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E V O L U T I O N A R Y  B I O L O G Y

An orthologous gene coevolution network provides 
insight into eukaryotic cellular and genomic structure 
and function
Jacob L. Steenwyk1, Megan A. Phillips1†, Feng Yang2,3, Swapneeta S. Date1, Todd R. Graham1, 
Judith Berman2‡, Chris Todd Hittinger4, Antonis Rokas1*

The evolutionary rates of functionally related genes often covary. We present a gene coevolution network inferred 
from examining nearly 3 million orthologous gene pairs from 332 budding yeast species spanning ~400 million years 
of evolution. Network modules provide insight into cellular and genomic structure and function. Examination of 
the phenotypic impact of network perturbation using deletion mutant data from the baker’s yeast Saccharomyces 
cerevisiae, which were obtained from previously published studies, suggests that fitness in diverse environments 
is affected by orthologous gene neighborhood and connectivity. Mapping the network onto the chromosomes of 
S. cerevisiae and Candida albicans revealed that coevolving orthologous genes are not physically clustered in 
either species; rather, they are often located on different chromosomes or far apart on the same chromosome. 
The coevolution network captures the hierarchy of cellular structure and function, provides a roadmap for 
genotype-to-phenotype discovery, and portrays the genome as a linked ensemble of genes.

INTRODUCTION
Genetic networks—diagrams wherein nodes represent genes and 
edges represent measured functional relationships between nodes—
can elucidate how genes are organized into pathways and contribute 
to cellular functions, shedding light onto the relationship between 
genotype and phenotype (1–4). Given the rich information con-
tained in or derived from genetic networks, numerous approaches 
that aim to capture some aspect(s) of functional relationships among 
genes in a genome (e.g., gene coexpression and genetic interaction) 
have been developed (5–7). While these networks are highly in-
formative, their availability and applicability are typically limited to 
select model organisms and single extant species or strains. Appli-
cation of information from the genetic network of one organism to 
understand the biology of another requires assuming that the 
networks of the two organisms are conserved, which is not always 
the case (8–18).

One complementary, but poorly studied, method for constructing 
genetic networks is by measuring the coevolution of orthologous 
genes, which can be done by calculating the covariation of relative 
evolutionary rates among orthologous genes (19–22). Briefly, by 
estimating an orthologous gene’s phylogeny, one infers the rate 
(and changes in rate) of its evolution across the phylogeny; if the 
evolutionary rate values estimated for each branch of an orthologous 
gene’s phylogeny are significantly correlated with those of another 

gene’s phylogeny, the two orthologs are said to be coevolving. Note 
that coevolution of orthologous genes is distinct from organismal 
coevolution in which reciprocal evolutionary changes occur between 
interacting lineages—for example, insect pollinators impacting flower-
ing plant diversification (23, 24). By estimating coevolution for all 
pairs of orthologous genes in a clade, one can infer the clade’s 
orthologous gene coevolution network, where nodes correspond to 
orthologs and edges correspond to the degree to which two orthologs 
coevolve (22). Genetic networks based on gene coevolution leverage 
evolutionary information, whereas standard genetic networks rely 
on the correlation of functional data such as gene expression or the 
presence of genetic interactions among genes within a single extant 
species or strain.

Orthologous gene coevolution is often observed among genes 
that share functions, are coexpressed, or whose protein products are 
subunits in a multimeric protein structure, and can yield insights 
into the genotype-to-phenotype map (25, 26). For example, screen-
ing for genes that have coevolved with genes in known DNA repair 
pathways across 33 mammals led to the identification of DDIAS, 
whose involvement in DNA repair was subsequently functionally 
validated (26). Furthermore, among 918 pairs of interacting proteins 
in the protein structural interactome map, a database of structural 
domain-domain interactions in the protein data bank (www.rcsb.org/), 
four of five proteins exhibit signatures of gene coevolution (27). Al-
though these and other studies have demonstrated that signatures of 
coevolution are a powerful method to detect functional associations 
among genes in the absence of functional data (20, 25, 26, 28–30), 
the network biology principles of gene coevolution, especially be-
tween genes that have coevolved for hundreds of millions of years, 
remain unexplored.

To unravel the general principles of orthologous gene coevolutionary 
networks, we constructed the coevolution network of a densely 
sampled set of orthologs from one-third of known budding yeast 
species (332 species) that diversified over ~400 million years. The 
inferred network provides a hierarchical view of cellular function 
from broad bioprocesses to specific pathways. Interpolation of the 
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gene coevolution network with fitness assay data from single and 
digenic Saccharomyces cerevisiae mutants (1, 2, 31, 32) provides 
insight into subnetwork- and ortholog-specific potential to buffer 
genetic perturbations. Unexpectedly, comparisons of genetic net-
works inferred from gene coevolution and genetic interactions yield 
similar functional insights; for example, hubs of genes tend to be 
functionally related and gene essentiality affects gene connectivity, 
wherein essential genes are more densely connected than nonessential 
genes. Unlike genetic interaction networks, gene coevolution net-
works can also provide evolutionary insights; for example, mapping 
the orthologous gene coevolution network onto the chromosomes 
of two model yeast genomes uncovers extensive interchromosomal 
and long-range intrachromosomal associations, providing an 
“entangled” view of the genome across evolutionary time scales. We 
anticipate that these results will facilitate the generation, interpretation, 
and utility of these networks among other lineages in the tree of life.

