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Abstract
Photosynthesis is the basis of primary productivity on the planet. Crop breeding
has sustained steady improvements in yield to keep pace with population
growth increases. Yet these advances have not resulted from improving the
photosynthetic process   but rather of altering the way carbon isper se
partitioned within the plant. Mounting evidence suggests that the rate at which
crop yields can be boosted by traditional plant breeding approaches is
wavering, and they may reach a “yield ceiling” in the foreseeable future. Further
increases in yield will likely depend on the targeted manipulation of plant
metabolism. Improving photosynthesis poses one such route, with simulations
indicating it could have a significant transformative influence on enhancing crop
productivity. Here, we summarize recent advances of alternative approaches
for the manipulation and enhancement of photosynthesis and their possible
application for crop improvement.
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Introduction
Photosynthesis consists of a series of biochemical reactions  
whereby plants use sunlight to reduce atmospheric CO

2
 into car-

bohydrates, releasing O
2
 as a byproduct. The first photosynthetic 

organisms appeared at least 2.5 billion years ago (Archean Eon) 
and were single-celled ocean-dwelling prokaryotes. Thus, pho-
tosynthesis was originally an aquatic-based process occurring 
in a strongly reducing atmosphere1. The transition to a terrestrial  
environment and to an oxidizing atmosphere subsequently  
shaped the photosynthetic pathway into its current form2,3. Plant 
cells contain chloroplasts, which are organelles that originated 
from endosymbiosis of a cyanobacteria-like organism. Chloro-
plasts harbor the photosynthetic machinery and confer upon plants 
their characteristic green color. Sunlight within the visible spec-
trum is captured by chlorophyll and other accessory pigments and  
used to energize electrons derived from a water molecule in the 
thylakoid membrane of the chloroplasts. High-energy electrons 
are then transferred to carrier molecules, which can donate them 
for the reduction of gaseous CO

2
 to triose-phosphates in the chlo-

roplast stroma. The enzyme responsible for the first step in CO
2
 

fixation is ribulose-1,5-bisphosphate carboxylase/oxygenase 
(Rubisco). The Calvin-Benson cycle allows for the regeneration of 
the ribulose-1,5-bisphosphate molecule (RuBP)4, whereas the fixed  
CO

2
 molecule moves on to anabolic pathways for sucrose and 

starch biosynthesis.

The high energetic value of sucrose and starch drove the domes-
tication of plants to create crops, spawning the agricultural  
revolution and the transition from a hunter-gatherer to the current 

agricultural-industrial society5. It is thus clear that photosynthesis 
is a cornerstone of human civilization and, as such, the object of 
intense basic and applied research in the face of mounting pres-
sure to feed an increasing population6,7. Decades of research have 
provided a detailed picture of the intricacies of the photosynthetic 
process and suggested potential avenues for its improvement8. 
A broad range of opportunities have been identified to improve  
photosynthetic efficiency; for recent detailed reviews, see 7,9–11. 
We now know, for instance, that owing to the complex interaction  
between physiological and environmental parameters photosyn-
thetic rate does not directly extrapolate to whole plant growth  
rate12. Breeders have managed to increase yields via processes that 
alter carbon partitioning rather than improving photosynthesis13.  
Breeding better crops through improved photosynthesis is a  
long-sought goal but so far has remained unrealized because of 
the multiplicity of challenges involved12. Here, we briefly review 
the current state of the ongoing efforts in molecular engineering  
to improve photosynthesis, plant growth, and yield (Figure 1).

We start by summarizing recent efforts to optimize Rubisco  
performance. Rubisco is an ancient enzyme that evolved in a  
CO

2
-rich atmosphere devoid of O

2
. It is a slow (turnover rate of  

~3–5 s-1 compared to around >100 s-1 for most enzymes) and  
error-prone enzyme (fixing O

2
 instead of CO

2
 in up to one-third 

of reactions)14. The unavoidable side reaction with O
2
, oxygena-

tion of RuBP, leads to the photorespiratory cycle, which “recycles”  
unproductive reaction products15. However, this recycling comes 
at the cost of previously fixed carbon and a further loss of  
chemical energy16. To make up for such shortcomings, plants  

