
Citation: Wang, A.; Durrant, J.D.

Open-Source Browser-Based Tools for

Structure-Based Computer-Aided

Drug Discovery. Molecules 2022, 27,

4623. https://doi.org/10.3390/

molecules27144623

Academic Editor: Chung F. Wong

Received: 5 July 2022

Accepted: 18 July 2022

Published: 20 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Review

Open-Source Browser-Based Tools for Structure-Based
Computer-Aided Drug Discovery
Ann Wang and Jacob D. Durrant *

Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA; anw152@pitt.edu
* Correspondence: durrantj@pitt.edu

Abstract: We here outline the importance of open-source, accessible tools for computer-aided drug
discovery (CADD). We begin with a discussion of drug discovery in general to provide context
for a subsequent discussion of structure-based CADD applied to small-molecule ligand discovery.
Next, we identify usability challenges common to many open-source CADD tools. To address
these challenges, we propose a browser-based approach to CADD tool deployment in which CADD
calculations run in modern web browsers on users’ local computers. The browser app approach
eliminates the need for user-initiated download and installation, ensures broad operating system
compatibility, enables easy updates, and provides a user-friendly graphical user interface. Unlike
server apps—which run calculations “in the cloud” rather than on users’ local computers—browser
apps do not require users to upload proprietary information to a third-party (remote) server. They
also eliminate the need for the difficult-to-maintain computer infrastructure required to run user-
initiated calculations remotely. We conclude by describing some CADD browser apps developed
in our lab, which illustrate the utility of this approach. Aside from introducing readers to these
specific tools, we are hopeful that this review highlights the need for additional browser-compatible,
user-friendly CADD software.

Keywords: computer docking; computer-aided drug discovery; tool development; open source;
usability; web-based tools; browser-based tools

1. Introduction

This review describes the importance of open-source, accessible tools for structure-
based computer-aided drug discovery (CADD). To provide context, the article begins
with a summary of drug discovery in general and CADD in particular. A discussion of
software usability follows, focused on the shortcomings of common software deployment
approaches, as well as possible solutions. Finally, we use several of our group’s own
research tools to illustrate potential software development methods that balance utility
and usability.

1.1. Drug Classifications: Biologics and Small Molecules

Pharmaceutical drugs are agents that improve health by modulating the activity of
disease-implicated macromolecular targets such as proteins. They can be broadly cat-
egorized as biologics—substances produced by living organisms (e.g., antibodies and
interleukins) [1,2]—and small-molecule (synthetic) compounds. This review focuses on the
latter, but we certainly acknowledge the critical role that computation has also played in
furthering the design of biologics. Biologics have many advantages over small molecules.
For example, they can potentially target disease-implicated proteins whose activity depends
on interactions with other protein partners via flat surfaces. Many biologics also benefit
from high affinity and specificity, which reduces off-target toxicity. However, notable
disadvantages include complex and expensive manufacturing processes, vulnerability to
degradation and microbial contamination, the potential for adverse immune responses,

Molecules 2022, 27, 4623. https://doi.org/10.3390/molecules27144623 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules27144623
https://doi.org/10.3390/molecules27144623
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-5808-4097
https://doi.org/10.3390/molecules27144623
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules27144623?type=check_update&version=1


Molecules 2022, 27, 4623 2 of 14

invasive routes of administration (e.g., injection), poor pharmacokinetic properties (e.g.,
limited distribution), and higher patient costs [3,4].

In contrast, small-molecule drugs are low-molecular-weight chemical compounds that
bind in pockets on the surfaces of disease-implicated proteins. Such drugs have several
advantages over biologics [3,4], including increased membrane permeability in some cases,
the potential for simplified (e.g., oral) administration, comparatively straightforward and
more scalable manufacturing, reduced immunogenicity, and often reduced patient cost.
However, developing small molecules with high affinity and specificity is challenging
and requires extensive lead optimization. While poor specificity can be beneficial in some
cases (e.g., polypharmacology), off-target binding typically leads to undesirable side effects.
Additionally, small-molecule drug targets are almost exclusively limited to those with
well-defined binding pockets [5].

1.2. Computer-Aided Drug Discovery

Most clinically approved drugs are small molecules [4,5], but designing these drugs
continues to be costly. Recent estimates suggest that it typically takes over a decade of
development [6]—and roughly a billion dollars [7]—to bring a new drug to the market.
Computer-aided drug discovery (CADD) is a popular approach to expediting the process.
So-called ligand-based CADD leverages information about known small-molecule binders
to predict which additional molecules might also be pharmacologically active. By consid-
ering the physicochemical and structural properties of known bioactive compounds, one
can design related molecules with improved affinities or other properties, even when the
specific target is unknown.

However, ligand-based methods have several drawbacks. For example, they may fail
to identify novel ligands that are substantially different from the known “prior art”, and
they are ineffective against targets with no known ligands—arguably the most interesting
from a pharmacological perspective. The assumption that minor chemical modifications
lead to incremental changes in pharmacological potential (e.g., potency) is also flawed
in many cases. Medicinal chemists often observe activity cliffs when testing congeneric
series of analogs, wherein slight chemical changes yield large differences in potency. Such
cliffs invalidate the linearity often assumed in predictive ligand-based structure–activity
relationship (SAR) analyses [8].

In contrast, receptor-based (i.e., structure-based) CADD leverages the three-dimensional
structure of a known target (e.g., a disease-implicated protein) to identify new ligands.
Receptor-based CADD does not depend on already known ligands and so can identify
first-in-class bioactive molecules. However, structure-based approaches require a known
drug target with a known, atomic-resolution structure.

2. Software Usability

Having discussed drug classifications and discovery strategies, we now describe the
usability challenges associated with many otherwise powerful and effective CADD tools.
Usability is not simply a convenience; it can drastically impact adoption. The best programs
are both accurate in their predictions and easy to use.

2.1. Common Usability Challenges

Downloading and installing software seems trivial, but it presents a small barrier
with an outsized impact on adoption. Although downloading from the internet is straight-
forward for most users, many programs are distributed through command-line package
managers (e.g., apt-get, yum, npm, and pip). These package managers are difficult for novices
to use, and many programs have dependencies (e.g., Python packages) that require addi-
tional downloads. If software is distributed as source code, compiling and installing the
final product can also be challenging, often requiring extensive configuration. Finally, many
programs do not auto-update, so users must repeat the download/installation process each
time a new version is released.



Molecules 2022, 27, 4623 3 of 14

CADD tools often only run in specific environments, further complicating use. For
example, some require a specific operating system (e.g., Linux but not Windows or iOS),
others require a particular version of a third-party library (e.g., NumPy 1.11 but not NumPy
1.12 or later), and still others require a specific programming-language interpreter (e.g.,
Python2 but not Python3). Users accustomed to one environment may not be able to use
programs that require a different environment.

Finally, many tools lack graphical user interfaces (GUIs), requiring users to enter
commands into a command-line terminal (i.e., a text-based, UNIX- or MS-DOS-like en-
vironment). Such command-line interfaces (CLIs) are useful when advanced users wish
to automate analyses via scripting. CLIs are also ideal when running software via a re-
mote terminal (e.g., SSH) that lacks a graphical desktop environment—as is common in
high-performance computing. However, GUI-based tools are arguably better suited for the
broader scientific community.

2.2. Server Applications

The “server app” software deployment model improves usability by allowing users
to simply visit a web page where they can upload their local data to a remote server. The
required calculations are then performed “in the cloud”. When finished, the server sends
the results back to the browser so that the user can save them locally. This approach
does not require users to download and install software; is accessible from any operating
system with a modern web browser (including mobile); gives the programmer (rather than
the end user) control over the environment where the calculations run; enables software
updates server-side without requiring end-user intervention; and provides an easy-to-use,
browser-based GUI.

However, the server-app approach has some notable disadvantages. Users must up-
load their (possibly proprietary) data to a third-party server and trust that the data will
be kept private and safeguarded from data breaches. If remote resources are limited, the
server app may be forced to implement a queue system, which can delay start times. The
server-app approach also prevents other programmers from easily incorporating the remote
functionality into their own applications and workflows, unless the remote resource pro-
vides an application programming interface (API). Finally, users must trust that the server
will be reliably available. Maintaining substantial remote resources requires both staffing
and funding; if staff members change jobs or grant funds run out, critical components of an
effective CADD pipeline might be suddenly and permanently taken offline.

