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Abstract

Plasmids are the key element in horizontal gene transfer in the microbial community. Recently, a large number of experimental 
and computational methods have been developed to obtain the plasmidomes of microbial communities. Distinguishing transmis-
sible plasmid sequences, which are derived from conjugative or at least mobilizable plasmids, from non-transmissible plasmid 
sequences in the plasmidome is essential for understanding the diversity of plasmids and how they regulate the microbial com-
munity. Unfortunately, due to the highly fragmented characteristics of DNA sequences in the plasmidome, effective identification 
methods are lacking. In this work, we used information entropy from information theory to assess the randomness of synonymous 
codon usage over 4424 plasmid genomes. The results showed that for all amino acids, the choice of a synonymous codon in con-
jugative and mobilizable plasmids is more random than that in non-transmissible plasmids, indicating that transmissible plasmids 
have different sequence signatures from non-transmissible plasmids. Inspired by this phenomenon, we further developed a novel 
algorithm named PlasTrans. PlasTrans takes the triplet code sequences and base sequences of plasmid DNA fragments as input 
and uses the convolutional neural network of the deep learning technique to further extract the more complex signatures of the 
plasmid sequences and identify the conjugative and mobilizable DNA fragments. Tests showed that PlasTrans could achieve an 
AUC of as high as 84–91%, even though the fragments only contained hundreds of base pairs. To the best of our knowledge, this is 
the first quantitative analysis of the difference in sequence signatures between transmissible and non-transmissible plasmids, and 
we developed the first tool to perform transferability annotation for DNA fragments in the plasmidome. We expect that PlasTrans 
will be a useful tool for researchers who analyse the properties of novel plasmids in the microbial community and horizontal gene 
transfer, especially the spread of resistance genes and virulence factors associated with plasmids. PlasTrans is freely available via 
https://​github.​com/​zhenchengfang/​PlasTrans

DATA SUMMARY
PlasTrans is freely available via https://​github.​com/​
zhenchengfang/​PlasTrans. The accession numbers of the 
genomes associated with this study are listed in Table S1 
(available in the online version of this article).

INTRODUCTION
Because of the important role of plasmids in the regulation 
of microbial communities, a large number of experimental 
and computational methods that obtain the plasmidome of 
microbial communities have been developed to help biologists 
better understand the functions of plasmids. The commonly 

used experimental methods include exonuclease treatment, 
phi29 DNA polymerase amplification [1], transposon-aided 
capture (TRACA) [2] and exogenous plasmid isolation [3, 4]. 
Additionally, many computational tools for sequence clas-
sification and assembly that identify plasmid sequences from 
chromosome-derived sequences in metagenomic data have 
been developed, such as cBar [5], PlasFlow [6], PPR-Meta [7], 
PlasClass [8], Recycler [9] and metaplasmidSPAdes [10]. These 
approaches have facilitated the discovery of a large number of 
novel plasmid sequences. However, we lack a series of effec-
tive plasmidome-specific bioinformatic tools, such as tools for 
plasmid classification and host prediction, for downstream 
analysis to better understand plasmidome function.
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It has been estimated that approximately half of the isolated 
plasmid genomes are transmissible, while the rest are non-
transmissible [11]. To better understand the diversity of 
plasmids, plasmid–host interactions and plasmid-assisted 
horizontal gene transfer in microbial communities, it is impor-
tant to distinguish the transmissible plasmids (i.e. conjugative 
plasmids and non-conjugative but mobilizable plasmids) and 
non-transmissible plasmids in the plasmidome. It is gener-
ally thought that transmissible plasmids contain the relaxase 
gene and origin of transfer (oriT), while non-transmissible 
plasmids do not contain these elements [11, 12]. Therefore, 
with complete plasmid genomes, the classification of these 
two types of plasmids can be easily performed by searching 
for the relaxase gene or oriT. Recently, a pipeline named 
the MOB-suite, which can identify transmissible plasmids 
primarily by searching for the relaxase gene and oriT, has 
been developed [13].