RESULTS
A gene coevolution network
We examined 2,898,028 pairs of orthologous genes from a dataset 
of 2408 orthologous genes in 332 budding yeast species. Broad net-
work properties were stable across a range of thresholds for “signif-
icant” orthologous gene coevolution (fig. S2). To conservatively define 
“significant” coevolution and therefore examine orthologous gene 
pairs with only robust signatures of coevolution, we implemented a 
high correlation coefficient threshold for significant orthologous 
gene coevolution (r ≥ 0.825; Pearson correlation among relative 
evolutionary rates). This resulted in 60,305 significant signatures of 
orthologous gene coevolution (Fig. 1, A and B, and fig. S1), which 
were used to construct a network where nodes are orthologous 
genes and edges connect orthologous genes that are significantly 
coevolving (Fig. 1C).

To determine how orthologous gene connectivity varied in the 
network, we examined patterns of dense and sparse connections 
for individual orthologous genes. Individual orthologous genes 
coevolved with a median of eight other orthologous genes, but con-
nectivity varied substantially across the network (fig. S3). For example, 
1091 orthologous genes have signatures of coevolution with five or 
fewer other orthologous genes, and 601 orthologous genes are 
singletons, which we define as orthologous genes that are not sig-
nificantly coevolving with any other orthologous genes in the dataset. 
In contrast, 420 orthologous genes have signatures of coevolution 
with 100 or more other orthologous genes, and 21 orthologous genes 
coevolve with 400 or more others.

Coevolving orthologous genes in the network tend to be func-
tionally related. For example, PEX1 and PEX6 are one of the pairs of 
genes with the highest observed correlation coefficient in evolutionary 
rates (fig. S4). In S. cerevisiae, the two orthologous genes encode a 
heterohexameric complex responsible for protein transport across 
peroxisomal membranes (33), and mutations in either gene can lead 
to severe peroxisomal disorders in humans (34). Functional enrich-
ment among densely connected orthologous genes revealed that 
complex bioprocesses that require coordination among polygenic 
protein products are overrepresented (fig. S5 and table S1). For ex-
ample, CHD1, INO80, and ARP5, which encode proteins responsible 
for chromatin remodelling processes such as nucleosome sliding and 
spacing (35), are coevolving with 400 or more other orthologous 
genes (fig. S5 and table S1). Together, these findings highlight that 

coevolution may be observed among orthologous genes that physically 
interact (e.g., PEX1 and PEX6) or contribute to highly intricate 
biological processes (e.g., INO80). More broadly, these data support 
the hypothesis that coevolving orthologous genes tend to have sim-
ilar functions.

To determine how connectivity varied within the network, we 
examined the properties of subnetworks across orthologous genes 
considered essential and nonessential in the model yeast S. cerevisiae 
or the opportunistic pathogen Candida albicans (36, 37). Essential 
genes are densely connected in the orthologous gene coevolutionary 
network, whereas nonessential genes exhibit sparser connections 
(Fig. 2, A to D). To infer network orthologous gene communities—
clusters of orthologous genes that have more connections between 
them than between orthologous genes of different clusters—we used 
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Fig. 1. Constructing the budding yeast orthologous gene coevolution network. 
(A) We determined coevolution in a set of 2408 single gene trees in which branch 
lengths were inferred along the species tree topology. (B) Coevolution of orthologous 
genes was evaluated across all pairwise combinations of orthologous genes using 
the CovER function in PhyKIT, v0.1 (22). (C) Significantly coevolving pairs of orthologous 
genes were used to construct a global network of orthologous gene coevolution 
where nodes correspond to orthologous genes and edges connect orthologous 
genes that are significantly coevolving. The “ring” of nodes corresponds to the 
orthologous genes found to be coevolving with very few or no other (i.e., singletons) 
orthologous genes in our dataset.
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a hierarchical agglomeration algorithm (Fig. 2A). Five large orthol-
ogous gene communities (clusters of more than 10 orthologous genes) 
were identified. Each orthologous gene community varied in size, 
orthologous gene community–to–orthologous gene community con-
nectivity, and essential/nonessential orthologous gene composition. 

Specifically, the two largest orthologous gene communities, com-
munities 1 and 2, share the most connections and belong to a 
higher-order cluster with the next two largest orthologous gene 
communities, communities 3 and 4 (Fig. 2E and fig. S6). In contrast, 
the smallest orthologous gene community, community 5, does not 
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gene networks in S. cerevisiae and C. albicans. The “ring” of nodes in each plot is composed of orthologous genes that coevolve with very few or no other genes. (D) The 
essential gene subnetwork has higher transitivity and edge density values. The nonessential gene network has higher mean distance and diameter values. (E) There are 
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coevolving orthologous gene pairs between communities; node size: number of orthologous genes in a community. Orthologous gene communities 1 to 4 cluster 
together; community 5 is a singleton. (F) Orthologous gene community 1 is overrepresented with essential orthologous genes. (G to I) Orthologous gene communities 
differ in enriched terms. MF, molecular functions; BP, biological processes. Circles: enriched GO terms; colors: −log10 P values; size of circles: GO term uniqueness. Enrichment 
results for each orthologous gene community are reported in table S3. The figure legend is to the right of (F).
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cluster with the other orthologous gene communities. Similarly, es-
sential genes are overrepresented in orthologous gene community 1 
but are underrepresented in orthologous gene communities 2 and 3 
and in smaller communities of 10 or fewer orthologous genes (Fig. 2F; 
P < 0.01 for all tests; Fisher’s exact test). The result that S. cerevisiae 
and C. albicans essential genes are central hubs in a coevolution network 
constructed from orthologous genes that represent 400 million years 
of budding yeast evolution mirrors the finding that essential genes 
are central hubs in the S. cerevisiae genetic interaction network (2).