2.3. Browser Applications

In contrast, the “browser app” software deployment model turns the “server app”
model on its head. Browser-app-enabled web pages do not require users to upload their
data to the cloud; instead, the remote server sends the required analysis software to the
user’s local browser, where the calculations occur [9,10]. Given that these apps depend on lo-
cally available compute resources, they are not well suited for high-performance-computing
calculations (e.g., molecular dynamics simulations of whole proteins) or calculations that
require local access to large databases (e.g., homology modeling with AlphaFold2 [11]).
However, many common CADD tasks are far less demanding and can efficiently run in
a browser.

Browser apps retain many of the advantages of server apps. For example, the analysis
software is automatically transferred to users’ local web browsers when they visit a browser
app web page, so no direct download or installation is required. Browser apps are also
accessible from all major operating systems because all such systems have modern web
browsers (e.g., Google Chrome, Firefox, Safari, and Edge). These browsers provide a
standard computing environment that is the same everywhere, so developers do not need
to accommodate different operating systems explicitly. Updating the software is as easy as
updating a web page (requiring no additional end-user action). Finally, users can control
browser apps from easy-to-use HTML5/JavaScript GUIs.



Molecules 2022, 27, 4623 4 of 14

Browser apps also overcome many of the disadvantages typical of server apps. The
calculations occur in the local web browser, so uploading user data to a third-party server
is never necessary. Moreover, each user provides the required compute resources to run his
or her calculations, eliminating the need for “cloud-based” computing infrastructure and
queue systems. Indeed, hosting a browser app is no more difficult than hosting a standard
web page. Finally, a browser app’s core functionality can be packaged into a library that
other programmers can incorporate into their projects without requiring direct access to a
remote server/resource.

2.4. Recent Advances Enable Complex Browser-Based Applications

Historically, developing complex applications that run in a web browser has been
prohibitively challenging. Browsers use the JavaScript programming language, which
lacks many advanced features typical of languages such as C and C++. Several recent
developments have mitigated this challenge. First, much work has focused on creating
tools that can translate (“transpile”) source code written in feature-rich languages into
JavaScript [9]. For example, the TypeScript [12] programming language has JavaScript-
like syntax but provides features that vanilla JavaScript lacks (e.g., optional static typing,
classes, and interfaces). Once transpiled to JavaScript, TypeScript code runs seamlessly in
a browser. A subset of the Python programming language, which plays a prominent role
in CADD software development, can also be transpiled to JavaScript using tools such as
Transcrypt [13] and Brython [14].

Second, WebAssembly [9,15–17] has made it easier to run complex applications in
the browser environment. WebAssembly allows programmers to compile computer code
written in languages such as C, C++, and Rust to a binary format (unrelated to JavaScript)
that runs in any modern web browser, just as one might compile code to run on Windows,
Linux, or macOS. The browser provides an operating-system-independent environment
(“virtual machine”) to run the software. Several popular CADD libraries and programs
have been successfully compiled to WebAssembly, including software for pocket iden-
tification [18], computer docking [19], chemical file conversion [16,17], cheminformatics
analysis [9,17], and molecular simulation [17]. One can even use WebAssembly to run
scripts written in interpreted (non-compiled) languages if the associated interpreter is
compiled to WebAssembly. For example, Pyodide [20], a WebAssembly-compiled version
of the CPython interpreter, runs Python scripts and even provides access to libraries such
as NumPy [21], SciPy [22], and Biopython [23].

Third, recent JavaScript APIs enable access to host-computer hardware that was pre-
viously inaccessible, greatly expanding JavaScript’s functionality [9,24]. Notable browser
APIs include WebGL and WebGPU, which enable GPU-accelerated graphics and calcula-
tions, and WebXR, which provides access to virtual and augmented reality headsets. The
web community has built on these APIs, creating open-source JavaScript libraries capable
of even more sophisticated tasks. For example, the Babylon.js library [25] leverages WebGL,
WebGPU, and WebXR to provide a full-fledged 3D game engine that runs in a web browser.
And the TensorFlow.js library [26] uses WebGL and WebGPU to enable the training and
inference of complex machine-learning models.

Given these advances, it is now possible to build and run many components of a
typical CADD pipeline in a browser environment. The remainder of this review describes
our efforts to implement some of these components as easily accessed browser apps.

3. Examples of CADD Browser Apps
3.1. FPocketWeb: Pocket Identification

Small-molecule drug discovery aims to find chemical compounds that bind in pockets
on macromolecular (e.g., protein) surfaces. Often, the location of a candidate pocket is
unambiguous. For example, perhaps the protein has been cocrystallized with a bound
ligand, homologous proteins provide insight into the pocket location, or mutagenesis
studies have identified binding-implicated residues. However, many binding pockets



Molecules 2022, 27, 4623 5 of 14

are uncharacterized, especially when a drug target has no known ligands or possesses
uncharacterized allosteric sites.

Several computational tools aim to identify binding pockets based on the structure of
the drug target (e.g., FINDSITE [27], COACH [28], and SITEHOUND [29]; reviewed recently
in Ref. [30]). Among these programs, fpocket is particularly popular [31]. fpocket accepts a
receptor PDB file as input and returns a ranked list of potential binding pockets identified
using a sphere-based approach. First, fpocket lines the protein surface with so-called “alpha”
spheres using Voronoi tessellation. It then identifies clusters of spheres as candidate pockets.
Finally, it ranks each candidate pocket by its predicted ability to bind small molecules. Of
note, fpocket has been recently used in projects focused on druggable SARS-CoV-2 RNA
structural elements [32], AT1-receptor allosteric sites [33], and Hv1-channel inhibitors [34].

Though powerful, fpocket is a CLI tool. To improve usability, the fpocket creators
implemented the algorithm as a server application, making it as easy to use as visiting a
website. This focus on usability is laudable and serves the needs of many users. However,
in some cases, the limitations of server apps described above may give some users pause.
Moreover, because other programmers are (understandably) denied direct access to the
fpocket server, they cannot easily incorporate this server-based implementation into their
own applications and workflows.

To build on this past work, we created FPocketWeb, a browser app implementation
of fpocket3. FPocketWeb consists of two components: (1) a browser-based library that
implements the CADD tool itself and (2) a GUI that allows the user to configure the tool,
run it in the browser, and visualize the output. To create the FPocketWeb library, we used
the Emscripten toolchain [35] to compile fpocket3 [36] to WebAssembly. The compiled
FPocketWeb library is available from our website (Table 1) and can be freely incorporated
into other browser-based projects.

To create the FPocketWeb GUI, we used the TypeScript programming language and
the open-source Vue.js framework [37]. Vue.js allows programmers to create reusable
components (e.g., buttons and text fields), ensuring a user interface consistency that also
contributes to usability. We styled these components according to the Bootstrap frame-
work [38] originally developed at Twitter. Incorporating Bootstrap styling into a Vue.js app
is straightforward thanks to the open-source BootstrapVue [39] library. Finally, given that
in-browser molecular visualization is critical for many of our browser apps, we developed
a Vue.js component based on the popular 3Dmol.js visualization library [40] (Figure 1).

Once we finalized the FPocketWeb library and GUI, we compiled, assembled, and
optimized the components using Webpack [41] and Google’s Closure Compiler [42] to
produce the final browser app. The app and source code are available online under the
open-source Apache License, version 2.0 (Table 1). We have published full details regarding
FPocketWeb use, performance, and benchmarking on bioRxiv [18] and intend to publish a
related peer-reviewed manuscript soon.

Table 1. Examples of CADD browser apps created in the Durrant lab.

Name App URL 1 Source Code URL 1 License/Method 2 Step

FPocketWeb /fpocketweb /fpocketweb-download AL2/Wasm Pocket
Webina /webina /webina-download AL2/Wasm Dock

BINANA /binana /binana-download AL2/Transcrypt Assess
DeepFrag /deepfrag /deepfragmodel AL2/TF.js Optimize
ProteinVR /pvr /protein-vr BSD3/Babylon.js Visualize

1 All URLs are relative to durrantlab.com (e.g., http://durrantlab.com/fpocketweb). 2 “AL2” stands for the
Apache License, version 2.0; “BSD3” stands for the 3-Clause BSD License; “Wasm” stands for WebAssembly;
“TF.js” stands for TensforFlow.js.

http://durrantlab.com/fpocketweb


Molecules 2022, 27, 4623 6 of 14Molecules 2022, 27, x FOR PEER REVIEW 6 of 15 
 

 

 
Figure 1. Three examples of browser app output. All three examples demonstrate how molecular 
visualization is a critical component of our in-browser approach. (A) Webina outputs predicted lig-
and poses and scores. (B) BINANA represents identified protein/ligand interactions as solid and 
dashed lines. (C) DeepFrag shows the protein, ligand, and ligand atom to which optimizing frag-
ments should be added (yellow sphere). The recommended fragment additions are displayed be-
low. 