Unfortunately, such marker gene-based methods work well 
for complete genomes but do not work for plasmidomes 
derived from microbial communities. Because of specific 
sequence features, such as the existence of a large number of 
repeated regions and shared genes, the sequence assembly of 
plasmid-derived reads in metagenomic data is much more 
difficult than that for chromosome-derived reads [9]. For 
example, a study on the bovine rumen plasmidome showed 
that only 36.8 % of reads could be assembled into 5771 contigs 
with a mean length of 469 bp [1]. This indicates that most 
highly fragmented DNA do not contain the marker genes for 
identification. Additionally, the plasmidome may contain a 
large number of novel plasmids. Our previous work estimated 
that more than half of the reads from the plasmidome could 
not be mapped to the RefSeq plasmid database [14]. There-
fore, it is essential to develop a novel method that bypasses 
the search for related marker genes and sequence alignment 
against known databases to identify transmissible plasmid 
sequences in the plasmidome.

In this work, we first proposed the hypothesis that transmis-
sible and non-transmissible plasmids contain different sequence 
signatures, and this hypothesis was then verified for 4424 
plasmid genomes using information theory. This shows that it 
is possible to identify transmissible plasmid DNA fragments 
by using sequence signature information instead of searching 
related marker genes. Inspired by this phenomenon, we devel-
oped PlasTrans, which uses a convolutional neural network deep 
learning technique to efficiently extract the more complex and 
abstractive sequence signatures from plasmid DNA fragments 
and identify the DNA derived from transmissible plasmids. 
Tests show that PlasTrans can achieve high accuracy for plasmid 
DNA fragments of different lengths.

METHODS
Randomness of synonymous codon usage
Because of genome amelioration, plasmids adjust their 
sequence signatures based on their host [15]. Codon usage 
is one of the most important features of sequence signatures. 
Since transmissible plasmids may exist in a wide range of hosts, 

their codon usage may exhibit mixed patterns in different 
hosts. Therefore, we surmise that the usage of synonymous 
codons of each amino acid on transmissible plasmids is 
more random than on non-transmissible plasmids. Based on 
information theory, we constructed a statistic named infor-
mation entropy of amino acid (IEA) for 19 amino acids (i.e. 
18 amino acids with more than 1 codon and 1 hypothetical 
stop amino acid corresponding to 3 stop codons) to assess the 
randomness of the synonymous codon usage on each plasmid 
genome. The IEA for a certain amino acid is defined as:

	﻿‍
IEAi =

ni∑
j=1

pij logni 1
pij ‍�

where i represents a certain amino acid number (1≤i≤19); 
j represents a certain synonymous codon number of amino 
acid i; pij represents the frequency of use of the synonymous 
codon j for amino acid i in a certain plasmid genome; and ni 
represents the number of synonymous codons of amino acid i.

Note that the IEA is a statistic between 0 and 1. In the field of 
information theory, information entropy is used to evaluate 
the uncertainty of a system. For a certain amino acid, the 
more random its usage of synonymous codons is, the higher 
the IEA. In particular, when the usage of synonymous codons 
follows a uniform distribution, namely, pij==1/ni, the corre-
sponding IEA achieves the maximum value of 1.

To calculate the IEA of each amino acid for each plasmid 
genome, we downloaded 4602 plasmids with transmissibility 
annotation from Shintani et al. [12] (referred to as the Shin-
tani dataset henceforth). The 178 plasmid genomes labelled 
with a question mark (?) were removed from the dataset.

