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A B S T R A C T

The emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease (COVID-19) has
posed a serious threat to global health. As no specific therapeutics are yet available to control disease evolution,
more in-depth understanding of the pathogenic mechanisms induced by SARS-CoV-2 will help to characterize
new targets for the management of COVID-19. The present study identified a specific set of biological pathways
altered in primary human lung epithelium upon SARS-CoV-2 infection, and a comparison with SARS-CoV from
the 2003 pandemic was studied. The transcriptomic profiles were also exploited as possible novel therapeutic
targets, and anti-signature perturbation analysis predicted potential drugs to control disease progression. Among
them, Mitogen-activated protein kinase kinase (MEK), serine-threonine kinase (AKT), mammalian target of ra-
pamycin (mTOR) and I kappa B Kinase (IKK) inhibitors emerged as candidate drugs. Finally, sex-specific dif-
ferences that may underlie the higher COVID-19 mortality in men are proposed.

1. Introduction

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a
member of the Coronaviridae family, isolated at the end of 2019. It was
on December the 31st, 2019, that the Chinese authorities for the first
time reported to the World Health Organization (WHO) a series of
pneumonia cases of unknown aetiology in Wuhan City, Hubei province,
China [1], and it was on January the 9th, 2020, that the Chinese Centre
for Disease Prevention and Control declared that a novel coronavirus
(initially named 2019-nCoV) was the causative agent [1]. The infection
spreads rapidly in the population, mainly through respiratory droplets
and close contact, with an incubation period ranging from 2 to 14 days
[2]. The rapid propagation of the disease led the WHO to declare the
state of “public health emergency of international concern” on January

the 30th, 2020, and on March the 11th, 2020, the WHO declared the
Pandemic [3]. As of 09/04/2020, more than 1.4 million infected and
almost 90 thousand of deaths have been reported (https://www.who.
int/emergencies/diseases/novel-coronavirus-2019/situation-reports/).
However, the number of the infected are probably under-estimated,
since the majority of cases are asymptomatic or show mild symptoms,
such as dry cough, sore throat, and fever [4]. Even if there are many
similarities with other coronaviruses, its high diffusion over the popu-
lation in combination with the possibility to develop various fatal
complications, including organ failure, septic shock, pulmonary edema,
severe pneumonia, and Acute Respiratory Distress Syndrome (ARDS),
make this virus a major problem for the public health [5]. It has been
shown that males are more susceptible to COVID-19, reporting a pre-
valence between 55% and 68% [6] and increased clinical severity and
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mortality [7]. However, the reason behind this epidemiological differ-
ence is still not clear. In the last two months, due to the state of
emergency, the scientific community has prioritized the epidemiolo-
gical studies on COVID-19 infection with consequential emerging of
limited information regarding the molecular basis of the disease. In this
paper, we have studied the transcriptomic profile of primary human
lung epithelium infected by SARS-CoV-2, focusing on the most relevant
pathways modulated during the infection and correlated their role to
sex genes, providing a molecular hypothesis of the gender-differences
observed from the clinical data. Then, we have performed a computa-
tional analysis to find new drugs candidates, based on their ability to
modulate oppositely the transcriptional profiles.

2. Materials and methods

2.1. Dataset selection

The NCBI Gene Expression Omnibus (GEO) database (http://www.
ncbi.nlm.nih.gov/geo/) was manually searched using the MeSH term
(Medical Subject Headings) “SARS-CoV-2”, “COVID-19” and “SARS”.
The datasets were selected if they met the following criteria: (a) whole-
genome transcriptomic profiling; (b) species of origin “Homo sapiens”;
and (c) were not generated on cancer cell lines. Finally, two datasets
were included: GSE147507 [8] and GSE47963 [9]. Briefly, the
GSE147507 dataset included 3 independent biological replicates of
primary human lung epithelium that were mock treated or infected
with SARS-CoV-2 (USA-WA1/2020) at a MOI (Multiplicity Of Infection)
of 2, for 24 h. For the generation of this dataset, mRNA enriched li-
braries were prepared from total RNA using tTruSeq Stranded mRNA
LP. cDNA libraries were sequenced using an Illumina NextSeq 500
platform. Raw sequencing reads were then aligned to the human
genome (hg19) using the RNA-Seq Alignment App on Basespace (Illu-
mina, CA, USA). The GSE47963 dataset included data from human
airway epithelium cultures infected with SARS-CoV at a MOI of 2 or
mock controls, for increasing time points (24-96 h). Transcriptomic
profiling was performed using the Agilent 4 × 44 K human HG arrays.
The submitter-supplied pre-preprocessed and normalized gene expres-
sion matrix was used for the analysis.

