102 2.9 10.6 −111 325 −278 −17.8 −18.7 27
G12,13, GPa 10.7 −0.1 0.25 −2.7 13 −10 −3.9 −0.1 4.1
G23, GPa 2.5 −0.1 −0.06 −4.4 8 −3.4 6.4 −5 −2.5

ν12,13 0.011 −0.005 −0.009 −0.032 −0.038 0 −0.027 0.464 0
ν23 0.017 −0.049 −0.017 −0.07 0.4 0 0.09 −0.18 0

It should be noted that the polynomial coefficients for Poisson’s ratio can be reduced
up to c00 because the influence of the parameters vector is insignificant. So, ν12,13 ≈ 0.011
and ν23 ≈ 0.017.

2.4. Proposed Algorithm

After the principal stress and directions are found, the orthotropic directions can be
oriented according to the principal directions. The semi-major axis is directed to the 1st
principal stress direction. The porosity is determined by von Mises stress and value [σ]inf.
The [σ]inf is the infimum of the stress value and determines the value of the underload. So,
porosity can be restored by the equation:

λ
(→

x
)
=

 1−
[σ]inf−σV.M.

(→
x
)

[σ]inf
, σV.M.

(→
x
)
< [σ]inf

1, σV.M.

(→
x
)
≥ [σ]inf

(14)
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To determine the ellipticity coefficient, the 1st and the 3rd principal stresses were used:

β
(→

x
)
=

min
(∣∣∣σ1

(→
x
)∣∣∣, ∣∣∣σ3

(→
x
)∣∣∣)

max
(∣∣∣σ1

(→
x
)∣∣∣, ∣∣∣σ3

(→
x
)∣∣∣) (15)

Then, the stiffness constants can be calculated by porosity and the ellipticity coefficient
and the stress-state problem can be solved. So, the algorithm can be described:

Algorithm of structural design

1. Load a mesh and apply boundary conditions.
2. Highlight elements from the constant region (8)
3. Set initial parameters vector
4. Solve the stress-state problem (1)–(6)
5. for each element not from constant region
6. Calculate the principal stress and directions
7. Calculate the parameters vector (14), (15)
8. Calculate stiffness tensor (13)
9. Orient element coordinate system according to the principal directions.
10. end for
11. if not stop goto 4
12. Restore geometry by parameters vector.

2.5. Model Task

A rectangular beam of 140 mm × 28 mm × 14 mm was used for the algorithm
implementation. Eight-node hexahedral finite elements were used for the calculations.
The kinematic loading of 1 mm was used in the numerical simulation. The length of the
kinematic loading region was 20 mm. In Figure 2, the loading scheme is presented; the
Vcon region is marked by a green color. The end faces of the beam were fixed.

Figure 2. Loading scheme; U is applied displacements; the green region is Vcon region.

The mechanical properties of acrylonitrile butadiene styrene were used for further
production by additive manufacturing. So, Young’s modulus was equal to 200 GPa, the
shear modulus was equal to 71.5 GPa, and the Poisson ratio was 0.4. For [σ]inf, 10% of
maximum von Mises stress in the construction was used. The stop condition was as follows:

max(|λi − λi−′|, |βi − βi−1|) < ε (16)

where ε was equal to 10−3.

2.6. Experiments

After restoring the geometry, the beam was produced by additive manufacturing
technology. Acrylonitrile butadiene styrene was used for the manufacturing. Both the
solid and the structural design samples were produced. For every two types of samples,
longitudinal and transverse directions of printing were used. Computed tomography (CT)
(Vatech PaX-I 3D, Kazan, Russia) was used to estimate the structure. After that, three-point
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bending was carried out and stress-strain curves were obtained for all samples. For the
stress-strain curves, the ultimate force and slope were analyzed.