Table 1. Examples of CADD browser apps created in the Durrant lab. 

Name App URL 1 Source Code URL 1 License/Method 2 Step 
FPocketWeb /fpocketweb /fpocketweb-download AL2/Wasm Pocket 

Webina /webina /webina-download AL2/Wasm Dock 
BINANA /binana /binana-download AL2/Transcrypt Assess 
DeepFrag /deepfrag /deepfragmodel AL2/TF.js Optimize 
ProteinVR /pvr /protein-vr BSD3/Babylon.js Visualize 

1 All URLs are relative to durrantlab.com (e.g., http://durrantlab.com/fpocketweb). 2 “AL2” stands 
for the Apache License, version 2.0; “BSD3” stands for the 3-Clause BSD License; “Wasm” stands 
for WebAssembly; “TF.js” stands for TensforFlow.js. 

3.2. Webina: Small-Molecule Docking 
After one identifies the location of a potential binding pocket, a natural next step is 

to identify drug-like small molecules that might bind in that pocket. Docking programs 
leverage protein and small-molecule structures to predict binding. They first position vir-
tual small molecules within a specified binding pocket. The geometry of the bound mole-
cule relative to the target is called the predicted pose. Second, they map that pose to some 
score that (hopefully) correlates with affinity. Ranking compounds by their docking scores 
allows one to prioritize top-ranked compounds for subsequent experimental evaluation. 

Figure 1. Three examples of browser app output. All three examples demonstrate how molecular
visualization is a critical component of our in-browser approach. (A) Webina outputs predicted ligand
poses and scores. (B) BINANA represents identified protein/ligand interactions as solid and dashed
lines. (C) DeepFrag shows the protein, ligand, and ligand atom to which optimizing fragments
should be added (yellow sphere). The recommended fragment additions are displayed below.

3.2. Webina: Small-Molecule Docking

After one identifies the location of a potential binding pocket, a natural next step is to
identify drug-like small molecules that might bind in that pocket. Docking programs lever-
age protein and small-molecule structures to predict binding. They first position virtual
small molecules within a specified binding pocket. The geometry of the bound molecule
relative to the target is called the predicted pose. Second, they map that pose to some score
that (hopefully) correlates with affinity. Ranking compounds by their docking scores allows
one to prioritize top-ranked compounds for subsequent experimental evaluation.

Several powerful docking programs are free for academic use, and some are released
under even less restrictive licenses [43]. Examples of these include AutoDock 4 [44],
AutoDock Vina [45,46], UCSF DOCK [47], FLIPDock [48], EADock [49,50], and Patch-
Dock [51]. AutoDock Vina [45,46] (Vina) is particularly popular because of its reasonable
accuracy and straightforward use. As input, Vina accepts models of the protein receptor
and candidate small-molecule ligand in the PDBQT format, as well as the location and
size of a docking box that encompasses the binding pocket of interest. As output, Vina
produces a list of candidate ligand poses with associated docking scores.

Although several programs (requiring separate download, installation, and use) serve
as GUI wrappers around the Vina executable (e.g., AMDock [52], PyRx [53], AUDocker
LE [54], DockoMatic [55], the PyMOL AutoDock plugin [56], and DockingApp [57]), Vina
itself uses a CLI. The CLI approach is particularly challenging in this context, given that
proper Vina use depends on molecular visualization, which is only available through



Molecules 2022, 27, 4623 7 of 14

third-party viewers [44,58–61]. For example, visualization is critical when defining the
pocket-encompassing docking box. The box must not be so small that it excludes some
portions of the pocket, but it must not be so large that the subsequent conformational search
is prohibitively expensive. Molecular visualization is also essential for analyzing Vina’s
output, which includes predicted ligand poses.

To address these challenges, we compiled the Vina codebase (version 1.1.2) to We-
bAssembly. Using the same approach used to create FPocketWeb, we integrated the
compiled library into a GUI-based browser app called Webina [19]. Aside from running
Vina in the browser, Webina allows users to specify the docking box via our 3Dmol.js-
powered molecular viewer component. Once the calculation finishes, Webina displays the
predicted ligand poses and associated scores in the browser without requiring a third-party
molecular visualization program (Figure 1A). Webina thus simplifies the docking process,
making it accessible even to novices. Though only recently published, several researchers
have already used Webina to study compounds with analgesic [62], anti-cancer [63,64], anti-
bacterial [65], anti-viral [66–68], and antioxidant [69] properties, among others [70,71]. The
Webina app and source code are freely available online under the terms of the open-source
Apache License, version 2.0 (Table 1).

3.3. BINANA: Pose Assessment

After one identifies a predicted ligand pose, a natural next step is to characterize and
visualize the interactions that the candidate ligand may form with the drug-target receptor
(e.g., hydrogen, hydrophobic, salt-bridge, and van der Waals interactions). Understanding
these interactions can provide insight into the target protein’s mechanism of action. It is
also useful for assessing the pharmacological potential of small-molecule drug candidates
and so can guide decision making during the development process.

Several popular desktop molecular visualization programs [58,59,61] can identify
protein/ligand interactions, but users cannot access these tools through a browser-based
interface and so must download and install them on their local machines. Some of these
programs are also free only for noncommercial use [58,61]. Recognizing the importance
of easy access, others have created server apps to characterize protein/ligand interactions
(e.g., Arpeggio [72] and PLIP [73]); though laudably accessible, these tools are copyleft
licensed, which may also limit commercial use. Furthermore, the server-app approach
makes it difficult for other programmers to easily incorporate the third-party functionality
into their own programs and workflows.

To address these issues, we recently modernized the BINding ANAlyzer (BINANA)
program [74,75], which aims to improve the efficiency of ligand-binding characterization
by automating ligand-pose analyses. Specifically, we updated the Python codebase and
created a JavaScript library to enable analysis in the browser. To generate the JavaScript
version, we used Transcrypt [13] to translate (or “transpile”) the BINANA Python code
directly into JavaScript. Others are free to use this library in their browser-based projects; to
demonstrate, we integrated it into a browser app created using the same TypeScript/Vue.js
approach described above.

BINANA accepts the structures of a drug target and bound small molecule as input.
Considering the locations and orientations of the chemical groups on both, it predicts
hydrophobic, salt-bridge, π–π, T-stacking, cation−π, hydrogen-bond, halogen-bond, and
metal-coordination interactions. The browser app displays the interactions without requir-
ing a third-party visualization program (Figure 1B). The app and source code are available
online under the terms of the open-source Apache License, version 2.0 (Table 1).

3.4. DeepFrag: Lead Optimization

Small-molecule ligands identified through virtual and ex silico screening rarely have
the binding kinetics typical of FDA-approved drugs. Hit-to-lead optimization is the process
by which an initial “hit” (i.e., a molecule that interacts with a drug target even if only
weakly) is transformed via molecular fragment additions or replacements into a “lead” (i.e.,



Molecules 2022, 27, 4623 8 of 14

a compound with improved potency, selectivity, or other pharmacokinetic/toxicological
properties [76]). Further lead optimization similarly transforms leads into improved com-
pounds ready for preclinical assessment [77].

Identifying chemical modifications that improve drug-relevant properties is rarely
straightforward. Several existing machine-learning approaches serve as structure-based
hypothesis-generation tools to assist with hit-to-lead and lead optimization. These tools can
be broadly divided into ligand-based and structure-based approaches [78]. Ligand-based
techniques leverage known ligands to predict optimization strategies without regard for the
structure of the target binding pocket. Examples of these include Mol-CycleGAN [79], JT-
VAE [80], GENTRL [81], CGVAE [82], and MolDQN [83], among others [84–88]. In contrast,
structure-based approaches leverage 3D structural information (e.g., crystallographic,
NMR, or modeled receptor structures) to suggest optimization strategies. Examples of
these include DeepLigBuilder [89], DEVELOP [90], and 3D-Scaffold [91], among others [76].