Figure 1. A number of routes are being studied to improve photosynthesis in crop plants. These include (1) improving the efficiency of 
the primary CO2-fixing enzyme Rubisco, (2) optimizing elements of the Calvin-Benson cycle, (3) introducing the carboxysome-based carbon 
concentrating mechanism (CCM) from cyanobacteria, (4) introducing an algal pyrenoid CCM, and (5) improving the photochemical response 
of photosynthesis to rapid changes in light conditions. Further studies are also related to attempts to convert C3 crops such as rice to the 
more efficient C4-type photosynthesis.
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generally contain large amounts of Rubisco (up to 50% of leaf  
total protein), which entails a large N-investment17. Despite the  
significant natural variation in Rubisco catalysis and structure, it 
maintains a conserved, complex, catalytic mechanism that intrinsi-
cally imparts a trade-off between an enzyme specificity for CO

2
  

over O
2
 and its catalytic speed. Next, we synthesize recent 

work aimed at optimizing other enzymes of the Calvin-Benson  
cycle. Theoretical and experimental data suggest that under  
non-Rubisco-limiting conditions other enzymes in the cycle begin 
to limit photosynthetic rate18. We summarize recent progress on 
the manipulation of carbon concentrating mechanisms (CCMs),  
which are evolutionary solutions to counter Rubisco inefficiency. 
Well-known examples in plants include C

4
 photosynthesis and 

crassulacean acid metabolism (CAM)19,20. C
4
 and CAM photo-

synthesis are highly efficient processes21; however, plants using 
these processes are relatively restricted in number within the plant 
kingdom22,23. Exciting recent developments in efforts to intro-
duce CCMs from non-plants are also discussed and summarized  
in Figure 1. We additionally emphasize the challenges and  
opportunities to further understand the complex interplay between 
photosynthesis and related metabolic processes that has limited 
success in the manipulation and improvement of photosynthesis.

Engineering Rubisco
The observed inefficiencies of Rubisco such as a slow CO

2
-fixa-

tion rate and poor specificity for CO
2
 over O

2
 have made it a key 

engineering target to improve photosynthesis in crop plants (for 
reviews, see 8,17,24). Whilst there is a good understanding of 
the reaction mechanism25,26, engineering efforts have yet to pro-
duce the holy grail of a “super Rubisco”, as efforts to modify one 
aspect of its catalytic biochemistry typically come at a cost to  
another8,17. A notable discovery was that a single amino acid  
mutation acted as a catalytic “switch” to convert Rubisco from  
different Flaveria species from a “C

3
 style” enzyme to a “C

4
 

style” and vice versa27. This clearly demonstrates the potential for 
manipulating the performance of Rubisco with targeted changes  
inferred from comparisons of natural diversity in enzyme  
sequence and catalysis. This has spurred a recent influx of data 
on the natural diversity of Rubisco in a bid to identify amino acid 
changes that can improve its catalysis in plants28–36. Insights into 
how Rubisco and other photosynthetic traits have co-evolved are 
critical to guiding kinetic characteristics for an improved crop 
Rubisco under differing environmental scenarios (e.g. 37,38). 
Rubisco screens extending outside of the plant realm have also 
proved highly informative. For example, the Rubisco from  
diatom and haptophyte microalgae has undergone differing  
selection pressures that see its kinetic properties diverge from 
the canonical trade-off between catalytic rate and affinity for  
CO

2
39,40, providing possible new areas of exploration for improving 

Rubisco efficiency41.

A key challenge in engineering Rubisco in plants is that it is a hefty 
550 kDa hexadecameric complex comprising eight large subunits 
(ca. 52 kDa each) and eight small subunits (ca. 13 to 15 kDa). It 
is produced through an exquisite synthesis and assembly process 
that is dependent on a number of nucleus- and chloroplast-encoded 
components42. Typically, research has focused on the chloroplast-
encoded large subunits, which contain the catalytic sites and 
can be routinely manipulated in tobacco for functional genomic  