From processes to pathways: The budding yeast coevolution 
network captures the hierarchy of cellular function
To gain insight into the functional neighborhoods of the orthologous 
gene coevolution network, we examined via Gene Ontology (GO) 
enrichment analysis (38) the composition of each orthologous gene 
community. Among the highest-order cluster of orthologous gene 
communities (i.e., communities 1 through 4), we found that higher-
order cellular processes including nucleic acid metabolism [P = 0.040; 
Fisher’s exact test multitest corrected using false discovery rate cor-
rection with Benjamini-Hochberg (FDR-BH)] and cellular anatom-
ical entities (P = 0.020; Fisher’s exact test multitest corrected using 
FDR-BH) are enriched. At the individual orthologous gene com-
munity level, we found that orthologous gene community 1 is en-
riched in orthologous genes with helicase activity (P = 0.005; Fisher’s 
exact test multitest corrected using FDR-BH), ligase activity (P = 
0.004; Fisher’s exact test multitest corrected using FDR-BH), and 
translation initiation factors (P = 0.024; Fisher’s exact test multitest 
corrected using FDR-BH); orthologous gene community 2 is en-
riched in Golgi vesicle transport orthologous genes (P = 0.009; 
Fisher’s exact test multitest corrected using FDR-BH); whereas 
singletons are enriched in guanosine triphosphatase (GTPase) activ-
ity (P = 0.016; Fisher’s exact test multitest corrected using FDR-BH) 
and peroxiredoxin activity (P = 0.036; Fisher’s exact test multitest 
corrected using FDR-BH) (Fig. 2, G to I, and table S3).

Functional neighborhoods of coevolving orthologous genes within 
and between biological functions, as well as cellular compartments 
and complex categories, are also captured by the network. For 
example, orthologous genes involved in the biological functions of 
ribosome biogenesis, ribosomal RNA (rRNA) processing, and trans-
lation, which represent different functional categories, are extensively 
coevolving with one another (fig. S7A). This finding suggests that 
the complexity of protein biosynthesis, a process that requires coor-
dination among diverse biochemical functions, is captured in the 
coevolution of the underlying orthologous genes. Similarly, orthol-
ogous genes involved in nuclear processes or located in the cyto-
plasm tend to coevolve with orthologous genes in the same cellular 
compartment; however, substantial signatures of coevolution be-
tween orthologous genes from different cellular compartments are 
also observed (fig. S7B).

Last, our network captures functional neighborhoods of co-
evolving orthologous genes at the level of pathways and complexes. 
We found strong signatures of coevolution among orthologous genes 
from specific pathways and complexes. For example, orthologous 
genes that encode proteins responsible for DNA replication coevolve 
with a larger number of other DNA replication orthologous genes 
than expected by random chance (P < 0.001; permutation test) 
(fig. S8). Orthologous genes involved in DNA mismatch repair and 
nucleotide excision repair pathways, which participate in the repair 
of DNA lesions, have more signatures of coevolution than expected 

by random chance (P < 0.001 for each pathway; permutation test). 
Orthologous genes in the phosphatidylcholine biosynthesis pathway, 
which is responsible for the biosynthesis of the major phospholipid 
in organelle membranes, and orthologous genes in the tricarboxylic 
acid cycle (also known as the Krebs cycle or citric acid cycle), a key 
component of aerobic respiration (fig. S9), also have more signatures 
of coevolution than expected by random chance (P < 0.001 for each 
pathway; permutation test). Among complexes, orthologous genes 
that encode the minichromosome maintenance protein complex 
that functions as a DNA helicase, the DNA polymerase -primase 
complex that assembles RNA-DNA primers required for replication, 
and DNA polymerase  that serves as a leading strand DNA poly-
merase (Fig. 3) also coevolve with larger numbers of orthologs from 
the same complex than expected by random chance (P < 0.001 for 
each multimeric complex; permutation test). Note that certain gene 
categories (e.g., transposons and hexose transporters) are not repre-
sented in our dataset of orthologous genes and could not be exam-
ined (see Methods).

In summary, these findings reveal that functional aspects of the 
network can be viewed with varying degrees of specificity. For 
example, the highest-order insights (i.e., GO enrichment across 
orthologous gene communities 1, 2, 3, and 4) revealed coevolution 
among cellular anatomical entities, whereas greater specificity—
such as coevolution among orthologous genes responsible for Golgi 
vesicle transport—can be obtained by examining lower-order hubs 
of genes (e.g., GO enrichment in orthologous gene community 2). 
Furthermore, coevolutionary signatures can bridge distinct but 
related functional categories such as cellular compartments and com-
plexes, highlighting the complex interplay of distinct functional 
modules over evolutionary time. Thus, the budding yeast coevolu-
tion network captures the hierarchy of cellular function from broad 
bioprocesses to specific pathways or multimeric complexes.