Building on this previous work, we created a deep convolutional neural network
capable of recommending optimizing fragment additions. Our DeepFrag model [92,93]
uses a structure-based approach; as input, it takes the 3D structure of a protein drug target,
the 3D structure of a posed (bound) ligand, and the 3D coordinates of a ligand atom to
which some optimizing molecular fragment should be added. DeepFrag voxelizes the
receptor and ligand by projecting them onto a 3D grid. It then applies a series of (primarily)
3D convolutional layers to the voxelized images. The last convolution is flattened and
eventually fed into a fully connected neural network whose output is an RDKFingerprint-
like vector [94] of floating-point numbers that describes the topological features of the
predicted optimizing fragments. To find the structures of suitably similar fragment matches,
one can compare the DeepFrag-predicted fingerprint to the pre-computed fingerprints of
many known fragments in a molecular library. To the best of our knowledge, DeepFrag is
the first machine-learning approach that formulates lead optimization as a classification
problem (rather than a generative-modeling problem) by predicting fragment fingerprints
from 3D voxel representations.

DeepFrag was originally implemented in Python and designed for use via a CLI. To
encourage broad adoption, we converted the trained model to a format compatible with the
TensorFlow.js JavaScript library, which enables deep learning in the browser. TensorFlow.js
relies on several browser technologies, including WebAssembly and WebGL, to perform the
required computations quickly. Using TensorFlow.js, others can incorporate our DeepFrag
model into their browser apps.

To demonstrate, we created a browser app that incorporates the DeepFrag model [92].
We used the same TypeScript/Vue.js approach described above to create the GUI. The
app also performs the fingerprint-matching step of the DeepFrag workflow, returning
the actual structures (rather than fingerprints) of suitable fragments for scaffold addition
(Figure 1C). The app and source code are available online under the open-source Apache
License, version 2.0 (Table 1).

3.5. ProteinVR: Molecular Visualization in Virtual Reality

The importance of molecular visualization in any CADD pipeline cannot be overstated.
To fully understand how a small-molecule ligand might bind to a protein target, one must
fully appreciate the spatial relationships between the ligand’s chemical moieties and the
protein’s amino acids. This understanding also provides valuable insights that can guide
lead optimization.

Existing molecular visualization programs include VMD [58], PyMOL [59], UCSF
Chimera [61], and ChimeraX [60]. These programs primarily convey structural information
by projecting 3D molecular models onto 2D screens. Rotating the molecular structures or
using simulated fog can convey some three-dimensional information. However, it is diffi-
cult to immediately and fully intuit protein/ligand interactions and other spatial elements
using this approach. Molecular visualization in virtual reality (VR) helps overcome this
challenge. Such visualization grows in popularity as the price of VR headsets declines.



Molecules 2022, 27, 4623 9 of 14

Indeed, one can purchase a standalone VR headset for under USD 300, and the price will
likely continue to drop.

Most VR molecular visualization programs run as dedicated desktop applications [60,95–97].
The desktop approach is ideal in many cases because it enables innovative navigation
methods [95], resource-intensive molecular-editing tools [97], and real-time user interac-
tions with ongoing molecular dynamics simulations [96,98–103]. However, many situations
call for quick, easily accessible VR visualization, and desktop programs require download,
installation, and experience to use effectively. Additionally, many desktop programs only
support high-end VR devices [60,95], and some require a commercial license to enable
anything beyond the most basic functionality [97].

To further advance the community’s interest in VR applied to molecular visualization,
we created the ProteinVR browser app [104]. ProteinVR provides many of the same
molecular insights as desktop VR programs. However, it delivers those insights via a web
browser, bypassing the need for separate download and installation. Users simply load
molecular structures into their browsers’ memory, either from a file on their computer or by
automatically interfacing with online resources (e.g., the PDB). Once a file is loaded, users
can modify the visualization (e.g., which color scheme to use; whether to represent proteins
as ribbons, surfaces, etc.; whether to represent small molecules as sticks, spheres, etc.). They
can also easily share molecular scenes by simply sending custom URLs to colleagues.

ProteinVR is built using the Babylon.js JavaScript library [25], a full-featured browser-
based game engine that we repurposed for molecular visualization. Implementing a game
engine in the browser is only possible because of recent JavaScript APIs that improve access
to host-computer hardware. Babylon.js specifically leverages WebGL for browser-based
3D graphics and WebXR to support browser-based virtual reality on a broad range of
VR headsets.

A freely accessible ProteinVR implementation and the app’s source code are available
online under the open-source 3-Clause BSD License (Table 1).

4. Browser Apps as Educational Tools

The CADD browser apps highlighted in this review were designed primarily as
research tools, but the emphasis on easy access and usability also makes them well suited
to educational settings. Indeed, the corresponding author has successfully used some of
these tools (Webina, ProteinVR, and DeepFrag) in the classroom and has received positive
feedback from other educators.

Browser apps are valuable tools for incorporating active-learning exercises into the
classroom [105]. Active learning encourages students to actively participate in the learning
process, beyond just passive listening. It promotes learning by engaging students in real-
world problem solving [106]. Such exercises are particularly useful for new computational
biology/chemistry students; scientific computation is foreign to many of them, so even
small barriers can limit the benefit of CADD-focused active-learning exercises.

The first common barrier is accessibility. Some undergraduate classes have dozens or
even hundreds of students. Expecting so many students to separately download and install
a CADD tool that may not even be compatible with their operating system is impractical.
Yet nearly all students know how to visit a web page, and browser apps work seamlessly
on all major operating systems. These apps can thus introduce students to advanced
computational tools that they could not otherwise access.

The second barrier is usability. While advanced undergraduates may be familiar with
CLIs, younger students often are not. Active-learning projects using CLI CADD tools
require students to not only understand the tool itself but also the non-intuitive command-
line interface required to run that tool. In contrast, browser apps provide easy-to-use GUIs
that students can launch by simply visiting a URL, allowing them to focus on their results
rather than on usability hurdles.

The third barrier is technical. In large classroom settings, active-learning activities
often require many students to use the same tool simultaneously. If these activities leverage



Molecules 2022, 27, 4623 10 of 14

server apps, the many simultaneous requests can quickly overwhelm the remote resource.
The remote server must often implement lengthy wait times to deal with the sudden
demand, and such delays are not conducive to student learning. In contrast, browser
apps perform the calculations on each student’s own computer and so are less likely to be
overwhelmed at moments of high demand.

Finally, socioeconomic barriers also complicate CADD-focused active learning. Stud-
ies suggest students from challenging socio-economic backgrounds tend to select uni-
versities closer to their homes [107,108], but many live far from universities with the
shared infrastructure required to support a computationally oriented curriculum. Browser
apps distribute the computations to each student’s personal device rather than requir-
ing a shared resource. They thus have potential to democratize computational chemical
biology education.

5. Conclusions

Many powerful CADD tools accelerate early-stage drug discovery. Though broadly
adopted, these tools do not always provide an easy-to-use interface that can enable even
greater adoption. Our group found that browser apps are well-suited for CADD tool
deployment. A simple web server sends a CADD analysis program to the user’s local
browser when they first visit the app webpage, thus eliminating the need for manual
download and installation. Calculations take place on the user’s local computer rather
than on a third-party resource, so the user never needs to send proprietary data to a remote
system. All major operating systems have modern browsers, so browser apps are broadly
compatible by design. Moreover, thanks to HTML, JavaScript, and other tools, one can
easily create user-friendly GUIs to set up calculations and visualize results.

As JavaScript and related web technologies advance, we anticipate that browsers will
become increasingly powerful platforms for software deployment. This migration to the
browser is already apparent in other areas; for example, both Google and Microsoft have
developed web-based word processors, spreadsheets, and presentation applications with
substantial browser-side components. Given that web browsers are ubiquitous, operate
across multiple platforms, and are well suited to visualization, we anticipate that CADD
tools will increasingly leverage the browser as a software deployment platform.

Author Contributions: Conceptualization, J.D.D.; writing—original draft preparation, J.D.D. and
A.W.; writing—review and editing, J.D.D. and A.W.; visualization, J.D.D.; supervision, J.D.D.; project
administration, J.D.D.; funding acquisition, J.D.D. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the National Institute of General Medical Sciences of the
National Institutes of Health, grant number R01GM132353 to J.D.D. The content is solely the responsi-
bility of the authors and does not necessarily represent the official views of the National Institutes of
Health. The funders had no role in the study design, data collection and analysis, decision to publish,
or preparation of the manuscript.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sormanni, P.; Aprile, F.A.; Vendruscolo, M. Third generation antibody discovery methods: In silico rational design. Chem. Soc. Rev.