studies24,43. More recent reports have highlighted the impact on 
catalysis of manipulating the small subunits44–47. The nuclear-
encoded small subunit gene family (RbcS) is therefore a growing 
target for engineering, as nuclear transformation is already estab-
lished in many species compared to the relatively few species  
amenable to chloroplast transformation42,48. An alternative approach 
to altering the extant Rubisco in a crop species is to replace it 
with better-performing natural variants, although this is subject to  
similar technical limitations. Introduction of foreign Rubisco is 
typically hampered by the complicated assembly requirements of 
the enzyme in the chloroplast (see 49), though important advances 
have been made in co-engineering introduced Rubisco alongside 
assembly chaperones50. Besides efforts to introduce a cyano-
bacterial CCM into higher plants (see below), the Rubisco from  
Synechococcus elongatus has now been successfully introduced 
into tobacco51 and can support growth at elevated CO

2
52. Whilst  

supporting much higher catalytic rates than higher plant Rubisco, 
the Rubisco from cyanobacteria has lower CO

2
 affinity and  

specificity for CO
2
 over O

2
. Thus, for cyanobacteria Rubisco to  

support plant growth at ambient CO
2
 levels, co-engineering of a 

functional CCM is required53.

Calvin-Benson cycle optimization
It has long been recognized that other enzymes in the  
Calvin-Benson cycle represent viable targets to accelerate carbon 
fixation in plants (reviewed in 9,18,54–56). Recently, efforts have 
built on prior success in overexpressing SBPase (sedoheptulose-
1,7-bisphosphatase) to improve growth in tobacco and rice55,57,58. 
These efforts have now expanded to include other Calvin-Benson 
enzymes in a combinatorial manner to avoid creating new  
bottlenecks in different parts of the cycle59,60. Increases in plant  
biomass have also been obtained by jointly manipulating genes 
in the Calvin-Benson cycle and the photorespiratory pathway60.  
An alternative approach has been to avert the CO

2
 and energy costs 

of photorespiration by introducing synthetic “photorespiratory 
bypass” pathways in the chloroplast that direct CO

2
 release in the 

proximity of Rubisco61–64. The potential benefits and caveats of the 
differing bypass strategies are reviewed in 65,66.

In addition to the overexpression of native enzymes (Figure 1), 
a number of studies have also shown effects through the expres-
sion of foreign membrane transporter proteins in both model59,67–69 
and crop species such as soybean and rice70,71. These genes 
derived from cyanobacteria include the frequently studied but  
functionally-unknown membrane transporter protein IctB72.  
Introducing IctB has not always improved crop growth: for  
example, in one case changes were noted in photosynthetic 
rate without an increase in biomass71. In contrast, IctB expres-
sion improved growth in crop species such as wheat in the  
glasshouse73 and soybean in the field70. Importantly, extended field 
testing under future environmental scenarios through free-air CO

2
 

enrichment (FACE) experiments enables validation of in silico  
and glasshouse-based predictions. For example, in soybean one 
such manipulation has been shown to counteract some of the  
negative impact of future climate on yield74. These inconsistent  
findings underscore the frequent discontinuity in crop yield  
predictions between glasshouse and field trials and the importance 
of FACE field studies for screening the suitability of natural and 
engineered crops for future climates.
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Optimizing response to changes in light-use 
efficiency
Major losses of energy conversion during plant biomass  
formation occur during light absorption and the photochemi-
cal reactions75. Dramatic increases in tobacco growth rate in the  
field were obtained recently by improving the rate of relaxation 
of photoprotection (non-photochemical quenching, NPQ). NPQ 
is the process by which plants dissipate excess light as heat when 
they receive more than they are capable of using76. Modeling sug-
gested this as an area where there is room for improvement77,78.  
Combinations of genes involved in photoprotection were trans-
formed into tobacco and those that accelerated the relaxation 
of NPQ increased the rate of biomass production by as much as  
20% in glasshouse trials and around 15% in duplicated field  
trials76. The modifications involved introducing multiple genes 
expressing key components of the xanthophyll cycle and the PsbS 
subunit of photosystem-II. This combination allowed the plants  
to more quickly adapt to fluctuating light, turning off photopro-
tection and using light for photosynthesis rather than continuing  
to dissipate it as heat after a decrease in light level. The conser-
vation of NPQ across plants suggests this approach may also  
serve to improve the growth of other crops. However, the mech-
anisms allowing plant cells to cope with the excess energy, such 
as NPQ, tend to decrease the overall efficiency of energy storage, 
since surface cells exposed to the light dissipate much of the 
available energy whereas cells in the lower layers remain 
light limited79. Thus, the temptation to increase the capacity to  
process the influx of energy by the photosynthetic apparatus is a 
challenge that must be pursued to ameliorate energy losses dur-
ing plant photosynthesis (reviewed in 79). Increasing light energy  
capture might also be feasible by incorporating the bacteriochlo-
rophylls found in many anoxygenic photosynthetic organisms into 
one of the photosystems in plants with the aim of extending the 
light absorption spectrum by plants to the far red region out to 
~1,100 nm79.