PlasTrans design
In addition to synonymous codon usage, transmissible plas-
mids may also obtain other complex sequence signatures 
that are different from those of non-transmissible plasmids 

Impact Statement

In recent years, a large number of studies on the plas-
midome of microbiome communities have emerged, 
but bioinformatic tools for plasmidome analysis are 
severely lacking. This work addresses a challenge asso-
ciated with plasmid characterization, more precisely, 
the identification of transmissible plasmid sequences in 
plasmidome data. We showed that because of genome 
amelioration, transmissible plasmids contain different 
sequence signatures from non-transmissible plasmids, 
and we further developed PlasTrans to distinguish trans-
missible plasmids using sequence signatures based on 
deep learning. As the first tool for transmissible plasmid 
fragment identification, PlasTrans may be a powerful tool 
that will improve biologists' understanding of the proper-
ties and diversity of the plasmidome, and the mechanism 
through which plasmids regulate microbial communities.
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during the evolutionary process, such as di-codons usage, but 
many differences may be difficult to describe quantitatively. 
Recently, deep learning techniques have shown a strong 
ability to extract complex features from raw sequences [16] 
and therefore may be a powerful way to identify transmissible 
plasmid fragments.

The architecture of PlasTrans is shown in Fig. 1. To better 
characterize the codon sequence, an input DNA fragment 
is expanded into six triplet code sequences. For example, 
the DNA sequence 5′-GCATTACGGCA-3′ is expanded to 
the following six triplet code sequences: (1): 5′-GCA, TTA, 
CGG-3′; (2): 5′-CAT, TAC, GGC-3′; (3): 5′-ATT, ACG, GCA-3′; 
(4): 5′-TGC, CGT, AAT-3′; (5): 5′-GCC, GTA, ATG-3′; (6): 
5′-CCG, TAA, TGC-3′. These six triplet code sequences then 
connect to one triplet code sequence. In general, for a DNA 
fragment, only one of the six triplet code sequences belongs to 
the coding sequence (CDS). However, considering that gene 
prediction in plasmid fragments is relatively challenging and 
may miss some true positive predictions [14], we make full 
use of all six triplet code sequences to avoid missing impor-
tant information. We used a one-hot encoding form to encode 
each triplet. Each one-hot vector contains 64 bits, in which 63 
bits are 0 and a certain bit is 1. For example, triplet code AAA 
can be represented by the vector [1,0,0,…,…,0,0,0], triplet 
code AAC can be represented by the vector [0,1,0,…,…,0,0,0], 
and so on.

In addition to sequence signatures from the codon region, 
the non-coding region may also contain some specific 
motifs that may be helpful for identification, such as the 
oriT. To better characterize the sequence signatures from 
the non-coding sequences, the input DNA fragment is also 
represented by two connected base sequences (positive strand 

and complementary strand), in which the bases A, C, G and T 
are represented by [0,0,0,1], [0,0,1,0], [0,1,0,0] and [1,0,0,0], 
respectively.

For the triplet code sequences, PlasTrans employs a one-
dimensional convolution operation to extract the sequence 
signatures. This convolutional layer contains 512 kernels, 
using ‘ReLU’ as the activation function. The kernel length is 
set to 6. After the convolutional layer, a total of 512 feature 
maps are generated, and a one-dimensional global average 
pooling layer further generates a 512-dimensional vector that 
describes the abstractive feature of the triplet code sequences. 
Similarly, a one-dimensional convolution operation, which 
contains 512 kernels with a length of 6 and uses ‘ReLU’ as the 
activation function, is employed to extract the sequence signa-
tures from the base sequences. After the convolutional layer, 
a one-dimensional global average pooling layer generates a 
512-dimensional feature vector from the feature maps for the 
base sequences. Two 512-dimensional feature vectors are then 
concatenated to form 1024-dimensional feature vectors. After 
three layers of batch normalization, full connection and batch 
normalization, the output layer calculates a score between 
0–1, and input DNA fragments with a higher score have a 
higher possibility of belonging to the transmissible plasmid. 
In the training phase, PlasTrans used ‘Adam’ as the optimizer.