2018, 47, 9137–9157. [CrossRef] [PubMed]
2. Yamashita, T. Toward rational antibody design: Recent advancements in molecular dynamics simulations. Int. Immunol. 2018, 30,

133–140. [CrossRef] [PubMed]
3. Morrow, T.; Felcone, L.H. Defining the difference: What Makes Biologics Unique. Biotechnol. Healthc. 2004, 1, 24–29.
4. Makurvet, F.D. Biologics vs. small molecules: Drug costs and patient access. Med. Drug Discov. 2021, 9, 100075. [CrossRef]

http://doi.org/10.1039/C8CS00523K
http://www.ncbi.nlm.nih.gov/pubmed/30298157
http://doi.org/10.1093/intimm/dxx077
http://www.ncbi.nlm.nih.gov/pubmed/29346652
http://doi.org/10.1016/j.medidd.2020.100075


Molecules 2022, 27, 4623 11 of 14

5. Gurevich, E.V.; Gurevich, V.V. Therapeutic potential of small molecules and engineered proteins. Handb. Exp. Pharm. 2014, 219,
1–12. [CrossRef]

6. Mohs, R.C.; Greig, N.H. Drug discovery and development: Role of basic biological research. Alzheimers Dement. 2017, 3, 651–657.
[CrossRef]

7. Wouters, O.J.; McKee, M.; Luyten, J. Estimated Research and Development Investment Needed to Bring a New Medicine to
Market, 2009–2018. JAMA 2020, 323, 844–853. [CrossRef]

8. Gogishvili, D.; Nittinger, E.; Margreitter, C.; Tyrchan, C. Nonadditivity in public and inhouse data: Implications for drug design.
J. Cheminform. 2021, 13, 47. [CrossRef]

9. Abriata, L.A.; Rodrigues, J.; Salathe, M.; Patiny, L. Augmenting Research, Education, and Outreach with Client-Side Web
Programming. Trends Biotechnol. 2018, 36, 473–476. [CrossRef]

10. Abriata, L.A. Web apps come of age for molecular sciences. Informatics 2017, 4, 28. [CrossRef]
11. Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Zidek, A.;

Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [CrossRef]
[PubMed]

12. TypeScript: JavaScript with Syntax for Types. Available online: https://www.typescriptlang.org/ (accessed on 2 July 2022).
13. Transcrypt—Python in the Browser—Lean, Fast, Open! Available online: https://www.transcrypt.org/ (accessed on 2 July 2022).
14. Brython. Available online: https://www.brython.info/ (accessed on 2 July 2022).
15. WebAssembly. Available online: https://webassembly.org/ (accessed on 2 July 2022).
16. Jiang, C.; Jin, X.; Dong, Y.; Chen, M. Kekule.js: An Open Source JavaScript Chemoinformatics Toolkit. J. Chem. Inf. Model. 2016, 56,

1132–1138. [CrossRef] [PubMed]
17. Jiang, C.; Jin, X. Quick Way to Port Existing C/C++ Chemoinformatics Toolkits to the Web Using Emscripten. J. Chem. Inf. Model.

2017, 57, 2407–2412. [CrossRef] [PubMed]
18. Kochnev, Y.; Durrant, J. FPocketWeb: Protein pocket hunting in a web browser. bioRxiv 2022. [CrossRef]
19. Kochnev, Y.; Hellemann, E.; Cassidy, K.C.; Durrant, J.D. Webina: An open-source library and web app that runs AutoDock Vina

entirely in the web browser. Bioinformatics 2020, 36, 4513–4515. [CrossRef]
20. Pyodide—Version 0.20.0. Available online: https://pyodide.org/en/stable/ (accessed on 2 July 2022).
21. Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith,

N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [CrossRef]
22. Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.;

Bright, J.; et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272. [CrossRef]
23. Cock, P.J.; Antao, T.; Chang, J.T.; Chapman, B.A.; Cox, C.J.; Dalke, A.; Friedberg, I.; Hamelryck, T.; Kauff, F.; Wilczynski, B.; et al.

Biopython: Freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 2009, 25,
1422–1423. [CrossRef]

24. Theisen, K.J. Programming languages in chemistry: A review of HTML5/JavaScript. J. Cheminform. 2019, 11, 11. [CrossRef]
25. Babylon.js: Powerful, Beautiful, Simple, Open—Web-Based 3D at Its Best. Available online: https://www.babylonjs.com/

(accessed on 2 July 2022).
26. TensorFlow.js|Machine Learning for JavaScript Developers. Available online: https://www.tensorflow.org/js (accessed on 2

July 2022).
27. Brylinski, M.; Skolnick, J. A threading-based method (FINDSITE) for ligand-binding site prediction and functional annotation.

Proc. Natl. Acad. Sci. USA 2008, 105, 129–134. [CrossRef]
28. Yang, J.; Roy, A.; Zhang, Y. Protein-ligand binding site recognition using complementary binding-specific substructure comparison

and sequence profile alignment. Bioinformatics 2013, 29, 2588–2595. [CrossRef] [PubMed]
29. Hernandez, M.; Ghersi, D.; Sanchez, R. SITEHOUND-web: A server for ligand binding site identification in protein structures.

Nucleic Acids Res. 2009, 37, W413–W416. [CrossRef] [PubMed]
30. Zhao, J.; Cao, Y.; Zhang, L. Exploring the computational methods for protein-ligand binding site prediction. Comput. Struct.

Biotechnol. J. 2020, 18, 417–426. [CrossRef] [PubMed]
31. Le Guilloux, V.; Schmidtke, P.; Tuffery, P. Fpocket: An open source platform for ligand pocket detection. BMC Bioinform. 2009,

10, 168. [CrossRef]
32. Manfredonia, I.; Nithin, C.; Ponce-Salvatierra, A.; Ghosh, P.; Wirecki, T.K.; Marinus, T.; Ogando, N.S.; Snijder, E.J.;

van Hemert, M.J.; Bujnicki, J.M.; et al. Genome-wide mapping of SARS-CoV-2 RNA structures identifies therapeutically-relevant
elements. Nucleic Acids Res. 2020, 48, 12436–12452. [CrossRef]

33. Lu, S.; He, X.; Yang, Z.; Chai, Z.; Zhou, S.; Wang, J.; Rehman, A.U.; Ni, D.; Pu, J.; Sun, J.; et al. Activation pathway of a G
protein-coupled receptor uncovers conformational intermediates as targets for allosteric drug design. Nat. Commun. 2021,
12, 4721. [CrossRef]

34. Zhang, Q.; Ren, Y.; Mo, Y.; Guo, P.; Liao, P.; Luo, Y.; Mu, J.; Chen, Z.; Zhang, Y.; Li, Y.; et al. Inhibiting Hv1 channel in peripheral
sensory neurons attenuates chronic inflammatory pain and opioid side effects. Cell Res. 2022, 32, 461–476. [CrossRef]

35. Main-Emscripten 3.1.9-Git (Dev) Documentation. Available online: https://emscripten.org/ (accessed on 2 July 2022).
36. Discngine/Fpocket. Available online: https://github.com/Discngine/fpocket (accessed on 2 July 2022).
37. Vue.js—The Progressive JavaScript Framework. Available online: https://vuejs.org/ (accessed on 9 June 2022).

http://doi.org/10.1007/978-3-642-41199-1_1
http://doi.org/10.1016/j.trci.2017.10.005
http://doi.org/10.1001/jama.2020.1166
http://doi.org/10.1186/s13321-021-00525-z
http://doi.org/10.1016/j.tibtech.2017.11.009
http://doi.org/10.3390/informatics4030028
http://doi.org/10.1038/s41586-021-03819-2
http://www.ncbi.nlm.nih.gov/pubmed/34265844
https://www.typescriptlang.org/
https://www.transcrypt.org/
https://www.brython.info/
https://webassembly.org/
http://doi.org/10.1021/acs.jcim.6b00167
http://www.ncbi.nlm.nih.gov/pubmed/27243272
http://doi.org/10.1021/acs.jcim.7b00434
http://www.ncbi.nlm.nih.gov/pubmed/28880539
http://doi.org/10.1101/2022.05.27.493797
http://doi.org/10.1093/bioinformatics/btaa579
https://pyodide.org/en/stable/
http://doi.org/10.1038/s41586-020-2649-2
http://doi.org/10.1038/s41592-019-0686-2
http://doi.org/10.1093/bioinformatics/btp163
http://doi.org/10.1186/s13321-019-0331-1
https://www.babylonjs.com/
https://www.tensorflow.org/js
http://doi.org/10.1073/pnas.0707684105
http://doi.org/10.1093/bioinformatics/btt447
http://www.ncbi.nlm.nih.gov/pubmed/23975762
http://doi.org/10.1093/nar/gkp281
http://www.ncbi.nlm.nih.gov/pubmed/19398430
http://doi.org/10.1016/j.csbj.2020.02.008
http://www.ncbi.nlm.nih.gov/pubmed/32140203
http://doi.org/10.1186/1471-2105-10-168
http://doi.org/10.1093/nar/gkaa1053
http://doi.org/10.1038/s41467-021-25020-9
http://doi.org/10.1038/s41422-022-00616-y
https://emscripten.org/
https://github.com/Discngine/fpocket
https://vuejs.org/


Molecules 2022, 27, 4623 12 of 14

38. Bootstrap: The Most Popular HTML, CSS, and JS Library in the World. Available online: https://getbootstrap.com/ (accessed on
9 June 2022).