Changes in the antenna size of the photosystems have also been 
suggested as a route that could enhance solar conversion efficiency 
while reducing NPQ. This assumption is based on the fact that 
the antennae trap more light than can be used for photochemistry. 
Based on this, the theory is that in plants with a reduced number 
of light-harvesting pigments (e.g. chlorophyll and carotenoids) per 
photosystem, solar energy conversion efficiency could be signifi-
cantly enhanced11,80–82. Changes in the leaf optical properties would 
alleviate over-absorption and mitigate efficiency losses associated 
with wasteful dissipation of sunlight by the upper canopy. Fur-
thermore, they could bring about enhancements of photosynthetic 
productivity due to greater transmittance of light to lower layers, 
thus improving canopy light distribution and canopy photosynthe-
sis. This truncated light-harvesting antenna (TLA) concept80,81 has 
been successfully applied in microalgae83–85 and cyanobacteria86. 
Recent work has shown that TLA enhances both photosynthesis 
and plant canopy biomass accumulation under high-density cultiva-
tion conditions in both tobacco82 and rice87. This approach presents 
intrinsic practical limitations and challenges81, but ongoing research  
suggests that expanded efforts could ultimately optimize this excit-
ing biotechnological process.

Synthetic biology for CO2 fixation in non-plants
Synthetic photosynthesis has made exciting progress recently 
via the incorporation of non-native Calvin-Benson-like carbon  
assimilation in Escherichia coli. The highlight was the production 
of a bacterium that is capable of making sugars and other life- 
preserving metabolites from atmospheric CO

2
88,89. Although at  

this stage both energy and reducing power are required through 
the oxidation of an external organic acid in an isolated metabolic  
module and thus no net carbon gain is achieved, this discovery 
clearly proves the potential of synthetic biology to optimize 
pathways of biotechnological significance and may even lead to 
new avenues for optimizing CO

2
 fixation in plants89. Along such 

lines is the successful development of a synthetic carbon fixation  
pathway that functions efficiently in vitro but faces significant  
challenges for it to be compatible in a biological context90.

Introducing the C4 cycle in C3 crops
C

4
 photosynthesis has evolved independently of C

3
 photosynthe-

sis in several angiosperm families during the last 25 million years 
in at least 66 independent events91. Despite the frequency of these 
events, the evolution of C

4
 photosynthesis is not distributed evenly 

in the plant kingdom92. This multiple parallel evolution appears 
to have occurred as an adaptive response to low atmospheric 
CO

2
 concentrations and high temperature22. The transition from  

C
3
 to C

4
 plants requires the evolution of both morphological and 

physiological traits. Among these, the differentiation of photosyn-
thetically active vascular bundle sheath cells, modification in the 
biochemistry of several enzymes, and increased intercellular and 
intracellular transport of metabolites are of pivotal significance. 
This makes the evolution of such a complex trait system in one 
single step highly unlikely93. The first evidence of evolutionary  
intermediate C

3
–C

4
 forms was reported in the 1970s94, and this 

spurred intensive efforts to understand the mechanistic bases of  
the transition from C

3
 to C

4
.