Given that real plasmidome data contain a large number of 
novel plasmids and cannot serve as a benchmark dataset, we 
trained and tested PlasTrans using artificial contigs extracted 
from well-annotated plasmid genomes in the Shintani dataset. 
Dividing the training set and test set according to the data 
release time is a commonly used method to evaluate whether 
an algorithm can work well on novel species [5, 7, 14, 17], which 
is also important for plasmidome studies. In PlasTrans, plasmids 

Fig. 1. Structure of PlasTrans. PlasTrans takes the triplet code sequences and base sequences of a plasmid DNA fragment as input and 
provides a likelihood score that reflects whether the fragment is derived from a transmissible plasmid.
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released before 2013 were used to construct the training set, 
while the rest were used to construct the test set (see Table S1 for 
the accession list). We used MetaSim [18] to randomly extract 
artificial contigs from the plasmid genomes. The sequence 
length of the training set was between 100 and 400 bp. In the 
test set, we generated sequences of four groups with different 
lengths: group A, 100–400 bp; group B, 401–800 bp, group C, 
801–1200 bp; group D, 5000–10 000 bp. PlasTrans was trained 
using fragments of 100–400 bp, and for sequences longer 
than 400 bp in the prediction process, PlasTrans uses a scan 
window of 400 bp to move across the sequence without overlap. 
PlasTrans predicts each subsequence under the scan window 
independently and calculates the average score for the whole 
sequence. In the training set, we generated 300 000 sequences for 
both the transmissible plasmid and non-transmissible plasmid. 
In the test set, the number of sequences for transmissible and 
non-transmissible plasmids was 30 000 in groups A, B, and C 
and 10 000 in group D.

RESULTS
The choice of synonymous codon for transmissible 
plasmids is more random
To quantitatively analyse whether transmissible plasmids 
contain different sequence signatures from the non-
transmissible plasmids, we first calculated the IEA of each 
amino acid for each plasmid genome in the Shintani dataset. 
Interestingly, we found that the average IEA of all 19 amino 
acids in transmissible plasmids was higher than that in non-
transmissible plasmids and the two-sided Wilcoxon rank 
sum test showed that the differences were significant (P 
value <0.05, see Table 1). In particular, the IEAs of transmis-
sible plasmids are generally higher than 0.9, while those of 
non-transmissible plasmids are generally lower than 0.9. We 
further used each of the 19 IEAs to classify the transmissible 
and non-transmissible plasmid genomes, and the results 
showed that all IEAs could generally achieve an area under 
curve (AUC) >60 % (see Table 1), indicating that the choice of 
synonymous codon for transmissible plasmids is more random 
than that for non-transmissible plasmids. We consider that 
this phenomenon is caused by genome amelioration. It has 
been shown that bacteria of different species contain different 
sequence signatures [19], and during co-evolution, plasmids 
adjust their sequence signatures based on their hosts [15]. The 
similarity of sequence signatures between foreign DNA, such 
as plasmids and phages, and bacterial chromosomal DNA has 
also been widely used to predict the hosts of foreign DNA 
[15, 20, 21]. Since transmissible plasmids may exist in a wide 
range of hosts through conjugation, their genomes contain 
different sequence signatures, such as codon usage signatures, 
from different hosts. Therefore, the sequence signatures of 
transmissible plasmids are more complex and orderless. In 
terms of codon usage, such complexity and disorder may be 
reflected in the randomness of the choice of synonymous 
codon, leading to the higher IEA in transmissible plasmids.

This phenomenon also provides biological support for the 
idea that the sequence signatures between transmissible and 

non-transmissible plasmids are different, indicating that frag-
ments from these two kinds of plasmids can be distinguished 
by using sequence signature information, rather than infor-
mation regarding the existence of specific genes.