2.2. Network analysis

The GeneMania database [10] was used to construct the network of
the Differentially Expressed Genes (DEGs). Interaction data were de-
fined as physical interaction, co-expression, predicted, co-localization,
pathway, genetic interactions, and shared protein domains. The Cy-
toscape software [11] was used for the visualization of the network,
with color-coded nodes based on the fold-change, and to perform net-
work analysis, using the NetworkAnalyzer utility. Topological analysis
was performed considering the network as undirected (i.e., containing
only undirected edges). Centrality of each node in the network was
ranked based on degree centrality, that corresponds to the number of
edges linked to each given node. Closeness centrality and Betweeness
centrality were also computed. Closeness centrality is a measure of how
fast information spreads from a given node to other nodes in the net-
work, while Betweenness centrality quantifies the number of times a
node acts as a bridge along the shortest path between two other nodes.
MCODE (Molecular Complex Detection) was used for module analysis
of the network in Cytoscape [12]. The criteria of MCODE were as fol-
lows: degree cutoff = 2, node cutoff = 0.2, maximum depth = 100,
and k-score = 2.

2.3. Enrichment analysis

Functional enrichment analysis was conducted using the web-based
utility, Metascape [13]. Metascape analysis is based on publicly avail-
able databases, e.g. Gene Ontology, KEGG, and MSigDB. Metascape

automatically aggregates enriched terms into non-redundant groups, by
calculating the pairwise similarity between any two terms [13]. Me-
tascape uses the hypergeometric test and Benjamini–Hochberg p value
correction algorithm to identify statistically significant enriched on-
tology terms.

For the identification of transcription factors and the comparative
analysis of SARS-CoV2 induced-phenotype with the normal lung tissue,
the Enrichr (http://amp.pharm.mssm.edu/Enrichr) web-based utility
was used [14]. To this aim, the Encode_CHEA_Consensus_TFs and the
GTEx libraries were considered. EnrichR computes the p value using the
Fisher's exact test. The adjusted p-value is calculated using the Benja-
mini-Hochberg method for correction for multiple hypotheses testing.
The z-score is computed using a modification to the Fisher exact test
and assesses the deviation from the expected rank. Finally, the Com-
bined Score is calculated by p value and the z-score (Combined
Score = ln(p value) × z-score).

2.4. Drug prediction analysis

The L1000FDW web-based utility [15] was used to identify poten-
tial drugs for the treatment of COVID-19. L1000FWD computes the si-
milarity between a gene expression profile and the Library of Integrated
Network-based Cellular Signatures (LINCS)-L1000 data, in order to
prioritize drugs potentially able to reverse the input transcriptional
feature [15]. The L1000 transcriptomic database belongs to the Library
of Integrated Network-based Cellular Signatures (LINCS) project, a NIH
Common Fund program, and includes the transcriptional profiles of
~50 human cell lines upon exposure to approximately 20,000 com-
pounds, in a range of concentrations and time [15].

2.5. Statistical analysis

For the differential expression analysis of the GSE147507 dataset,
the VOOM (mean-variance modelling at the observational level) algo-
rithm was used. The VOOM method estimates the mean-variance re-
lationship of the log-counts, generates a precision weight for each ob-
servation and enters these into the limma empirical Bayes analysis [16].
The analysis of the GSE47963 dataset was performed using the LIMMA
function. The cloud-based application WebMeV (Multiple Experiment
Viewer) was used for the statistical analyses [17]. Genes with an ad-
justed p value< .05 and a ǀfold changeǀ > 2 were identified as DEGs
(Differentially Expressed Genes) and selected for further analysis.

Linear regression and Spearman's correlation were performed to
compare the fold change of genes modulated upon SARS-CoV-2 infec-
tion and following SARS-CoV infection, at different time points.

Differences in the Combined Score for the enrichment of the lung
tissue profile between women and men, stratified by age, was per-
formed using the Mann-Whitney U test, followed by
Benjamini–Hochberg multiple test correction procedure.

The GraphPad Prism (v. 8) software (San Diego, CA, USA) was used
for the statistical analysis and the generation of the graphs. Unless
otherwise stated, a p value< .05 was considered for statistical sig-
nificance.