39. BootstrapVue. Available online: https://bootstrap-vue.org/ (accessed on 9 June 2022).
40. Rego, N.; Koes, D. 3Dmol.js: Molecular visualization with WebGL. Bioinformatics 2015, 31, 1322–1324. [CrossRef]
41. Webpack. Available online: https://webpack.js.org/ (accessed on 9 June 2022).
42. Closure Compiler. Available online: https://developers.google.com/closure/compiler (accessed on 9 June 2022).
43. Kanwar, G.; Kumar, A.; Mahajan, A. Open source software tools for computer aided drug design. Int. J. Res. Pharm. Sci. 2018, 9,

86–95. [CrossRef]
44. Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4:

Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [CrossRef]
45. Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and

Python Bindings. J. Chem. Inf. Model. 2021, 61, 3891–3898. [CrossRef]
46. Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient

optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [CrossRef]
47. Allen, W.J.; Balius, T.E.; Mukherjee, S.; Brozell, S.R.; Moustakas, D.T.; Lang, P.T.; Case, D.A.; Kuntz, I.D.; Rizzo, R.C. DOCK 6:

Impact of new features and current docking performance. J. Comput. Chem. 2015, 36, 1132–1156. [CrossRef] [PubMed]
48. Zhao, Y.; Sanner, M.F. FLIPDock: Docking flexible ligands into flexible receptors. Proteins 2007, 68, 726–737. [CrossRef] [PubMed]
49. Grosdidier, A.; Zoete, V.; Michielin, O. EADock: Docking of small molecules into protein active sites with a multiobjective

evolutionary optimization. Proteins 2007, 67, 1010–1025. [CrossRef]
50. Grosdidier, A.; Zoete, V.; Michielin, O. SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic

Acids Res. 2011, 39, W270–W277. [CrossRef] [PubMed]
51. Schneidman-Duhovny, D.; Inbar, Y.; Nussinov, R.; Wolfson, H.J. PatchDock and SymmDock: Servers for rigid and symmetric

docking. Nucleic Acids Res. 2005, 33, W363–W367. [CrossRef]
52. Valdes-Tresanco, M.S.; Valdes-Tresanco, M.E.; Valiente, P.A.; Moreno, E. AMDock: A versatile graphical tool for assisting

molecular docking with Autodock Vina and Autodock4. Biol. Direct. 2020, 15, 12. [CrossRef]
53. Dallakyan, S.; Olson, A.J. Small-molecule library screening by docking with PyRx. Methods Mol. Biol. 2015, 1263, 243–250.

[CrossRef]
54. Sandeep, G.; Nagasree, K.P.; Hanisha, M.; Kumar, M.M. AUDocker LE: A GUI for virtual screening with AUTODOCK Vina. BMC

Res. Notes 2011, 4, 445. [CrossRef]
55. Bullock, C.W.; Jacob, R.B.; McDougal, O.M.; Hampikian, G.; Andersen, T. Dockomatic—Automated ligand creation and docking.

BMC Res. Notes 2010, 3, 289. [CrossRef] [PubMed]
56. Seeliger, D.; de Groot, B.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J. Comput. Aided Mol. Des.

2010, 24, 417–422. [CrossRef] [PubMed]
57. Di Muzio, E.; Toti, D.; Polticelli, F. DockingApp: A user friendly interface for facilitated docking simulations with AutoDock Vina.

J. Comput. Aided Mol. Des. 2017, 31, 213–218. [CrossRef] [PubMed]
58. Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [CrossRef]
59. DeLano, W.L. Pymol: An open-source molecular graphics tool. CCP4 Newsl. Protein Cryst. 2002, 40, 82–92.
60. Goddard, T.D.; Huang, C.C.; Meng, E.C.; Pettersen, E.F.; Couch, G.S.; Morris, J.H.; Ferrin, T.E. UCSF ChimeraX: Meeting modern

challenges in visualization and analysis. Protein Sci. 2018, 27, 14–25. [CrossRef]
61. Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera–a visualization

system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [CrossRef]
62. Krivokolysko, D.S.; Dotsenko, V.V.; Bibik, E.Y.; Myazina, A.V.; Krivokolysko, S.G.; Vasilin, V.K.; Pankov, A.A.; Aksenov, N.A.;

Aksenova, I.V. Synthesis, Structure, and Analgesic Activity of 4-(5-Cyano-{4-(fur-2-yl)-1, 4-dihydropyridin-3-yl} carboxamido)
benzoic Acids Ethyl Esters. Russ. J. Gen. Chem. 2021, 91, 2588–2605. [CrossRef]

63. Ghosh, A.; Roy, M.; Lahiri, A.; Mukherjee, S.; Datta, A. Prevention of Inorganic Arsenic induced Squamous Cell Carcinoma of
Skin in Swiss Albino Mice By Black Tea Through Epigenetic Modulation. Res. Sq. 2021. [CrossRef]

64. Chai, T.T.; Koh, J.A.; Wong, C.C.; Sabri, M.Z.; Wong, F.C. Computational Screening for the Anticancer Potential of Seed-Derived
Antioxidant Peptides: A Cheminformatic Approach. Molecules 2021, 26, 7396. [CrossRef]

65. Newman, J.D.; Shah, P.; Chopra, J.; Shi, E.; McFadden, M.E.; Horness, R.E.; Brown, L.C.; van Kessel, J.C. Amino acid diver-
gence in the ligand-binding pocket of Vibrio LuxR/HapR proteins determines the efficacy of thiophenesulfonamide inhibitors.
Mol. Microbiol. 2021, 116, 1173–1188. [CrossRef] [PubMed]

66. Naeem-E-mail, A.; Sheikh-E-mail, A.; Naeem, S.; Abidi-E-mail, S.H. Molecular docking analysis of fluoroquinolones and other
natural and synthetic compounds with the HCV NS3 helicase. Bioinformation 2022, 18, 147–154.

67. Gonzalez-Paz, L.; Hurtado-Leon, M.L.; Lossada, C.; Fernandez-Materan, F.V.; Vera-Villalobos, J.; Lorono, M.; Paz, J.L.;
Jeffreys, L.; Alvarado, Y.J. Comparative study of the interaction of ivermectin with proteins of interest associated with
SARS-CoV-2: A computational and biophysical approach. Biophys. Chem. 2021, 278, 106677. [CrossRef]