PlasTrans performance
We first evaluated PlasTrans performance on the benchmark 
test set of artificial plasmid contigs. PlasTrans takes a plasmid 
fragment as input and provides a likelihood score between 0–1. 
By default, fragments with a score higher than 0.5 are consid-
ered transmissible plasmid-derived fragments (i.e. positive 
prediction). The evaluation criteria were recall=TP/(TP+FN), 
precision=TP/(TP+FP), F1 score=2×recall×precision/
(recall+precision) and the AUC. We evaluated PlasTrans in 
different groups separately, and the results are shown in Fig. 2. 
In general, PlasTrans shows slightly better performance when 
the sequence is longer. For sequences with different lengths, 
PlasTrans was able to achieve satisfactory performance 
with an F1 score of approximately 77–82% and an AUC of 

Table 1. The average IEA of 19 amino acids on transmissible and non-
transmissible plasmid genomes and the AUC for the use of a certain IEA 
to classify the transmissible and non-transmissible plasmid genomes. 
The P values of the two-sided Wilcoxon rank sum test showed that the 
IEA differences were significant

Amino acid Average IEA (%) AUC (%) P value

Transmissible 
plasmid

Non-
transmissible 

plasmid

K 88.58 84.56 57.05 1.24e−13

N 94.57 85.55 64.45 3.85e−52

T 93.73 88.16 62.21 9.35e−38

R 90.33 84.40 64.93 1.42e−55

S 94.17 90.07 64.56 6.70e−53

I 87.92 86.39 53.40 3.52e−4

Q 82.81 81.08 55.65 2.93e−9

H 96.07 88.13 64.72 4.67e−54

P 91.99 87.79 62.32 2.08e−38

L 84.10 83.15 53.15 9.18e−4

E 95.10 85.92 63.23 5.03e−44

D 94.03 84.27 65.49 1.19e−59

A 95.41 89.27 66.09 3.48e−64

G 94.41 92.48 58.24 4.40e−18

V 93.18 88.52 63.28 2.48e−44

Y 95.18 85.01 64.05 2.15e−49

C 91.83 88.30 55.94 4.19e−10

F 88.00 78.89 62.38 9.87e−39

Stop amino 
acid

85.35 81.95 55.82 9.30e−10
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approximately 84–91 %. Notably, sequences with lengths of 
hundreds of bases contain only a few genes or even incomplete 
genes. Therefore, this performance indicates that PlasTrans 
can extract the complex sequence signatures from the plasmid 
fragment effectively and judge the sequence bypass using the 
information for specific marker genes such as the relaxase 
gene. Considering the difficulty of the sequence assembly 
of plasmid metagenomic short reads, PlasTrans is suitable 
for analysis of plasmidome data. Further, some studies have 
shown that assembled contigs may lose some genes because of 
misassembly of plasmid raw reads; therefore, analysing plas-
midome data using short reads directly may be more useful 
in some cases [14]. Given that PlasTrans was able to generate 
reliable results for sequences of different length, it may be a 
powerful tool to analyse different kinds of plasmidome data, 
such as raw reads and assembled contigs.

Moreover, we found that PlasTrans was able to achieve a 
satisfactory recall of approximately 86–95 %, but its precision 
was relatively low (approximately 70 %). This means that 
the predictions of PlasTrans contain some false positives. 
In our opinion, some of the false-positive predictions of 
PlasTrans may actually be true-positive predictions. In the 
Shintani dataset, the transferability of each plasmid genome 
is primarily annotated based on the existence of marker 
genes, such as the relaxase gene and some genes related to 
the conjugation process. Because of the diversity of plasmids, 
plasmid genomes contain a large number of novel genes 
with low similarity to the current gene database, and their 
function is unknown. In our previous work, we found that 
approximately 40 % of the genes in plasmid genomes from 
the RefSeq database have uncertain functions, which were 
labelled as either ‘putative’ or ‘hypothetical’, or lacked the 

exact product annotation [14]. Therefore, the Shintani dataset 
might miss some true-positive annotations because some 
functional marker genes for transmissible plasmids could 
not be found by searching the current database. Therefore, 
we considered that the precision of PlasTrans may be slightly 
underestimated.

It is worth noting that some transmissible plasmids exhibit a 
very narrow host range and the sequence signatures of these 
plasmids may be more similar to those of non-transmissible 
plasmids. To test whether PlasTrans will misjudge these 
plasmids as non-transmissible plasmids, we further collected 
the transmissible plasmids belonging to the incompatibility 
groups of IncF, IncH and IncI, whose host ranges were gener-
ally narrow [15], from the test set. From the artificial contigs 
extracted from these plasmids, PlasTrans was able to identify 
95.62, 98.38, 98.72 and 99.3 % as transmissible plasmids in 
groups A, B, C and D, respectively. Such a high recognition 
rate indicates that PlasTrans identify transmissible plasmids 
with a narrow host range effectively.