3. Results

3.1. Network and enrichment analysis of SARS-CoV-2 infection

In order to identify a specific gene signature characterizing SARS-
CoV-2 infection, we first interrogated the GSE147507 dataset. We
identified 129 DEGs, 94 upregulated and 35 downregulated (Fig. 1A).
MCODE analysis identified 7 main clusters of associated genes (Fig. 1B;
suppl. File 1). Gene term enrichment analysis for the upregulated genes
identified several altered pathways upon SARS-CoV-2 infection, with
the top three being: “cytokine-mediated signaling pathway”, “IL-17
signaling pathway”, and “defense response to other organism”
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(Fig. 1C). No significant enriched term was instead found for the
downregulated DEGs. Among the statistically significant enriched
terms, intracellular pathways related to NFkB, toll-like receptors and
MAPK were also found (Fig. 1C). Accordingly, analysis of the tran-
scription factors putatively involved in the regulation of the upregu-
lated DEGs identified RELA (adj. p value = .047), for its role to tran-
scribe 9 out of the 94 DEGs, i.e. BST2, IL32, TNIP1, ICAM2, TNFAIP3,
MMP9, BIRC3, RND1 and ICAM1 (Fig. 1D). Interestingly, a number of
DEGs were found to be modulated by sexual hormones, as ESR1 (Es-
trogen Receptor 1) was found to be involved in the regulation of 4 DEGs
(C3 and EDN1, among the upregulated genes; and PDK4 and VTCN1,
among the downregulated DEGs) and AR (Androgen Receptor) was
found to regulate 6 DEGs (CCL20 and CXCL1, among the upregulated
genes, and THBD, HEY2, BBOX1 and MYLK, among the downregulated
genes) (Fig. 1D and Suppl. File 1). Network analysis identified as the
top hub genes, MX1, IL8 and IFITM1 (Table 1).

3.2. Comparison between SARS-COV-2 and SARS-CoV infection

We next wanted to compare the gene signature induced by SARS-
COV-2 and SARS-CoV infection. To this aim, we have interrogated the
publicly available GSE47963 microarray dataset. We have first per-
formed a correlation analysis on the modulation of the genes perturbed

upon SARS-CoV- infection and the corresponding genes in GSE47963.
To account for the differences in the experimental setting, as well as the
different technologies involved, we considered all the genes with a raw
p value< .05, irrespective of the fold-change. A total of 2871 genes
were found to be modulated by SARS-CoV-2 and in common with the
GSE47963 dataset. As shown in Fig. 3A-B, a moderate but significant
correlation is found between SARS-COV-2 and SARS-CoV infection at
24 h, which increases when considering SARS-CoV infection at later
time points. When a more stringent selection of the DEGs is applied
(i.e., adj. p value< .05 and ǀfold-changeǀ > 2), among the upregulated
genes, only 1 gene is in common between SARS-CoV-2 and SARS-CoV
infections at 24 h (CXCL2), 6 genes are in common between SARS-CoV-
2 infection and SARS-CoV infection at 48 h; 25 and 22 genes are in
common between SARS-CoV-2 and SARS-CoV at 72 h and 96 h, re-
spectively (Fig. 2C, suppl file 2). Accordingly, similar pathways are
enriched between SARS-CoV-2 and SARS-CoV infection for the 72 h and
96 h time points (Fig. 2D). Among the downregulated genes, only 1 and
4 genes are in common between SARs-CoV-2-19 and SARS-CoV at 72 h
and 96 h, respectively (Fig. 2E, suppl file 2).

3.3. Drug prediction analysis

Anti-signature perturbation analysis was performed using the DEGs

Fig. 1. A) Gene network constructed using the Differentially Expressed Genes (DEGs) identified in the GSE147507 dataset. Nodes are color-coded based on the fold-
change; B) MCODE clustering for the identification of neighborhoods where genes are densely connected; C) Gene Term enrichment using the upregulated DEGs
identified in the GSE147507 dataset; D) Maps showing the potential transcription factors regulating the expression of the upregulated genes in the GSE147507
dataset.
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identified for SARS-CoV-2 infection (Fig. 3A). In Table 2, we have en-
listed the potential drugs identified by the L1000FWD analysis. Among
them, the top three drugs are: BRDeK23875128, a Rho kinase inhibitor;
SA-792728, a sphingosine kinase inhibitor; and sirolimus, an mTOR
inhibitor. Fig. 3B shows the relative percentage of the drugs based on
their mode of action, which identifies the inhibitors of MEK, as the most
represented drug category (Fig. 3B).

3.4. Similarity between the SARS-CoV-2 -related phenotype and the healthy
lung tissue males and females

Analysis of the sex-specific enrichment of the COVID-19-related
gene signature in the lung tissue of healthy subjects was performed
using the GTex library, implemented in the EnrichR utility. Overall, 47
and 87 samples of lung tissue were tested from females and males,
respectively. As shown in Fig. 4, in the fourth decade of life, the female
lung tissues has a more similar phenotype to that induced upon SARS-
CoV-2 infection than identical tissues from men (p = .019 by Mann-
Whitney U test). No significant differences were observed between male

and female tissues in other decades of age, although a similar trend is
observed at the age of 50–59 years (Fig. 4).