3. Results and Discussion

The stress-strain state for the initial (solid) and the structurally designed beam were
compared. The maximum stress did not change significantly, but the distribution of stress
inside the product decreased (see Figure 3). The algorithm showed fast convergence; it was
about 38 iterations. The maximum stress was localized in the zones of kinematic constraints
for the initial geometry. In addition, for the structurally designed beam the maximum stress
was localized in the zones of kinematic boundary conditions (see red regions in Figure 3).
On the other hand, zones of stress reduction appeared for the structurally designed beam
(see blue regions in Figure 3).

The distribution of the received porosity and ellipticity coefficients is shown in
Figure 4. The zones of high porosity are localized where the von Misses stress was minimal
(red zones in Figure 4a). In the same zones, the pore’s ellipticity coefficient is close to 1 (red
zones in Figure 4a), which means that in this region the pore is almost spherical.

The 3D geometry was restored for the following manufacturing (see Figure 5a). The
initial and structurally designed samples were manufactured in two ways: longitudinal
and transversal printing. After the manufacturing, the samples were scanned by CT (see
Figure 5b,c). The deviations of pore geometry in the manufactured samples were noted.
They were caused by the cooldown speed of the printing material drop. However, the
distribution of the porosity was close enough to the design (deviations about 5%).

In the three-point bending experiments for the initial geometry, which was longitu-
dinally printed, the maximum force was 1675 N, and the maximum displacement was
3.35 mm. For the structurally designed geometry, which was longitudinally printed, the
maximum force was 1825 N, and the maximum displacement was 3.56 mm. A crack
appeared in the middle, in the longitudinal direction between the kinematics constraints
and the applied force (see Figure 6a). In the three-point bending experiments for the
initial geometry, which was transversally printed, the maximum force was 7196 N, and the
maximum displacement was 10.73 mm. For the structurally designed geometry, which was
transversally printed, the maximum force was 6271 N, and the maximum displacement
was 4.76 mm. A crack appeared under the applied force. The stress-strain curves for all the
cases are shown in Figure 6b,c. The ultimate force deviation for the initial and structurally
designed cases was about 10%, and it could be decreased by improving the manufacturing
of the samples. A significant difference was noted for the displacements in the case of the
transversal printing. The structurally designed sample became more rigid (4.76 mm vs.
10.73 mm).

Comparing the slope (for the longitudinal printing), a 25% increase was noted for the
structurally designed sample (1184 N/mm and 1491 N/mm, respectively). The slope in
the case of the transversal printing decreased by 20% for the structurally designed sample
(710 N/mm and 894 N/mm, respectively).
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Figure 3. Von Mises stress distribution for initial (a) and structurally designed (b) beam.

Figure 4. Distribution of porosity(a) and ellipticity coefficient (b).
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Figure 5. Restored 3D geometry (a), CT scans for longitudinal printing (b), and transversal printing (c).
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Figure 6. Three-point bending scheme (a), a stress-strain curve for longitudinal printing (b), and transversal printing (c);
black lines—initial geometry, red lines—structurally designed geometry.
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4. Conclusions

The algorithm for the structural design of the geometry was proposed. In the frame-
work of the study, a porous cube was chosen for the basic cell. The following assumptions
were used: calculation was carried out in an elastic zone; the material is isotropic; and
anisotropy appears by the porosity of the basic cell. The iterative algorithm for the structural
design was presented. The samples were designed, and the verification of the structural
simulations was carried out. The comparison of the maximum von Mises stress for all
the samples did not show a significant difference. However, for the structurally designed
beam, zones of stress reduction appeared.

The manufacturing was provided using additive technologies. The samples were
printed using different directions, and three-point bending tests were performed. Stress-
strain curves were obtained for all the samples. In the case of the longitudinal direction
printing, the ultimate force of the structurally designed sample was about 10% higher. In
the case of the transversal direction printing, the rigidness of the structurally designed
sample was almost 40% higher. The analysis of the stress-strain curves for all the samples
shows the significant influence of the printing directions on the mechanical properties and
demonstrated the need for post-processing.
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