The coevolution network constructed from budding yeast 
orthologous genes is distinct, but complementary, to the  
S. cerevisiae genetic interaction network
To determine similarities and differences between our coevolution 
network inferred from orthologous genes in the budding yeast sub-
phylum and the genetic interaction network inferred from digenic 
null mutants in the model organism S. cerevisiae (1, 31), both data 
types were integrated into a single supernetwork (figs. S10 and S11). 
In the genetic interaction network, nodes represent genes and edges 
represent nonadditive genetic interactions between genes; in the 
supernetwork, nodes represent genes and edges connect two genes 
that have a significant signature of coevolution, genetic interaction, 
or both. We hypothesize that there will be broad similarities between 
the networks because they both capture functional associations; how-
ever, we also hypothesize that the connectivity of individual nodes 
between the networks will sometimes differ because one network is 
built from ~400 million years of orthologous gene coevolution, 
whereas the other from genetic interactions in a single extant species.

Supporting this hypothesis, the orthologous gene community 
clustering observed in the gene coevolution network was also evi-
dent in the supernetwork, and the two networks were found to be 
more similar for all metrics examined (i.e., mean distance and tran-
sitivity) than expected by random chance (P < 0.001 for both tests; 
permutation test); however, gene-/ortholog-wise connectivity at times 
differed, suggesting each network harbors distinct and complemen-
tary insights (fig. S10). For example, connectivity is similar for the 
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gene/ortholog CDC6, which is required for DNA replication (39), 
between the two networks. Specifically, CDC6 is connected to 
96 genes/orthologs in both networks, and 56 of the genes/orthologs 
are the same. This result suggests that the connectivity of the CDC6 
gene in S. cerevisiae is broadly conserved across species from the 
budding yeast subphylum. In contrast, different gene-/ortholog-wise 
connectivity was observed for the choline kinase CKI1 (40, 41); 
CKI1 is coevolving with 87 orthologs and has a significant genetic 
interaction with 10 genes, and 7 of these genes/orthologs are shared 
by both networks. This result suggests that the connectivity of the 
CKI1 gene observed in S. cerevisiae is not broadly conserved across 
species from the budding yeast subphylum. This difference may be 
partially explained by the fact that CKI1 has a paralog, EKI1, which 
arose from an ancient whole-genome duplication event that affected 
some, but not all, species in the subphylum (42, 43). These results 
reveal that orthologous gene coevolution networks inferred over 
macroevolutionary time scales and networks inferred from genetic 
interactions in single organisms offer complementary insights into 
functional relationships between genes.

Orthologous gene communities differ in capacity 
to compensate for perturbation
Examinations of gene dispensability in the model budding yeast 
S. cerevisiae and the opportunistic pathogen C. albicans (36, 37) 

suggest that single-organism genetic networks can buffer single gene 
losses as evidenced by the ability to maintain organismal viability. 
Thus, we sought to determine whether a gene’s dispensability varies 
in an orthologous gene community–dependent manner. To address 
this, we integrated information from the budding yeast orthologous 
gene coevolution network and genome-wide single-gene deletion 
fitness assays (or, in the case of essential genes, expression suppres-
sion) of S. cerevisiae in 14 diverse environments (32) (figs. S12 and 
S13). Here, single-gene deletion fitness assays serve as a proxy for 
network perturbation in which deletion of a single gene is analogous 
to removing a node from the network. We found that fitness of 
S. cerevisiae gene knockouts in different environments was signifi-
cantly dependent on orthologous gene community and the number 
of coevolving genes per gene [Fig. 4; P < 0.001 for both comparisons 
of an interaction between orthologous gene community:environment 
interaction and environment:number of coevolving genes, multi-
factor analysis of variance (ANOVA)]. We also observed a signifi-
cant fixed effect for orthologous gene community and environment 
(P < 0.001, multifactor ANOVA). These observations highlight the 
importance and role of the environment and the architecture of the 
underlying genetic network when evaluating the consequences of 
single-gene deletions on organismal fitness.

To further investigate the relationship between S. cerevisiae gene 
dispensability and structure of the coevolution network, we integrated 
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S. cerevisiae genetic interaction data from double-gene or digenic dele-
tion fitness assays, wherein positive and negative genetic interactions 
refer to positive and negative fitness effects in the digenic deletion 
mutants relative to those expected from the combined effects of the 
individual single-gene deletion mutants, respectively (1, 2, 31). We 
found that most gene pairs were associated with negative genetic 
interactions (fig. S14). Furthermore, genetic interaction scores among 
different orthologous gene community combinations were not 
significantly different (P > 0.05; Kruskal-Wallis rank sum test), 
suggesting digenic losses negatively affected fitness irrespective of 
orthologous gene community.

Last, to examine evolutionary gene loss in the context of the gene 
coevolution network, we investigated orthologous gene community-
wide patterns of gene losses among genes lost in a lineage of budding 
yeasts previously reported to have undergone extensive gene losses 
(44). These analyses revealed orthologous gene community 2 and 
singleton orthologs are more likely to be lost (fig. S14B), which 
supports the hypothesis that gene losses do not occur stochastically 

(45). In summary, the architecture of the coevolution network is 
associated with a gene’s dispensability.