4. Discussion

Even though recent evidence indicate that most cases of COVID-19
have an asymptomatic or subclinical course of infection, a significant
proportion of patients develop flu-like symptoms of variable severities
that may require hospitalization. In addition, a group of high risk in-
dividuals has been identified that include older people, individuals af-
fected by other comorbidities, such as diabetes and hypertension, and
those with a history of smoking, who are susceptible to develop a severe
course of SARS-CoV-2 infection [18–20]. The percentage of lethality
due to COVID-19 infection varies greatly between different countries,
for example from ~11% in Italy to ~1% in neighboring Germany. The
reasons for this are not entirely clear although some countries express
lethality as case fatality rates, others as infection fatality rates; the latter
depending on the SARS-CoV-2 testing capacity of individual countries.
Different lethalities also depend on patient-related factors, including
comorbidities especially in older individuals. Development and severity
of COVID-19 also appears to depend on individual propensities for
massive release of proinflammatory and immunoactivating cytokines
including interleukin (IL)-1β, IL-2, IL-6, IL-7, IL-8, tumor necrosis
factor-α (TNF-α) and chemokines (CXC-chemokine ligand 10 (CXCL10)
and CC-chemokine ligand 2 (CCL2) at the level of the infected lung
tissues and accumulating immune cells [2,21] developing a reaction
known as Cytokines Release Syndrome (CRS). This is likely to promote
self-sustaining inflammatory processes that may contribute to the de-
velopment of respiratory failure and systemic, possibly lethal, mani-
festations similar to those seen in patients with e.g. meningococcal
sepsis: hyperthermia, catastrophic multiple organ failure, shock and
disseminated intravascular coagulation [22]. It is of interest that CRS
characterizes secondary haemophagocytic lymphohistiocytosis (sHLH),
that is an under-recognized, hyperinflammatory syndrome character-
ized by a fulminant and fatal hypercytokinaemia with multiorgan
failure. In adults, sHLH is most commonly triggered by viral infections
and occurs in 3·7–4·3% of sepsis cases [21].

Predictors of fatality from a recent retrospective, multicenter study
of 150 confirmed COVID-19 cases in Wuhan, China, included elevated
ferritin (mean 1297·6 ng/ml in non-survivors vs 614·0 ng/ml in survi-
vors; p < 0·001) and IL-6 (p < 0·0001), suggesting that mortality
might be due to virally driven hyperinflammation [2,21].

A “cytokine storm” underlying lethal outcomes of COVID-19 is also
supported by anecdotical though repeated observations that the anti-IL-
6 receptor antibody, tocilizumab, appears to beneficially influence the
course of COVID-19. This has led to the initiation of Phase II and Phase
III studies of tocilizumab in these patients [23]. Other anti-in-
flammatory therapeutics, including glucocorticoids, JAK inhibitors and
choloroquine/hydroxychloroquine, may also improve patients' prog-
nosis [24]. It should be noted, however, that the ability of glucocorti-
coids to block production of the potentially most dangerous cytokines,
TNF-α and IL-1β, occurs largely at the genomic level therefore re-
quiring several hours for effective manifestation. This hampers the ef-
fectiveness of glucocorticoid therapies in catastrophic situations where
high amounts of these cytokines have already been released to the
circulation. In contrast, specific anti-cytokine antibodies or receptor
antagonists clinical approved on other indications would be expected to
have an immediate neutralizing effect that might reduce mortality.

The identification of the precise pathogenic mechanisms by which
SARS-CoV-2 induces organ damage are of immediate urgency.
Unfortunately, emerging data seem to indicate that other organs such as
heart, kidney and the central nervous system may also be attacked,
albeit in a more silent fashion, by SARS-CoV-2 [25,26]. Indeed, patients
may show proteinuria, elevated baseline serum creatinine levels and
hematuria [25], as well as neurological symptoms, that include head-
ache, epilepsy, disturbed consciousness, anosmia and dysgeusia [26].

Table 1
Network analysis with the top 50 genes ranked based on the degree of dis-
tribution.