68. Halder, P.; Pal, U.; Paladhi, P.; Dutta, S.; Paul, P.; Pal, S.; Das, D.; Ganguly, A.; Dutta, I.; Mandal, S. Evaluation of potency of the
selected bioactive molecules from Indian medicinal plants with MPro of SARS-CoV-2 through in silico analysis. J. Ayurveda Integr.
Med. 2022, 13, 100449. [CrossRef] [PubMed]

https://getbootstrap.com/
https://bootstrap-vue.org/
http://doi.org/10.1093/bioinformatics/btu829
https://webpack.js.org/
https://developers.google.com/closure/compiler
http://doi.org/10.26452/ijrps.v9i1.1191
http://doi.org/10.1002/jcc.21256
http://doi.org/10.1021/acs.jcim.1c00203
http://doi.org/10.1002/jcc.21334
http://doi.org/10.1002/jcc.23905
http://www.ncbi.nlm.nih.gov/pubmed/25914306
http://doi.org/10.1002/prot.21423
http://www.ncbi.nlm.nih.gov/pubmed/17523154
http://doi.org/10.1002/prot.21367
http://doi.org/10.1093/nar/gkr366
http://www.ncbi.nlm.nih.gov/pubmed/21624888
http://doi.org/10.1093/nar/gki481
http://doi.org/10.1186/s13062-020-00267-2
http://doi.org/10.1007/978-1-4939-2269-7_19
http://doi.org/10.1186/1756-0500-4-445
http://doi.org/10.1186/1756-0500-3-289
http://www.ncbi.nlm.nih.gov/pubmed/21059259
http://doi.org/10.1007/s10822-010-9352-6
http://www.ncbi.nlm.nih.gov/pubmed/20401516
http://doi.org/10.1007/s10822-016-0006-1
http://www.ncbi.nlm.nih.gov/pubmed/28063067
http://doi.org/10.1016/0263-7855(96)00018-5
http://doi.org/10.1002/pro.3235
http://doi.org/10.1002/jcc.20084
http://doi.org/10.1134/S1070363221120306
http://doi.org/10.21203/rs.3.rs-966459/v1
http://doi.org/10.3390/molecules26237396
http://doi.org/10.1111/mmi.14804
http://www.ncbi.nlm.nih.gov/pubmed/34468051
http://doi.org/10.1016/j.bpc.2021.106677
http://doi.org/10.1016/j.jaim.2021.05.003
http://www.ncbi.nlm.nih.gov/pubmed/34054246


Molecules 2022, 27, 4623 13 of 14

69. Ong, J.H.; Koh, J.A.; Cao, H.; Tan, S.A.; Abd Manan, F.; Wong, F.C.; Chai, T.T. Purification, Identification and Characterization of
Antioxidant Peptides from Corn Silk Tryptic Hydrolysate: An Integrated In Vitro-In Silico Approach. Antioxidants 2021, 10, 1822.
[CrossRef]

70. Ward, L.C.; McCue, H.V.; Rigden, D.J.; Kershaw, N.M.; Ashbrook, C.; Hatton, H.; Goulding, E.; Johnson, J.R.; Carnell, A.J.
Carboxyl Methyltransferase Catalysed Formation of Mono- and Dimethyl Esters under Aqueous Conditions: Application in
Cascade Biocatalysis. Angew. Chem. Int. Ed. Engl. 2022, 61, e202117324. [CrossRef]

71. Suemune, H.; Nishimura, D.; Mizutani, K.; Sato, Y.; Hino, T.; Takagi, H.; Shiozaki-Sato, Y.; Takahashi, S.; Nagano, S. Crystal
structures of a 6-dimethylallyltryptophan synthase, IptA: Insights into substrate tolerance and enhancement of prenyltransferase
activity. Biochem. Biophys. Res. Commun. 2022, 593, 144–150. [CrossRef]

72. Jubb, H.C.; Higueruelo, A.P.; Ochoa-Montano, B.; Pitt, W.R.; Ascher, D.B.; Blundell, T.L. Arpeggio: A Web Server for Calculating
and Visualising Interatomic Interactions in Protein Structures. J. Mol. Biol. 2017, 429, 365–371. [CrossRef]

73. Adasme, M.F.; Linnemann, K.L.; Bolz, S.N.; Kaiser, F.; Salentin, S.; Haupt, V.J.; Schroeder, M. PLIP 2021: Expanding the scope of
the protein-ligand interaction profiler to DNA and RNA. Nucleic Acids Res. 2021, 49, W530–W534. [CrossRef]

74. Durrant, J.D.; McCammon, J.A. BINANA: A novel algorithm for ligand-binding characterization. J. Mol. Graph. Model. 2011, 29,
888–893. [CrossRef]

75. Young, J.; Garikipati, N.; Durrant, J.D. BINANA 2: Characterizing Receptor/Ligand Interactions in Python and JavaScript.
J. Chem. Inf. Model. 2022, 62, 753–760. [CrossRef] [PubMed]

76. Jimenez-Luna, J.; Perez-Benito, L.; Martinez-Rosell, G.; Sciabola, S.; Torella, R.; Tresadern, G.; De Fabritiis, G. DeltaDelta neural
networks for lead optimization of small molecule potency. Chem. Sci. 2019, 10, 10911–10918. [CrossRef] [PubMed]

77. Hughes, J.P.; Rees, S.; Kalindjian, S.B.; Philpott, K.L. Principles of early drug discovery. Br. J. Pharm. 2011, 162, 1239–1249.
[CrossRef] [PubMed]

78. de Souza Neto, L.R.; Moreira-Filho, J.T.; Neves, B.J.; Maidana, R.; Guimaraes, A.C.R.; Furnham, N.; Andrade, C.H.; Silva, F.P., Jr.
In silico Strategies to Support Fragment-to-Lead Optimization in Drug Discovery. Front. Chem. 2020, 8, 93. [CrossRef]

79. Maziarka, L.; Pocha, A.; Kaczmarczyk, J.; Rataj, K.; Danel, T.; Warchol, M. Mol-CycleGAN: A generative model for molecular
optimization. J. Cheminform. 2020, 12, 2. [CrossRef] [PubMed]

80. Jin, W.; Barzilay, R.; Jaakkola, T. Junction tree variational autoencoder for molecular graph generation. In Proceedings of the 35th
International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 2323–2332.

81. Zhavoronkov, A.; Ivanenkov, Y.A.; Aliper, A.; Veselov, M.S.; Aladinskiy, V.A.; Aladinskaya, A.V.; Terentiev, V.A.; Polykovskiy, D.A.;
Kuznetsov, M.D.; Asadulaev, A.; et al. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat. Biotechnol.
2019, 37, 1038–1040. [CrossRef]

82. Liu, Q.; Allamanis, M.; Brockschmidt, M.; Gaunt, A. Constrained graph variational autoencoders for molecule design. Adv. Neural
Inf. Processing Syst. 2018, 31. [CrossRef]

83. Zhou, Z.; Kearnes, S.; Li, L.; Zare, R.N.; Riley, P. Optimization of Molecules via Deep Reinforcement Learning. Sci. Rep. 2019,
9, 10752. [CrossRef]

84. Bresson, X.; Laurent, T. A two-step graph convolutional decoder for molecule generation. arXiv 2019, arXiv:1906.03412.
85. Gupta, A.; Muller, A.T.; Huisman, B.J.H.; Fuchs, J.A.; Schneider, P.; Schneider, G. Generative Recurrent Networks for De Novo

Drug Design. Mol. Inf. 2018, 37, 1700111. [CrossRef]
86. Olivecrona, M.; Blaschke, T.; Engkvist, O.; Chen, H. Molecular de-novo design through deep reinforcement learning. J. Cheminform.

2017, 9, 48. [CrossRef] [PubMed]
87. Gomez-Bombarelli, R.; Wei, J.N.; Duvenaud, D.; Hernandez-Lobato, J.M.; Sanchez-Lengeling, B.; Sheberla, D.; Aguilera-Iparraguirre, J.;

Hirzel, T.D.; Adams, R.P.; Aspuru-Guzik, A. Automatic Chemical Design Using a Data-Driven Continuous Representation of
Molecules. ACS Cent. Sci. 2018, 4, 268–276. [CrossRef] [PubMed]

88. Ragoza, M.; Masuda, T.; Koes, D.R. Learning a continuous representation of 3D molecular structures with deep generative models.
arXiv 2020, arXiv:2010.08687.

89. Li, Y.; Pei, J.; Lai, L. Structure-based de novo drug design using 3D deep generative models. Chem. Sci. 2021, 12, 13664–13675.
[CrossRef] [PubMed]

90. Imrie, F.; Hadfield, T.E.; Bradley, A.R.; Deane, C.M. Deep generative design with 3D pharmacophoric constraints. Chem. Sci. 2021,
12, 14577–14589. [CrossRef]

91. Joshi, R.P.; Gebauer, N.W.A.; Bontha, M.; Khazaieli, M.; James, R.M.; Brown, J.B.; Kumar, N. 3D-Scaffold: A Deep Learning
Framework to Generate 3D Coordinates of Drug-like Molecules with Desired Scaffolds. J. Phys. Chem. B 2021, 125, 12166–12176.
[CrossRef]

92. Green, H.; Durrant, J.D. DeepFrag: An Open-Source Browser App for Deep-Learning Lead Optimization. J. Chem. Inf. Model.
2021, 61, 2523–2529. [CrossRef] [PubMed]

93. Green, H.; Koes, D.R.; Durrant, J.D. DeepFrag: A deep convolutional neural network for fragment-based lead optimization.
Chem. Sci. 2021, 12, 8036–8047. [CrossRef]

94. Landrum, G. rdkit.Chem.rdmolops Module—The RDKit 2022.03.1 Documentation. Available online: http://rdkit.org/docs/
source/rdkit.Chem.rdmolops.html (accessed on 18 July 2022).