An entangled genome: Extensive interchromosomal 
and long-range intrachromosomal coevolution
Gene order is not random among eukaryotes and physically linked 
genes tend to be involved in the same metabolic pathway or protein-
protein complex (46, 47). Thus, we hypothesized that coevolving 
orthologous genes will likely be physically linked or clustered onto 
yeast chromosomes. To test this hypothesis, we projected the 
budding yeast gene coevolution network onto the one-dimensional 
genome structure of S. cerevisiae and C. albicans, which diverged 
~235 million years ago (48). We chose the genomes of these two 
organisms because they both have complete and high-quality 
chromosome-level assemblies. The two organisms also have distinct 
evolutionary histories; the lineage that includes S. cerevisiae under-
went whole-genome duplication, whereas C. albicans underwent 
intraspecies hybridization (42, 49). These processes have contributed 
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to differences in chromosome number (16 in S. cerevisiae versus 8 
in C. albicans) and a lack of macrosynteny (50–54) (Fig. 5, A and B, 
and figs. S15 and S16).

Contrary to our hypothesis, we observed extensive interchromosomal 
and long-range intrachromosomal orthologous gene coevolution 

(Fig. 5 and figs. S17 to S23). Specifically, coevolving orthologous 
gene pairs were commonly located on different chromosomes 
(Fig. 5, C and D, and table S4). There was a near-perfect correlation 
between the number of intrachromosomal signatures of coevolution 
(corrected by the number of genes on that chromosome in the dataset) 

556

C
ou

nt
(×

10
0)

0.0

2.5

5.0

7.5

10.0

C
ou

nt
(×

10
0)

#
In

te
r-c

hr
.c

oe
vo

.g
en

es
/#

of
ge

ne
s

on
ot

he
rc

hr
s.

C
ou

nt
( ×

10
0)

# Intra-chr. coevo. genes
/# of genes on chr.

Mb between intra-
chr. coevolving genes

# Intra-chr. coevo. genes
/# of genes on chr.

#
In

te
r-c

hr
.c

oe
vo

.g
en

es
/#

 o
f g

en
es

 o
n 

ot
he

r c
hr

s.

0.2 0 1 2 3

Mb between intra-
chr. coevolving genes

0.0 0.5 1.0

0.10.0

0.20.1

r = 0.95
P < 0.001

r = 0.98
P < 0.001

0.0

0.0 0.0

2.5

5.0

7.5

C
ou

nt
(×

10
0)

0.0

2.0

4.0

6.0

0.1

0.2

0.0

0.1

0.2

E

F

G

H

0.0

3.0

6.0

9.0

12.0

1,017

377

1,181

31

12

C

D

1.0

2.0

3.0

M
b

0.0

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

M
b

M
b

1

2

3

4

5
6

7

8

1

2
3

4
5 6 7

R

9
1011

121314
1516

A

B

C
.
a
lb
ic
a
n
s

S
.
c
e
r
e
v
is
ia
e

Genes coevolving with INO80 in S. cerevisiae Genes coevolving with INO80 in C. albicans
I J

Fig. 5. Extensive long range and interchromosomal gene coevolution. (A) S. cerevisiae and (B) C. albicans differ in chromosome number and size. (C and D) Numbers 
of genes with interchromosomal orthologous gene coevolution (blue), intrachromosomal (green), or both (orange). (E and F) Intrachromosomal signatures of orthologous 
gene coevolution corrected by number of genes on chromosome (x axis) and number of interchromosomal signatures of orthologous gene coevolution corrected by 
number of genes on other chromosomes (y axis). Colors represent different chromosomes, and the regression line of all chromosomes is in black. (G and H) Distances 
among intrachromosomal signatures of orthologous gene coevolution. (I and J) INO80, an example of how orthologous genes can coevolve with others across the genome. 
Outermost track: chromosomes of either yeast with chromosome 1 at the 12 o’clock position; second track: genes on plus/minus strand; third track: genes colored according 
to orthologous gene community. Scatter plot shows the number of coevolving orthologous genes per orthologous gene; size reflects higher values. Links depict orthologous 
genes coevolving with INO80 and are colored according to chromosomal location of the other orthologous gene. Colors in (E) to (H) and ideogram and link colors in (J) 
correspond to chromosomes [see (A) and (B)].



Steenwyk et al., Sci. Adv. 8, eabn0105 (2022)     4 May 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

8 of 12

and the number of interchromosomal signatures of coevolution 
(corrected by the number of genes on all other chromosomes in the 
dataset) (r = 0.95, P < 0.001 for S. cerevisiae; r = 0.98, P < 0.001 for 
C. albicans; Spearman correlation). This result suggests that orthol-
ogous genes located on the same or different chromosomes are 
equally likely to be coevolving. Given the extensive coevolution 
among orthologous genes in the same or similar functional categories, 
these results support the notion that function, not chromosome 
structure, is the primary driver of coevolution over macroevolu-
tionary time scales.