Gene Degree Betweenness Centrality Closeness Centrality

MX1 156 0.005556 0.4875
IL8 149 0.023353 0.573529
IFITM1 132 0.027499 0.52
IFI44L 129 0.001489 0.45
CXCL1 129 0.027552 0.573529
CXCL2 119 0.02143 0.567961
S100A8 118 0.026276 0.551887
IRF7 117 0.00215 0.466135
IFI27 116 0.022974 0.522321
OAS1 116 0.004078 0.464286
IL1B 116 0.026433 0.557143
IL6 115 0.007298 0.531818
TNFAIP3 112 0.029273 0.559809
ICAM1 112 0.035752 0.579208
XAF1 110 0.004523 0.483471
MX2 110 0.007159 0.473684
CXCL3 109 0.027718 0.554502
IRF9 106 0.011689 0.46063
OAS2 104 0.010199 0.481481
BST2 98 0.003963 0.483471
IFI6 91 0.008014 0.485477
S100A9 89 0.031773 0.541667
BIRC3 89 0.028051 0.549296
CCL20 80 0.027608 0.544186
CXCL6 79 0.016894 0.534247
OAS3 69 0.008639 0.46063
S100A12 62 0.020722 0.524664
PI3 61 0.035629 0.546729
KRT6B 60 0.036157 0.524664
TNFAIP2 59 0.007819 0.513158
TNF 59 0.030233 0.52
BCL2A1 58 0.007818 0.510917
CXCL5 57 0.011576 0.517699
S100A7 56 0.025749 0.513158
MMP9 56 0.026879 0.534247
SAA1 52 0.016882 0.524664
HBEGF 49 0.020569 0.4875
EPSTI1 48 0.000839 0.433333
CSF3 47 0.00449 0.50431
MAFF 42 0.019563 0.515419
CFB 42 0.010391 0.5
PDZK1IP1 40 0.018457 0.524664
IL32 40 0.005467 0.483471
LIF 40 0.006298 0.491597
C3 39 0.013371 0.50431
IL1A 35 0.008345 0.502146
INHBA 34 0.022095 0.506494
ICAM2 34 0.004401 0.483471
STAT5A 33 0.010319 0.497872
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Some COVID-19 patients also develop a thrombogenic diathesis that is
characterized by marked elevation of D-dimer and other procoagulant
parameters diverging from those observed during SARS infections [27].
Thus, anticoagulant treatment is associated with decreased mortality in
severe COVID-19 patients with coagulopathy [28]. Understanding
whether or not a cytokine storm also contributes to damage to these
organs or if other pathogenetic mechanisms operate is clearly needed to
develop organ-tailored therapeutic approaches.

While waiting for the eventual advent of a vaccine, other drugs used
for different indications may be repurposed to treat COVID-19 patients,
as well. These include a few antiviral options under clinical trial, e.g.
remdesivir [29], and lopinavir/ritonavir given alone or in combination
with interferon- and hydroxychloroquine alone or with azithromycin
(ClinicalTrials.gov identifier: NCT04332107; NCT04339816;
NCT04336332; NCT04332094; NCT04335552; NCT04322123).

The use of whole-genome expression data has been extensively used
by ourselves and others for the identification of novel pathogenic

pathways and therapeutic targets in several human pathologies in-
cluding, autoimmune diseases [30–32] and cancer [33,34]. Network
analysis allows to extensive testing of different biological features [35]
and to extrapolate new information that otherwise would be lost. Here,
we have used computational methods and network analysis to better
characterize the cellular response to SARS-CoV-2 infection, suggesting
the molecular basis for the observed gender differences and to predict
possible new therapeutic targets. We exploited a publicly available
RNA-seq dataset, GSE147507, generated from primary lung cells upon
infection with SARS-CoV-2 thus extending analyses of the original data
published by Blanco-Melo et al. [8]. We focused on comparisons of the
transcriptional signature induced by SARS-CoV-2 and SARS-CoV from
the 2003 pandemic and on the molecular mechanisms likely involved in
gender differences in COVID-19 susceptibility. Using an in silico-phar-
macology approach, we have also presently predicted potential drugs
for COVID-19 treatment. Our work differs substantially from the study
by Guzzi and colleagues [36], as their study explores the SARS-CoV-2/

Fig. 2. A) Scatter plot showing the correlation of gene expression between SARS-CoV-2 infection and SARS-CoV infection at different time points; B) Analysis of
correlation of genes modulated upon SARS-CoV-2 and SARS-CoV infection, at different time points; C) Circos plot showing the overlapping between the genes
significantly upregulated following SARS-CoV-2 infection and genes upregulated upon SARS-CoV infection at different time points. Purple lines link the same genes
that are shared by the input lists. Blue lines link the different genes that fall in the same ontology term; D) Hierarchical clustering of the top most enriched terms by
genes significantly upregulated upon infection. The heatmap is colored by the p values, and grey cells indicate the lack of significant enrichment; E) Circos plot
showing overlapping between the genes significantly downregulated following SARS-CoV-2 infection and genes downregulated upon SAR-CoV infection at different
time points. Purple lines link the same genes that are shared by the input lists. Blue lines link the different genes that fall in the same ontology term; F) Hierarchical
clustering of the top most enriched terms by the downregulated genes upon infection. The heatmap is colored by the p values, and grey cells indicate the lack of
significant enrichment.

P. Fagone, et al. Autoimmunity Reviews 19 (2020) 102571

5

http://ClinicalTrials.gov
http://clinicaltrials.gov/show/NCT04332107
http://clinicaltrials.gov/show/NCT04339816
http://clinicaltrials.gov/show/NCT04336332
http://clinicaltrials.gov/show/NCT04332094
http://clinicaltrials.gov/show/NCT04335552
http://clinicaltrials.gov/show/NCT04322123


host receptor recognition and makes use of predicted functional inter-
actions based on convergent SARS-CoV and Middle East respiratory
syndrome coronavirus (MERS-CoV) transcriptional profiles generated
on established lung cancer cells [36].