A better understanding of the initial events that occurred dur-
ing the C

3
 evolution to C

3
–C

4
 intermediates and then to C

4
 plants 

can contribute to increasing photosynthetic efficiency in C
3
 

plants. Whilst C
4
 photosynthesis requires considerable additional 

ATP, the plants benefit from enhanced biomass production and  
improvements in nitrogen and water use efficiencies. Using  
complementary approaches, including genome and transcriptome 
analyses, the international C

4
 rice consortium is working toward 

introducing the C
4
 mechanism into rice95. This research initiative 

has already produced exciting results, including the identification 
of metabolite transporters and transcription factors95,96. Although 
the genes identified are potentially useful for engineering C

4
 rice, 

clearly further investigation is required. Additional examination 
of temporal, spatial, and environmental dynamics spanning C

3
  

through C
3
–C

4
 intermediacy and true C

4
 species will no doubt be 

highly informative for identifying useful genes and regulatory  
components (e.g. 97,98).

Recent efforts have expanded the number of genera studied  
beyond Flaveria species to include Cleome and Moricandia, two 
close relatives of the model C

3
 Arabidopsis, which both con-

tain intermediate as well as true C
4
 species92,99. This provides a  
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powerful opportunity to accelerate advances through comparison 
with the large amount of data already available for Arabidopsis 
in order to find the minimal genetic basis of C

4
 photosynthesis.  

This strategy has the growing potential to promote substantial 
increments in the yield of C

3
 crops usually cultivated in dry and 

hot areas95. Importantly, at least some of the technical difficulties  
associated with separately isolating pure bundle sheath and  
mesophyll cells from C

3
 plants have been overcome in  

Arabidopsis100. A very large-scale analysis of the bundle sheath 
translatome in Arabidopsis demonstrated its high similarity with 
the translatome in the root pericycle cells100. This study not only 
provides the foundation to enhance our understanding of the  
evolutionary function of bundle sheath cells in C

3
 plants but also 

indicates that a highly similar and conserved regulatory net-
work might sustain bundle sheath and pericycle cell functionality  
in Arabidopsis thaliana. Although several open questions remain, 
it seems clear that these types of studies are likely to be key to  
understanding the genetic triggers needed to re-organize the  
anatomy, gene expression, and biochemistry within C

4
 plants,  

possibly paving the way toward producing C
4
 rice.

Whilst perhaps less advanced than the efforts to understand and 
engineer C

4
 photosynthesis, a number of groups are working to  

better understand the key elements required for CAM  
photosynthesis101,102. CAM plants are typically highly effi-
cient in their use of water, and engineering of CAM into food or  
bioenergy crops may prove most beneficial by improving crop  
water use efficiency and expanding the land area capable of  
supporting agriculture103. CAM species may also serve as a  
suitable source of high-temperature-adapted enzymes of potential 
application in photosynthetic engineering104.

Introducing non-plant CCMs into C3 plants
One approach to improving plant photosynthesis is using engi-
neering to implement CCMs from other photosynthetic organisms 
such as cyanobacteria or algae. While components of the CCM 
in cyanobacteria and algae can differ, both systems function to  
create a high-CO

2
 environment around Rubisco to overcome its 

catalytic shortcomings. Among the core components of CCMs are 
inorganic carbon transporters and the co-localization of carbonic 
anhydrase (catalyzing the interconversion of HCO

3
– and CO

2
) 

around Rubisco to maintain high CO
2
 levels. In some instances, 

this association is contained within a protein micro-compartment 
to limit CO

2
 escape and ensure high HCO

3
– levels can be sustained 

in the cytosol.

Cyanobacterial CCM
Amongst the CCMs currently being engineered into plants, the 
cyanobacterial carboxysome-based system has made the most 
striking progress in recent years. With a stronger—but still  
incomplete—understanding of the construction of this bacterial 
microcompartment (for in-depth reviews, see 72,105–109), sig-
nificant progress has been made in assembling partial carboxy-
somes in higher plants using tobacco as a model system110. Lin  
and colleagues111 demonstrated the assembly of various complex 
structures by expressing as few as three β-carboxysome proteins. 
As mentioned above, parallel work on introducing a cyanobac-
terial Rubisco into tobacco was also successful51,52, with plants  
expressing cyanobacteria Rubisco and either the chaperone  

RbcX or the carboxysomal CcmM35 protein viable at elevated 
CO

2
. These are key advances to build upon through the addition 

of further components to assemble a fully functional carboxy-
some shell53, and combining these to localize Rubisco inside the  
carboxysome will be a critical next step toward functionality. The 
internal components such as CcmM35 are thought to be important 
for the true icosahedral structure to be formed111,112. The ability 
to assemble bacterial microcompartments also has implications 
beyond crop productivity113.