Examination of intrachromosomal coevolution revealed variation 
in orthologous gene pair distances along the genome. Two coevolving 
orthologous genes on the same chromosome can be kilobase-to-
megabase distances from one another (Fig. 5, G to H). The distribu-
tion of the closest distance between an orthologous gene and its 
coevolving partners revealed a positively skewed distribution with 
a similar range of kilobase-to-megabase associations (fig. S23). In 
S. cerevisiae, the number of intrachromosomal signatures of coevo-
lution is correlated with the number of genes on a chromosome 
represented in the dataset, whereas in C. albicans, the number of 
intrachromosomal signatures of coevolution is correlated both with 
chromosome length and with the number of genes on a chromosome 
represented in the dataset (fig. S24). Examination of the distances 
between orthologous genes in our dataset and their coevolving 
partners revealed that long-range intrachromosomal coevolution 
was not an artifact of gene sampling (fig. S24). Investigation of the 
interplay between orthologous gene coevolution and chromosomal 
contacts using a three-dimensional model of the S. cerevisiae genome 
(55) revealed that signatures of coevolution occur independent of 
chromosomal contacts (fig. S26).

Extensive inter- and intrachromosomal associations are exem-
plified by INO80, which encodes a chromatin remodeler and has 
coevolved with 591 orthologous genes on all other chromosomes 
in both S. cerevisiae and C. albicans (Fig. 5, I and J). To date, few 
examples of interchromosomal associations between loci are known. 
One example includes concerted copy number variation between 
45S and 5S ribosomal DNA loci in humans; imbalance in copy 
number is thought to be associated with disease (56, 57). Our ob-
servations suggest that extensive interchromosomal and long-range 
intrachromosomal functional associations may be more common 
than previously appreciated.

DISCUSSION
We constructed a genetic network based on orthologous gene co-
evolution from a densely sampled set of orthologs across the 
budding yeast subphylum. These analyses are distinct from genetic 
interaction– and gene expression–based genetic networks in that they 
leverage evolutionary, rather than functional, data. Thus, coevolu-
tion networks infer functionally conserved relationships among 
orthologous genes across entire lineages, whereas genetic networks 
infer functional relationships among genes in a single extant species 
or strain (irrespective of whether these relationships are conserved 
in other species or not). Gene coevolution networks are also distinct 
from networks constructed from correlated presence and absence 
patterns of orthologs across a lineage [an approach known as phylo
genetic profiling; (58, 59)] in that coevolutionary networks depict 
relationships among orthologs conserved in the majority of taxa. 
Examination of the global coevolution network, orthologous gene 

communities therein, and signatures of orthologous gene coevolution 
among bioprocesses, complexes, and pathways reveals that the 
network reflects the hierarchy of cellular function. Moreover, the 
integration of network-based approaches provides new insights 
into coevolution among orthologous genes—for example, ortholo-
gous genes coevolving with hundreds of other orthologous genes, 
such as INO80 (Fig. 5, I and J), are enriched in nucleosome mobili-
zation (fig. S5).

Comparison of the budding yeast coevolution network to the ge-
netic interaction–based network of S. cerevisiae revealed numerous 
notable similarities and differences. For example, both methods 
found that gene essentiality substantially affects connectivity wherein 
essential genes/orthologous genes are more densely connected than 
nonessential genes/orthologous genes (Fig. 2). This finding suggests 
that genes with more essential cellular functions are more likely 
central hubs in the coevolution network (1, 2, 5, 32, 60). Similarities 
were also observed among genes with broadly conserved functions. 
For example, the majority of genes/orthologs connected to CDC6, a 
gene required for the fundamental and widely conserved process of 
DNA replication (39), in the orthologous gene coevolution network 
and the genetic interaction–based network were the same (1, 31).

Similarities between genetic interaction and gene coevolution 
networks were also observed when examining the impact of gene 
deletion(s) on fitness in diverse environments. For example, inte-
grating fitness data with data from the orthologous gene coevolution 
network revealed significant interactions between community and 
environment, environment and the number of coevolving genes, as 
well as fixed effects of community and environment (Fig. 4). These 
results suggest that phenotype can be affected by genes coevolving 
with other genes and the environment—a finding that, to our 
knowledge, represents the first integration of orthologous gene 
coevolution information and cellular fitness across diverse environ-
ments. A similar observation was made in the genetic interaction 
network wherein phenotype was affected by genes interacting with 
other genes and the environment, a phenomenon known as differ-
ential genetic interaction (32). Together with insights discussed in 
the previous paragraph, these striking similarities suggest that, de-
spite using different data types to infer genetic interaction networks 
and gene coevolutionary networks (i.e., functional and evolutionary 
data, respectively), functional associations between genes, even those 
affected by environmental contexts, can be encoded in their coevo-
lutionary histories; thus, functional insights can be inferred from 
gene coevolution networks. We find this observation particularly 
exciting because compared to genetic interaction analysis, which 
requires generating and phenotyping single and digenic knockouts 
for all pairwise gene combinations, orthologous gene coevolution 
analysis is potentially far less challenging technically and requires 
fewer resources. Notwithstanding these benefits, orthologous gene 
coevolution analysis does require the availability of well-annotated 
genome sequences of multiple species and knowledge of orthology 
relationships of their genes. Nonetheless, in the absence of physical 
interaction and genetic interaction data, coevolution networks can 
provide similar insights into functional relationships among genes.