Our study revealed that many differentially expressed genes are
involved in inflammation and response to external organisms, such as
S100A7A, CSF3, ICAM2, CCL20, CXCL3, IL6, CSF2, CXCL5, IL8, ICAM1,
OAS1. These genes are known to promote the recruitment and activa-
tion of granulocytes, monocytes and macrophages proliferation and
infiltration, that, as mentioned before, is one of the key features of
COVID-19. As expected, the most important transcription factor reg-
ulating the response to COVID-19 is RELA, which is involved in NF-kB
formation and controls both proliferative and inflammatory cellular
responses [37]. Interestingly, other representative transcription factors
in our network are implicated in mechanisms of DNA damage and re-
pairing and chromatin remodeling events, such as RAD21, CTCF, SPI1
and GATA2 [38–41].

To better understand the similarities between SARS infection, we
also compared the transcriptomic profile induced by SARS-CoV-2 in-
fection and SARS infections at different time points. The results show
that the transcriptomic signature induced by SARS-CoV-2 infection
correlates better with the latest stages of SARS infection and, accord-
ingly, many biological pathways related to cytokine response and host
defense mechanisms are shared between COVID-19 24 h and SARS 72 h
and 96 h. Hence, we propose that the accelerated cellular response to
SARS-CoV-2, in comparison to SARS, may explain the higher ability of
SARS-CoV-2 to spread [2].

Next, by using an anti-signature analysis approach [42,43], we have
predicted possible novel drug options for the treatment of SARS-CoV-2
infection. Even if the mechanism of action of most of the predicted
target molecules is not yet known, other targeting drugs are anti-in-
flammatory (glucocorticoids) and anti-proliferative drugs, such as Mi-
togen-activated protein kinase kinase (MEK), serine-threonine kinase
(AKT), mammalian target of rapamycin (mTOR) and I kappa B Kinase
(IKK) inhibitors. In agreement with data by Zhou et al. [44], our ana-
lysis shows that the mTOR inhibitor, sirolimus, may be a candidate drug
for use in COVID-19 patients. Moreover, in an in vitro study, extra-
cellular signal-regulated kinase (ERK)/mitogen-activated protein kinase
(MAPK) and phosphoinositol 3-kinase (PI3K)/AKT/mTOR signaling

responses were previously found to be modulated in response to the
infection with another coronavirus, MERS-CoV [45]. Studies have also
shown that the mammalian target of rapamycin complex 1 (mTORC1)
is a key factor in regulating the replication of viruses [45,46], and in
patients with H1N1 pneumonia, early treatment with corticosteroids
and an rapamycin has been associated with improvement in hypoxia,
multiple organ dysfunction, virus clearance, and shortened time in
ventilators [47]. Low-dose inhibitors of mTORC1 are also beneficial in
the elderly by increasing immune function and reducing infections and
complications [48]. We have also generated in vivo proof-of-concept
that sirolimus is effective in prevention of HIV replication in a huma-
nized SCID model [49] and have proposed the use of rapamycin in HIV
infection and its complications [50,51]. Subsequently, our in vivo data
have been replicated in the same model by Heredia et al., using an
ATPase inhibitor of mTOR [52], and it has been further extended by
Latinoci et al., in a different mouse model of HIV infection, where they
showed the synergistic antiretroviral action of rapamycin with standard
antiretroviral therapy [53].

Recent data have also demonstrated a possible antiretroviral action
of rapamycin in HIV-infected kidney transplant recipients. It appears
therefore that an antiviral mode of action of rapamycin coupled with its
immunomodulatory potential that may dampen excessive production of
proinflammatory cytokines would warrant clinical studies with this
drug in selected patients with COVID-19 [54].

Despite this, we have to acknowledge the limitations of the present
study. First, the differentially expressed genes, that we have prioritized
in our study, have been obtained from the analysis of an in vitro model
of SARS-CoV-2 infection, hence the data may be incomplete, and
functional associations occurring in patients may be missing. Studies
integrating lung-specific gene expression profiles with the SARS-CoV-2
infection-related gene signature may help to better identify potential
repurposable drugs. Also, although some of our findings have been
confirmed by various literature data, most of the predicted re-
purposable drugs need to be validated and, for several of them, pre-
clinical studies are warranted to evaluate in vivo efficiency and side
effects before clinical trials. Indeed, our approach cannot identify do-
se–response and dose–toxicity effects for the candidate drugs.
Furthermore, drug combinations targeting multiple pathogenic path-
ways can be envisioned, as it has been the case for standard