An important consideration for introducing a full cyanobacte-
rial CCM into higher plants is creating a compatible HCO

3
–/CO

2
  

environment by concentrating CO
2
 inside the carboxysome 

shell, removing stromal carbonic anhydrase, and introducing 
HCO

3
– pumps to increase the bicarbonate concentration in the 

stroma53,112,114. Progress has been made in attempting to intro-
duce transporters into tobacco67,115, and issues related to correct 
localization are being targeted through a better understanding of 
transit peptides (e.g. 115,116). Recent progress in other bacterial  
microcompartments beyond the cyanobacterial carboxysome are 
also providing key insights for targeting protein localization and 
the assembly of these complex structures (reviewed in 110).

Pyrenoids
Although engineering an algal pyrenoid-based CCM into higher 
plants is less developed than cyanobacteria CCMs112, there have 
recently been a number of key discoveries related to pyrenoid  
structure and function in the model Chlamydomonas reinhardtii 
(see 105,109,115,116). Discoveries such as the highly disordered 
linker protein essential pyrenoid component 1 (EPYC1) that 
pulls Rubisco together108 and that a loop structure on the Rubisco  
small subunit is necessary for pyrenoid formation117 supply tar-
gets for engineering in plants. For example, mutagenesis of this 
loop region has shown its modification has no effects on Rubisco  
catalysis in Arabidopsis45. Recent advances in the availability of 
a mutant Chlamydomonas library for functional studies118 will 
likely accelerate advances in understanding, and engineering,  
algal pyrenoids. Increasing data on the CCM of other non-green 
micro-algae may also help better understand pyrenoid function and 
structural diversity40,119.

Future perspectives and directions
Conventional crop breeding has thus far been sufficient to avert 
the dire Malthusian predictions of food shortage for a growing  
human population. Most projections suggest that novel yield-
enhancing solutions are needed to avoid global crop produc-
tion reaching a plateau. Genetic manipulation has been used to  
successfully engineer simple traits, such as insect and weed  
resistance. More refined molecular tinkering holds the promise  
of spectacular gains if fundamental pathways are targeted.  
Photosynthesis is one such pathway.

Synthetic biology is making large steps in engineering alter-
nate CCM mechanisms into higher plants, in addition to 
efforts in manipulating elements of the Calvin-Benson cycle 
already present. Although mesophyll conductance to CO

2
 had 

been a relatively overlooked limiting factor until recently, it 
is now considered a promising potential target for increasing  
photosynthesis120. It seems clear that expanded research efforts are  
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currently required to build upon many of the technologies 
described above by, for example, enhancing our understanding of  
CAM metabolism and introducing alternative non-plant CCMs 
into C

3
 plants. Overcoming these challenges will require sus-

tained investments in long-term research programs, with some of 
these research areas currently being advanced through large-scale,  
privately funded projects.

Ultimately, in the case of C
4
 rice, necessity for development in a  

C
4
 species as well as sufficiency for engineering C

4
 rice will 

need to be considered when determining gene function. Existing  
candidate regulators are currently being functionally validated, 
and this is ongoing: knockdown experiments in maize and setaria 
are examining necessity, while overexpression in rice is being  
used to scrutinize sufficiency. Future advances in engineering C

4
 

rice will need to involve integrated analysis of these experiments 
together with further comprehension of the related gene regula-
tory networks. We posit that the successful integration of these  
different characteristics, as discussed above, coupled with the  
identification of the key regulators of C

4
 morphoanatomical pat-

tern and the development of a strategy of how the C
3
 plant could 

be genetically altered allowing both the introduction and the  
establishment of the C

4
 pathway should be a significant break-

through in the field of synthetic biology. Recent advances and  
ongoing incremental findings suggest that improved crop pho-
tosynthesis could assist towards feeding a growing population in  
the near future.
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