In contrast, differences between the two networks are likely driven 
by the fact that not all parts of the genetic interaction–based network 
of any single organism are conserved across an entire lineage (8–18). 
The more distinct the evolutionary histories of genes or pathways of 
species used to construct an orthologous gene coevolution network, 
the more divergent the topologies of the genetic interaction–based 
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network of a species in that lineage will be from the coevolution 
network of the entire lineage. For example, CKI1, a choline kinase, 
gene connectivity substantially differed in the two networks. This 
may in part be driven by an ancient whole-genome duplication 
event and retention of the duplicate gene copy in some, but not all, 
budding yeast species (42, 43). Together, these results indicate that 
similarities and differences between networks inferred using orthol-
ogous gene coevolution from a lineage and networks inferred based 
on genetic interactions from a single organism are driven by diver-
gence in individual organisms’ genetic networks; thus, these methods 
offer distinct insights into functional associations among genes.

Another difference between the two networks is that the budding 
yeast coevolution network offers novel evolutionary insights, which 
cannot be inferred from genetic interaction networks in a single 
species. For example, hubs of genes do not only represent functionally 
related genes but also genes whose function has been maintained 
across long evolutionary time scales. Furthermore, interpolation of 
the gene coevolution network and one- and three-dimensional 
chromosome structure offers novel insights into the interplay of 
chromosome structure and coevolution. Despite there being few 
known examples of interchromosomal gene associations (56), we 
find extensive signatures of interchromosomal and long-range 
intrachromosomal coevolution (Fig. 5 and figs. S21 and S22), which 
suggests that gene function, not location, drives orthologous gene 
coevolution over macroevolutionary time scales. These results un-
cover a previously underappreciated degree of genome-wide coevo-
lution that has been maintained over millions of years of budding 
yeast evolution, suggesting that the evolution and function of 
eukaryotic genomes is best viewed as extensively linked ensembles 
of genes.

The analyses presented here enabled us to synthesize information 
from orthologous gene coevolution, genetic interactions, and cellular 
fitness among digenic knockout strains in a diverse panel of envi-
ronments. This data-rich case study of orthologous gene coevolution 
can be thought of as a proof-of-principle report that sets the stage 
for numerous exciting research opportunities and questions—such 
as comparisons of orthologous gene coevolutionary networks be-
tween lineages that exhibit key evolutionary differences. For example, 
in budding yeasts, these comparisons of orthologous gene coevolu-
tionary networks could be performed for lineages that differ in their 
evolutionary rates (44), levels of horizontally acquired genes (48, 61, 62), 
genetic code (63, 64), whole-genome duplication (43), or ecological 
niche (65). This approach may also be particularly powerful in 
lineages where genetically tractable models have yet to be estab-
lished or in emerging model organisms that are ripe for functional 
examination.

In summary, we highlight complementary and novel insights that 
can be inferred using coevolutionary networks compared to other 
methods to infer genetic networks. Insights and methods used here 
will facilitate the generation, interpretation, and utility of these net-
works for other lineages in the tree of life.

METHODS
Inferring gene coevolution
To infer gene coevolution across ~400 million years of budding yeast 
evolution, we first obtained 2408 orthologous sets of genes (hereafter 
referred to OGs) from 332 species (48). These 2408 orthologous 
genes are from diverse GO bioprocesses but are underrepresented 

for gene functions known to be present in multiple copies, such as 
transposons and hexose transporters (table S5). Thus, we conclude 
that the 2408 orthologous sets of genes span a broad range of cellular 
and molecular functions. Examination of over- and underrepresenta-
tion of genes from the various chromosomes of S. cerevisiae and 
C. albicans revealed that no chromosome was over- or underrepre-
sented in the 2408 orthologs (table S6), suggesting each chromosome 
is equally represented in our dataset.

Next, we calculated covariation of relative evolutionary rates of 
all 2,898,028 pairs from the 2408 orthologous sets of genes. To do so, 
we developed the CovER (Covarying Evolutionary Rates) pipeline 
for high-throughput genome-scale analyses of orthologous gene 
covariation based on the mirror tree principle (Fig. 1). The mirror 
tree principle is conceptually similar to phylogenetic profiling—
wherein correlations in gene presence/absence patterns across a 
phylogeny are used to identify functionally related genes (66)—but 
instead uses correlations in orthologous genes’ relative evolutionary 
rates (20, 67, 68).

To implement the CovER pipeline, single gene trees constrained 
to the species topology were first inferred using IQ-TREE, v1.6.11 
(69) (Fig. 1). Thereafter, all pairwise combinations of gene trees were 
examined for significant signatures of coevolution (Fig. 1B). Differ-
ences in taxon occupancy between gene trees are accounted for by 
pruning both phylogenies to the set of maximally shared taxa. To 
mitigate the influence of factors that can lead to high false-positive 
rates, such as time since speciation and mutation rate, and increase 
the statistical power of calculating gene coevolution, branch lengths 
were transformed into relative rates by correcting the gene tree 
branch length by the corresponding branch length in the species 
phylogeny (19, 20, 70). Single data point outliers (defined as having 
corrected branch lengths greater than five) are known to cause false-
positive correlations and were removed (20). Branch lengths were 
then Z-transformed, and a Pearson correlation coefficient was calcu-
lated for each pair of orthologs. The CovER algorithm has been inte-
grated into PhyKIT, a UNIX toolkit for phylogenomic analysis (22).