Fig. 3. A) L1000FDW visualization of drug-induced signature. Input genes are represented by the significantly upregulated and downregulated genes obtained from
the analysis of the GSE147507 dataset, Blue and red circles identify drugs with similar and anti-similar signatures. Dots are color-coded based on the similarity score;
B) Percentage of drug categories identified by the L1000FDW analysis.
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antiretroviral therapy with rapamycin in a mouse model of HIV [53] .
Despite these limitations, our study can minimize the translational gap
between preclinical data and clinical application, which appears an
issue of paramount relevance in view of the unprecedent social and
epidemiological emergence provoked from the rapid escalation of the
SARS-CoV-2 outbreak.

To decipher the reasons for the gender differences in COVID-19
susceptibility [2], we have compared the transcriptomic profile of lung
tissue from healthy women and men with the transcriptomic induced by
COVID-19. At ages between 40 and 60 years, the transcriptomic feature
of the female lung tissue was more similar to those induced by COVID-
19 than in male tissue. A lower threshold of acute response to SARS-
CoV-2 infection in men may at least partly explain the reduced in-
cidence of COVID-19 in women. This hypothesis will need to be
weighed and validated on the ground of appropriate epidemiological
data that will allow to ascertain whether the apparent protection from
COVID-19 infection in famales is specifically observed in the above-
indicated range of age. If so, next question will be whether this” phy-
siological” observation may be translated into therapeutic opportunity

Table 2
List of potential drugs for SARS-CoV-2 infection as identified by the L1000FWD analysis.

Drug Similarity score P value Q value Z score Combined score Mode of action

BRD-K23875128 −0.2717 3.53E-23 3.08E-20 1.82 −40.95 Rho kinase inhibitor
SA-792728 −0.2391 3.53E-18 1.11E-15 1.75 −30.61 sphingosine kinase inhibitor
sirolimus −0.2391 2.10E-18 7.19E-16 1.77 −31.33 MTOR inhibitor
BRD-K44366801 −0.2283 4.53E-17 1.17E-14 1.75 −28.62 Unknown
TPCA-1 −0.2174 5.15E-16 1.00E-13 1.8 −27.53 IKK inhibitor
selumetinib −0.2174 6.28E-16 1.16E-13 1.77 −26.83 MEK inhibitor
ezetimibe −0.2174 8.57E-16 1.53E-13 1.78 −26.83 Niemann-Pick C1-like 1 protein antagonist|Cholesterol inhibitor
desoximetasone −0.2174 6.53E-16 1.20E-13 1.74 −26.47 Glucocorticoid receptor agonist
BRD-K60070073 −0.2174 1.44E-16 3.26E-14 1.69 −26.84 Unknown
TPCA-1 −0.2174 2.70E-16 5.72E-14 1.8 −27.95 IKK inhibitor
BRD-K03601405 −0.2065 9.63E-16 1.69E-13 1.79 −26.9 Unknown
BRD-K88622704 −0.2065 4.67E-15 7.02E-13 1.75 −25.08 Unknown
CT-200783 −0.2065 1.73E-15 2.88E-13 1.82 −26.92 Unknown
CAM-9-027-3 −0.2065 4.81E-16 9.49E-14 1.89 −29.01 Unknown
BRD-K25373946 −0.1957 1.70E-14 2.28E-12 1.82 −25.07 Unknown
piperlongumine −0.1957 4.30E-14 5.35E-12 1.79 −23.92 Unknown
BRD-K89687904 −0.1957 3.43E-14 4.38E-12 1.79 −24.07 PKC inhibitor
NSC-632839 −0.1957 9.94E-14 1.11E-11 1.65 −21.47 Ubiquitin specific protease inhibitor
BRD-K03371390 −0.1957 7.20E-14 8.33E-12 1.77 −23.28 Unknown
BRD-K06765193 −0.1957 3.18E-14 4.10E-12 1.73 −23.39 Unknown
BRD-K32101742 −0.1957 7.46E-14 8.56E-12 1.67 −21.95 Unknown
WZ-4002 −0.1848 1.25E-12 1.06E-10 1.64 −19.48 EGFR inhibitor
U-0126 −0.1848 1.10E-12 9.46E-11 1.69 −20.16 MEK inhibitor
piperlongumine −0.1848 2.30E-13 2.36E-11 1.84 −23.29 Unknown
radicicol −0.1848 3.85E-13 3.78E-11 1.75 −21.75 HSP inhibitor
ABT-737 −0.1848 3.40E-12 2.68E-10 1.73 −19.88 BCL inhibitor
arachidonyl-trifluoro-methane −0.1848 2.67E-13 2.68E-11 1.86 −23.43 Cytosolic phospholipase inhibitor
fluticasone −0.1848 6.79E-13 6.35E-11 1.81 −22.07 Glucocorticoid receptor agonist
BRD-K23875128 −0.1848 1.53E-12 1.28E-10 1.78 −21.02 Rho kinase inhibitor
tyrphostin-AG-1296 −0.1848 4.14E-13 4.02E-11 1.87 −23.13 FLT3 inhibitor
NVP-AUY922 −0.1739 9.17E-12 6.31E-10 1.62 −17.92 HSP inhibitor
TPCA-1 −0.1739 1.67E-11 1.05E-09 1.8 −19.34 IKK inhibitor
TPCA-1 −0.1739 7.41E-13 6.81E-11 1.91 −23.18 IKK inhibitor
ST-4070169 −0.1739 8.32E-12 5.84E-10 1.73 −19.21 Unknown
valdecoxib −0.1739 1.67E-11 1.05E-09 1.78 −19.18 Cyclooxygenase inhibitor
EMF-bca1–16 −0.1739 9.17E-12 6.31E-10 1.68 −18.55 Unknown
BIBU-1361 −0.1739 7.06E-12 5.10E-10 1.82 −20.29 EGFR inhibitor
MD-II-038 −0.1739 1.11E-11 7.37E-10 1.74 −19.11 Unknown
methoxsalen −0.1739 1.48E-11 9.49E-10 1.79 −19.39 DNA synthesis inhibitor
MK-2206 −0.1739 8.88E-12 6.18E-10 1.8 −19.91 AKT inhibitor
TPCA-1 −0.1739 1.11E-11 7.37E-10 1.83 −20.02 IKK inhibitor
phenethyl-isothiocyanate −0.1739 8.06E-12 5.69E-10 1.82 −20.21 Antineoplastic
BRD-A09984573 −0.1739 8.32E-12 5.84E-10 1.71 −18.98 Unknown
BRD-K12244279 −0.1739 9.79E-12 6.66E-10 1.69 −18.64 MEK inhibitor
PD-198306 −0.163 8.94E-11 4.65E-09 1.7 −17.04 MEK inhibitor
BRD-K18726304 −0.163 6.99E-11 3.76E-09 1.79 −18.18 Unknown
calmidazolium −0.163 4.07E-11 2.36E-09 1.73 −17.97 Calmodulin antagonist
NSC-23766 −0.163 7.44E-11 3.99E-09 1.79 −18.15 Rac GTPase inhibitor
BRD-K66037923 −0.163 1.58E-10 7.51E-09 1.75 −17.1 Unknown
EMF-sumo1–11 −0.163 2.87E-10 1.28E-08 1.65 −15.78 Unknown
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by dismantling those potential factors that might have contributed to
the induction of this” COVID-19-resistant lung phenotype” in women of
these ages. Clearly, female-specific hormonal factors for example oc-
curring just before or during the menopausal period can be implicated.