To allow PlasTrans to generate more reliable results, the tool 
was designed with a parameter to filter out some uncertain 
predictions. The user can specify a threshold t (0<t<0.5); in 
this way, a sequence with a score falling into the interval of 
|score−0.5|<t will be labelled as uncertain. We evaluated the 
uncertain prediction rate, recall, precision and F1 score of 
PlasTrans with different thresholds, and the recall, precision 
and F1 score were calculated using only certain predictions. 
The results are shown in Fig. 3. The higher the threshold is, the 
higher the uncertain prediction rate, and the higher the recall, 
precision and F1 score of certain predictions. In particular, 
with a threshold of 0.2, the recall, precision and F1 score are 
higher than 80%, and approximately 60 % of the predictions 
are certain predictions.

We also evaluated PlasTrans qualitatively using real plas-
midome data. We downloaded the assembled contigs of the 
bovine rumen plasmidome [1] from MG-RAST [22] (acces-
sion number: mgm4460391.3). This dataset contains 5771 
contigs with a total of 2 710 501 bp. We first used PPR-Meta 
[7] to filter out contigs that may be chromosomal and phage 
DNA contamination. A total of 18.04 % of the contigs were 
predicted as chromosomal DNA, and 49.18 % of the contigs 
were predicted to be phage DNA. We then used PlasTrans to 
predict the transferability of the remaining contigs. We found 
that 61.52 % of the contigs were predicted to be transmis-
sible, while the rest were predicted to be non-transmissible. 
To evaluate the reliability of the predictions, we collected 
the relaxases from the RefSeq plasmid protein database by 
searching for the keyword ‘relaxase’. We used blastx to 
search all contigs against the relaxases, and eight contigs that 
may contain the relaxase (e-value<=1e−3, hit length>=250) 
were collected. Among these eight relaxase-like contigs, six 
were predicted by PlasTrans to be transmissible, indicating 
that the prediction of PlasTrans was reliable. Among the two 
relaxase-like contigs that were not identified as transmissible 
plasmids, we found that PlasTrans gave them scores of 0.4972 
and 0.4664, values quite close to 0.5. This indicated that these 

Fig. 2. PlasTrans performance. PlasTrans was evaluated based on the 
benchmark test set of artificial plasmid contigs in different groups 
separately using the criteria of recall, precision, F1 score and AUC.
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misjudgements could easily be filtered by setting a small 
threshold of t. Notably, in the training process of PlasTrans, 
the algorithm did not employ information concerning the 
existence of certain genes such as the relaxase gene; therefore, 
we consider that reliable prediction for relaxase-like contigs is 
not caused by the preference of the algorithm and can reflect 
the overall performance of PlasTrans.

DISCUSSION
To the best of our knowledge, PlasTrans is the first tool that 
can perform transferability annotation for short plasmid 
fragments in the plasmidome effectively using sequence 
signatures. The theoretical basis of PlasTrans is that trans-
missible plasmids contain different sequence signatures from 
non-transmissible plasmids, which we have proven in terms 
of synonymous codon usage using the IEA. PlasTrans bypass 
using the information of specific marker genes for judgement 

because such a strategy does not work for short fragments 
in the plasmidome. On the other hand, third-generation 
sequencing technology is increasingly being used in metagen-
omic studies, and it can generate very long contigs of the 
genome. In such cases, combining the usage of sequence 
signatures and the existence of specific marker genes may be 
a good choice for improving PlasTrans performance in the 
future because longer sequences have a higher probability of 
covering marker genes.