Network construction
Complex interactions between orthologous gene pairs were further 
examined using a network wherein nodes represent orthologs and 
edges connect orthologs that are coevolving. Following our previous 
work (22), we considered orthologous gene pairs with a covariation 
coefficient of 0.825 or greater to have a significant signature of 
coevolution. This threshold resulted in 60,305 of 2,898,026 (2.08%) 
significant signatures of coevolution (fig. S1). To explore the impact 
of our choice of a covariation coefficient threshold, we examined 
two measures that describe how densely the network is connected: 
edge density (the proportion of present edges out of all possible edges) 
and transitivity (ratio of triangles that are connected to triples), as 
well as two measures that describe how diffuse the network is: mean 
distance (average path length among pairs of nodes) and diameter 
(the longest geodesic distance). Across a wide range of thresholds of 
significant orthologous gene coevolution (Pearson correlation coef-
ficient range of 0.600 to 0.900 with a step of 0.005), we found that the 
choice of threshold had little impact on network structure (fig. S2).

Network substructure is commonly referred to as orthologous 
gene community structure and describes a set of orthologs that are 
more densely connected with each other but more sparsely con-
nected with other sets (or orthologous gene communities) of ortho-
logs. To identify the orthologous gene community structure of 
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our global orthologous gene coevolution network, a hierarchical 
agglomeration algorithm that conducts greedy optimization of 
modularity was implemented (71).

To determine whether the orthologous gene coevolutionary net-
work and genetic interaction network were more similar than ex-
pected by random chance, we conducted a permutation test. To do 
so, we generated a null expectation of similarity between the orthol-
ogous gene coevolutionary network and 10,000 random networks. 
Random networks were generated by shuffling the edges of the ge-
netic interaction network. In this way, the edge density (the ratio of 
the number of edges and the number of possible edges) is the same 
between the randomly generated network and the genetic interac-
tion network. This is a more conservative than a completely random 
(null) network that also alters edge density. Next, we took the abso-
lute values of the differences between the descriptive statistics of the 
orthologous coevolutionary network and the 10,000 random net-
works to generate the null distribution. The absolute difference 
between the descriptive statistics of the orthologous coevolutionary 
network and the observed genetic interaction network were then 
examined along the null distribution to determine a P value.

Enrichment analysis
To determine functional category enrichment among sets of orthologs, 
GO enrichment analysis was conducted. To do so, a background set 
of GO annotations were curated from the 2408 orthologous genes 
(48). Specifically, for an orthologous group of genes, GO associations 
were mapped from the representative gene from S. cerevisiae (72). If 
an S. cerevisiae gene was not present, the annotation from the 
representative gene from C. albicans was chosen (73). When neither 
species was represented in an orthologous group, we considered the 
function of the orthologous group to be uncertain and did not as-
sign a GO term. Significance in functional enrichment was assessed 
using a Fisher’s exact test with Benjamini-Hochberg multitest cor-
rection ( = 0.05) using goatools, v1.0.11 (74). GO annotations were 
obtained from the GO Consortium (http://geneontology.org/; re-
lease date: 19 October 2020). Higher-order summaries of GO term 
lists were constructed using GO slim annotations and REVIGO (75). 
Over- and underrepresentation of essential genes across orthologous 
gene communities and genes on the various chromosomes were ex-
amined using the same approach in R, v4.0.2 (https://cran.r-project.org/).

Pathway analysis
To examine coevolution between genes in pathways, we first deter-
mined the genes belonging to pathways of interest. To do so, we 
leveraged pathway information in the Kyoto Encyclopedia of Genes 
and Genomes database (76) and the Saccharomyces Genome Data-
base (www.yeastgenome.org/). To determine whether there are more 
signatures of coevolution within a pathway than expected by random 
chance, we conducted permutation tests. The null distribution was 
generated by randomly shuffling coevolution coefficients across all 
~3 million orthologous gene pairs 10,000 times and then determin-
ing the number of coevolving pairs among the pairs of the pathway 
of interest for each iteration.

Integrating gene loss information
To estimate the impact of network perturbation, fitness of single-gene 
deletions and genetic interaction scores inferred from digenic dele-
tions were combined with information from the orthologous gene 
coevolution network (1, 2, 31, 32). For example, the relationship 

between gene-/ortholog-wise community, connectivity, and fitness 
in diverse environments was evaluated. To determine whether genes/
orthologs were equally likely to be lost across orthologous gene 
communities, we examined patterns of gene losses in Hanseniaspora 
spp., which have undergone extensive gene loss compared with other 
budding yeasts (44).

Projecting the network onto genome structure 
and organization
To gain insight into the relationship between genome structure and 
the orthologous gene coevolution network, we projected the network 
onto the complete chromosome genome assemblies of S. cerevisiae 
and C. albicans (72, 73, 77, 78). Before mapping the network onto 
the genome assemblies, we investigated genome-wide synteny using 
orthology information from the Candida Gene Order Browser (50). 
Thereafter, the network was projected onto each genome assembly 
using Circos, v0.69 (79). Examination of the distance between co-
evolving orthologous genes and chromosomal contacts was conducted 
using a three-dimensional model of the S. cerevisiae genome (55).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abn0105

View/request a protocol for this paper from Bio-protocol.
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