In this regard, it is notable that among the SARS-CoV-2-induced
genes encoding the neutrophil chemotactic factor CXCL1 and the pre-
dominantly dendritic cell chemotactic factor CCL20 are regulated by
androgen receptor AR (androgen receptor), whereas C3 and EDN1 are
regulated by ESR1 (estrogen receptor 1). AR plays a role in innate and
adaptive immune regulations [55,56], especially in the recruitment of
neutrophils and macrophages, that are been proven to be strongly as-
sociated with COVID-19 in lung tissue [24]. Both CXCL1 and CCL20
emerged in the top 50 ranking nodes in our network ordered by degree,
and both are modulated even during SARS infections [57,58]. This
suggests their involvement in different coronavirus infections and, in
addition, a different role in female and male responses to these infec-
tions.

It is noteworthy that ER is involved as regulators of immune re-
sponses by enhancing interferon production and anti-viral response
[59], and that selective estrogen receptor modulators have been pro-
posed as potential drugs to treat coronavirus infection [44]. Tor-
emifene, for example, potentially affects several key host proteins as-
sociated with coronavirus: RPL19, HNRNPA1, NPM1, EIF3I, EIF3F, and
EIF3E. Taken together, these convergent observations point to me-
chanisms that may explain the lower female incidence and/or lethality
of COVID-19 offering candidate therapeutic options in patients with
SARS-CoV-2 infection.

5. Conclusions

COVID-19 is a severe infection currently spreading as a pandemic.
Here, we have investigated the transcriptomic profile of primary human
lung cells upon infection with SARS-CoV-2, characterizing the most
activated intracellular pathways and in order to provide a molecular
explanation for the gender differences in the clinical manifestations.
Finally, we have identified new potential drugs for COVID-19 therapies.
We found that targeting the mTOR pathway could be a promising
therapeutic avenue to fight COVID-19, improving symptomatology and
reducing mortality rates.
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