Transferable plasmids might have a broad or narrow host 
range, and the sequence signature between these two kinds 
of plasmids may also be different. Since we found that the 
choice of synonymous codon for transmissible plasmids is 
more random than that for non-transmissible plasmids, we 
also further surmised that the codon usage for transmissible 
plasmids with a broad host range is more random than that 
for a narrow host range and such differences may help us 
to predict the plasmid host range in the future study. Using 
the plasmid genome in the test set, we calculated the IEA 
of plasmids belonging to the incompatibility groups of IncF, 
IncH and IncI, whose host ranges were generally narrow, and 
plasmids belonging to the incompatibility groups of IncN, 
IncP and IncW, whose host ranges were generally broad [15]. 
Unfortunately, we found that the IEA of many plasmids with 
a narrow host range was not lower or even higher than that 
for those with a broad host range; only eight amino acids (K, 
Q, H, L, E, D, A and the stop amino acid) from plasmids with 
a narrow range were lower than those from plasmids with 
a broad host range, and among these eight IEAs, only the 
IEAs of Q and E showed a significant difference (Wilcoxon 
rank sum test, P<0.05), indicating that the codon usages of 
broad-host-range plasmids are not more random than those 
of narrow-host-range plasmids, which is inconsistent with 
our supposition. In our opinion, this is because codon usage 
in isolated plasmids may be slightly different from that in 
the plasmids in the microbiome community. The complete 
plasmid genomes we used in this study were from the 
National Center for Biotechnology Information (NCBI) data-
base, with most of them being obtained in culture-dependent 
experiments, in which the bacterial host is isolated. In culture-
dependent environments, horizontal gene transfer may be less 
frequent because in these environments, the selected bacterial 
strain does not need to face competition or cooperation as 
it does in natural environments, and the environment of a 
selective medium does not change; therefore, broad-host-
range plasmids may lose some randomness of codon usage. 
Therefore, it is also important to analyse plasmid sequence 
signatures that bypass the culture-dependent experimental 
procedure in future studies.

When using PlasTrans to analyse the plasmidome data, users 
should pay attention to the purity of the plasmidome data if 
the plasmid DNA is enriched by experimental methods. In 
many cases, plasmidome data may contain chromosomal and 
phage DNA contamination. In particular, a large number of 
phages survive as circular DNA elements. When collecting 
plasmid DNA from the environment sample, these phages will 
also be collected together with the plasmids [7]. Therefore, we 

Fig. 3. PlasTrans performance with different thresholds. Under a 
given threshold, t, a sequence with a score falling into the interval 
of |score−0.5|<t will be labelled as uncertain. Uncertain prediction 
rate, recall, precision and F1 score values of PlasTrans with different 
thresholds are evaluated.



7

Fang and Zhou, Microbial Genomics 2020;6

recommend the use of related tools, such as PPR-Meta [7], to 
filter out chromosomal and phage DNA contamination before 
using PlasTrans.

Another interesting finding was that PlasTrans could also 
identify some other mobilizable elements as transmissible 
DNA despite these elements not being plasmids. We used 
PlasTrans to predict the genomic island sequences in the 
Islander database [23], and we found that 68.68 % of the 
sequences were identified as transmissible DNA. We also 
used PlasTrans to predict two genomic island sequences of 
the SGI-1 family (NCBI accession numbers: KU847976.2 and 
AY463797.8) that exhibit a reasonably broad host range, and 
we found that PlasTrans could predict both of the sequences 
as being transmissible DNA. These results show that all 
mobilizable elements may contain some universal sequence 
signatures and PlasTrans can extract these features effectively. 
Such phenomena may also provide insights into the identi-
fication strategy of all mobilizable elements in the microbial 
community in future studies.

To date, many plasmidome-specific bioinformatic tools have 
focused on plasmid sequence identification or plasmid recon-
struction, while tools for downstream analysis for detailed 
plasmid characterization are lacking, which prevents us from 
increasing our understanding of plasmid function in micro-
bial communities. It is therefore expected that PlasTrans will 
be a powerful tool for plasmid characterization and classifica-
tion in plasmidome studies.
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