95. Norrby, M.; Grebner, C.; Eriksson, J.; Bostrom, J. Molecular Rift: Virtual Reality for Drug Designers. J. Chem. Inf. Model. 2015, 55,
2475–2484. [CrossRef]

http://doi.org/10.3390/antiox10111822
http://doi.org/10.1002/anie.202117324
http://doi.org/10.1016/j.bbrc.2022.01.018
http://doi.org/10.1016/j.jmb.2016.12.004
http://doi.org/10.1093/nar/gkab294
http://doi.org/10.1016/j.jmgm.2011.01.004
http://doi.org/10.1021/acs.jcim.1c01461
http://www.ncbi.nlm.nih.gov/pubmed/35129332
http://doi.org/10.1039/C9SC04606B
http://www.ncbi.nlm.nih.gov/pubmed/32190246
http://doi.org/10.1111/j.1476-5381.2010.01127.x
http://www.ncbi.nlm.nih.gov/pubmed/21091654
http://doi.org/10.3389/fchem.2020.00093
http://doi.org/10.1186/s13321-019-0404-1
http://www.ncbi.nlm.nih.gov/pubmed/33431006
http://doi.org/10.1038/s41587-019-0224-x
http://doi.org/10.48550/arXiv.1805.09076
http://doi.org/10.1038/s41598-019-47148-x
http://doi.org/10.1002/minf.201700111
http://doi.org/10.1186/s13321-017-0235-x
http://www.ncbi.nlm.nih.gov/pubmed/29086083
http://doi.org/10.1021/acscentsci.7b00572
http://www.ncbi.nlm.nih.gov/pubmed/29532027
http://doi.org/10.1039/D1SC04444C
http://www.ncbi.nlm.nih.gov/pubmed/34760151
http://doi.org/10.1039/D1SC02436A
http://doi.org/10.1021/acs.jpcb.1c06437
http://doi.org/10.1021/acs.jcim.1c00103
http://www.ncbi.nlm.nih.gov/pubmed/34029094
http://doi.org/10.1039/D1SC00163A
http://rdkit.org/docs/source/rdkit.Chem.rdmolops.html
http://rdkit.org/docs/source/rdkit.Chem.rdmolops.html
http://doi.org/10.1021/acs.jcim.5b00544


Molecules 2022, 27, 4623 14 of 14

96. Jamieson-Binnie, A.D.; O’Connor, M.B.; Barnoud, J.; Wonnacott, M.D.; Bennie, S.J.; Glowacki, D.R. Narupa iMD: A VR-Enabled
Multiplayer Framework for Streaming Interactive Molecular Simulations. In ACM SIGGRAPH 2020 Immersive Pavilion; Association
for Computing Machinery: New York, NY, USA, 2020; pp. 1–2.

97. Kingsley, L.J.; Brunet, V.; Lelais, G.; McCloskey, S.; Milliken, K.; Leija, E.; Fuhs, S.R.; Wang, K.; Zhou, E.; Spraggon, G. Development
of a virtual reality platform for effective communication of structural data in drug discovery. J. Mol. Graph. Model. 2019, 89,
234–241. [CrossRef]

98. Walters, R.K.; Gale, E.M.; Barnoud, J.; Glowacki, D.R.; Mulholland, A.J. The emerging potential of interactive virtual reality in
drug discovery. Expert Opin. Drug Discov. 2022, 1–14. [CrossRef] [PubMed]

99. Shannon, R.J.; Deeks, H.M.; Burfoot, E.; Clark, E.; Jones, A.J.; Mulholland, A.J.; Glowacki, D.R. Exploring human-guided strategies
for reaction network exploration: Interactive molecular dynamics in virtual reality as a tool for citizen scientists. J. Chem. Phys.
2021, 155, 154106. [CrossRef] [PubMed]

100. O’Connor, M.B.; Bennie, S.J.; Deeks, H.M.; Jamieson-Binnie, A.; Jones, A.J.; Shannon, R.J.; Walters, R.; Mitchell, T.J.; Mulholland,
A.J.; Glowacki, D.R. Interactive molecular dynamics in virtual reality from quantum chemistry to drug binding: An open-source
multi-person framework. J. Chem. Phys. 2019, 150, 220901. [CrossRef] [PubMed]

101. Deeks, H.M.; Walters, R.K.; Hare, S.R.; O’Connor, M.B.; Mulholland, A.J.; Glowacki, D.R. Interactive molecular dynamics in
virtual reality for accurate flexible protein-ligand docking. PLoS ONE 2020, 15, e0228461. [CrossRef] [PubMed]

102. Wang, Y.; Seritan, S.; Lahana, D.; Ford, J.E.; Valentini, A.; Hohenstein, E.G.; Martinez, T.J. InteraChem: Exploring Excited States in
Virtual Reality with Ab Initio Interactive Molecular Dynamics. J. Chem. Theory Comput. 2022, 18, 3308–3317. [CrossRef]

103. Deeks, H.M.; Walters, R.K.; Barnoud, J.; Glowacki, D.R.; Mulholland, A.J. Interactive Molecular Dynamics in Virtual Reality Is
an Effective Tool for Flexible Substrate and Inhibitor Docking to the SARS-CoV-2 Main Protease. J. Chem. Inf. Model. 2020, 60,
5803–5814. [CrossRef]

104. Cassidy, K.C.; Sefcik, J.; Raghav, Y.; Chang, A.; Durrant, J.D. ProteinVR: Web-based molecular visualization in virtual reality.
PLoS Comput. Biol. 2020, 16, e1007747. [CrossRef]

105. Cavanagh, A.J.; Aragon, O.R.; Chen, X.; Couch, A.; Durham, F.; Bobrownicki, A.; Hanauer, D.I.; Graham, M.J. Student Buy-In to
Active Learning in a College Science Course. CBE Life Sci. Educ. 2016, 15, ar76. [CrossRef]

106. Merrill, M.D. First principles of instruction. Educ. Technol. Res. Dev. 2002, 50, 43–59. [CrossRef]
107. Callender, C.; Jackson, J. Does the fear of debt constrain choice of university and subject of study? Stud. High. Educ. 2008, 33,

405–429. [CrossRef]
108. Reay, D.; Davies, J.; David, M.; Ball, S.J. Choices of degree or degrees of choice? Class, ‘race’ and the higher education choice

process. Sociology 2001, 35, 855–874.

http://doi.org/10.1016/j.jmgm.2019.03.010
http://doi.org/10.1080/17460441.2022.2079632
http://www.ncbi.nlm.nih.gov/pubmed/35638298
http://doi.org/10.1063/5.0062517
http://www.ncbi.nlm.nih.gov/pubmed/34686059
http://doi.org/10.1063/1.5092590
http://www.ncbi.nlm.nih.gov/pubmed/31202243
http://doi.org/10.1371/journal.pone.0228461
http://www.ncbi.nlm.nih.gov/pubmed/32160194
http://doi.org/10.1021/acs.jctc.2c00005
http://doi.org/10.1021/acs.jcim.0c01030
http://doi.org/10.1371/journal.pcbi.1007747
http://doi.org/10.1187/cbe.16-07-0212
http://doi.org/10.1007/BF02505024
http://doi.org/10.1080/03075070802211802

	Introduction 
	Drug Classifications: Biologics and Small Molecules 
	Computer-Aided Drug Discovery 

	Software Usability 
	Common Usability Challenges 
	Server Applications 
	Browser Applications 
	Recent Advances Enable Complex Browser-Based Applications 

	Examples of CADD Browser Apps 
	FPocketWeb: Pocket Identification 
	Webina: Small-Molecule Docking 
	BINANA: Pose Assessment 
	DeepFrag: Lead Optimization 
	ProteinVR: Molecular Visualization in Virtual Reality 

	Browser Apps as Educational Tools 
	Conclusions 
	References

