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Abstract: We here outline the importance of open-source, accessible tools for computer-aided drug
discovery (CADD). We begin with a discussion of drug discovery in general to provide context
for a subsequent discussion of structure-based CADD applied to small-molecule ligand discovery.
Next, we identify usability challenges common to many open-source CADD tools. To address
these challenges, we propose a browser-based approach to CADD tool deployment in which CADD
calculations run in modern web browsers on users’ local computers. The browser app approach
eliminates the need for user-initiated download and installation, ensures broad operating system
compatibility, enables easy updates, and provides a user-friendly graphical user interface. Unlike
server apps—which run calculations “in the cloud” rather than on users’ local computers—browser
apps do not require users to upload proprietary information to a third-party (remote) server. They
also eliminate the need for the difficult-to-maintain computer infrastructure required to run user-
initiated calculations remotely. We conclude by describing some CADD browser apps developed
in our lab, which illustrate the utility of this approach. Aside from introducing readers to these
specific tools, we are hopeful that this review highlights the need for additional browser-compatible,
user-friendly CADD software.

Keywords: computer docking; computer-aided drug discovery; tool development; open source;
usability; web-based tools; browser-based tools

1. Introduction

This review describes the importance of open-source, accessible tools for structure-
based computer-aided drug discovery (CADD). To provide context, the article begins
with a summary of drug discovery in general and CADD in particular. A discussion of
software usability follows, focused on the shortcomings of common software deployment
approaches, as well as possible solutions. Finally, we use several of our group’s own
research tools to illustrate potential software development methods that balance utility
and usability.

1.1. Drug Classifications: Biologics and Small Molecules

Pharmaceutical drugs are agents that improve health by modulating the activity of
disease-implicated macromolecular targets such as proteins. They can be broadly cat-
egorized as biologics—substances produced by living organisms (e.g., antibodies and
interleukins) [1,2]—and small-molecule (synthetic) compounds. This review focuses on the
latter, but we certainly acknowledge the critical role that computation has also played in
furthering the design of biologics. Biologics have many advantages over small molecules.
For example, they can potentially target disease-implicated proteins whose activity depends
on interactions with other protein partners via flat surfaces. Many biologics also benefit
from high affinity and specificity, which reduces off-target toxicity. However, notable
disadvantages include complex and expensive manufacturing processes, vulnerability to
degradation and microbial contamination, the potential for adverse immune responses,
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invasive routes of administration (e.g., injection), poor pharmacokinetic properties (e.g.,
limited distribution), and higher patient costs [3,4].

In contrast, small-molecule drugs are low-molecular-weight chemical compounds that
bind in pockets on the surfaces of disease-implicated proteins. Such drugs have several
advantages over biologics [3,4], including increased membrane permeability in some cases,
the potential for simplified (e.g., oral) administration, comparatively straightforward and
more scalable manufacturing, reduced immunogenicity, and often reduced patient cost.
However, developing small molecules with high affinity and specificity is challenging
and requires extensive lead optimization. While poor specificity can be beneficial in some
cases (e.g., polypharmacology), off-target binding typically leads to undesirable side effects.
Additionally, small-molecule drug targets are almost exclusively limited to those with
well-defined binding pockets [5].

1.2. Computer-Aided Drug Discovery

Most clinically approved drugs are small molecules [4,5], but designing these drugs
continues to be costly. Recent estimates suggest that it typically takes over a decade of
development [6]—and roughly a billion dollars [7]—to bring a new drug to the market.
Computer-aided drug discovery (CADD) is a popular approach to expediting the process.
So-called ligand-based CADD leverages information about known small-molecule binders
to predict which additional molecules might also be pharmacologically active. By consid-
ering the physicochemical and structural properties of known bioactive compounds, one
can design related molecules with improved affinities or other properties, even when the
specific target is unknown.

However, ligand-based methods have several drawbacks. For example, they may fail
to identify novel ligands that are substantially different from the known “prior art”, and
they are ineffective against targets with no known ligands—arguably the most interesting
from a pharmacological perspective. The assumption that minor chemical modifications
lead to incremental changes in pharmacological potential (e.g., potency) is also flawed
in many cases. Medicinal chemists often observe activity cliffs when testing congeneric
series of analogs, wherein slight chemical changes yield large differences in potency. Such
cliffs invalidate the linearity often assumed in predictive ligand-based structure–activity
relationship (SAR) analyses [8].

In contrast, receptor-based (i.e., structure-based) CADD leverages the three-dimensional
structure of a known target (e.g., a disease-implicated protein) to identify new ligands.
Receptor-based CADD does not depend on already known ligands and so can identify
first-in-class bioactive molecules. However, structure-based approaches require a known
drug target with a known, atomic-resolution structure.

2. Software Usability

Having discussed drug classifications and discovery strategies, we now describe the
usability challenges associated with many otherwise powerful and effective CADD tools.
Usability is not simply a convenience; it can drastically impact adoption. The best programs
are both accurate in their predictions and easy to use.

2.1. Common Usability Challenges

Downloading and installing software seems trivial, but it presents a small barrier
with an outsized impact on adoption. Although downloading from the internet is straight-
forward for most users, many programs are distributed through command-line package
managers (e.g., apt-get, yum, npm, and pip). These package managers are difficult for novices
to use, and many programs have dependencies (e.g., Python packages) that require addi-
tional downloads. If software is distributed as source code, compiling and installing the
final product can also be challenging, often requiring extensive configuration. Finally, many
programs do not auto-update, so users must repeat the download/installation process each
time a new version is released.
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CADD tools often only run in specific environments, further complicating use. For
example, some require a specific operating system (e.g., Linux but not Windows or iOS),
others require a particular version of a third-party library (e.g., NumPy 1.11 but not NumPy
1.12 or later), and still others require a specific programming-language interpreter (e.g.,
Python2 but not Python3). Users accustomed to one environment may not be able to use
programs that require a different environment.

Finally, many tools lack graphical user interfaces (GUIs), requiring users to enter
commands into a command-line terminal (i.e., a text-based, UNIX- or MS-DOS-like en-
vironment). Such command-line interfaces (CLIs) are useful when advanced users wish
to automate analyses via scripting. CLIs are also ideal when running software via a re-
mote terminal (e.g., SSH) that lacks a graphical desktop environment—as is common in
high-performance computing. However, GUI-based tools are arguably better suited for the
broader scientific community.

2.2. Server Applications

The “server app” software deployment model improves usability by allowing users
to simply visit a web page where they can upload their local data to a remote server. The
required calculations are then performed “in the cloud”. When finished, the server sends
the results back to the browser so that the user can save them locally. This approach
does not require users to download and install software; is accessible from any operating
system with a modern web browser (including mobile); gives the programmer (rather than
the end user) control over the environment where the calculations run; enables software
updates server-side without requiring end-user intervention; and provides an easy-to-use,
browser-based GUI.

However, the server-app approach has some notable disadvantages. Users must up-
load their (possibly proprietary) data to a third-party server and trust that the data will
be kept private and safeguarded from data breaches. If remote resources are limited, the
server app may be forced to implement a queue system, which can delay start times. The
server-app approach also prevents other programmers from easily incorporating the remote
functionality into their own applications and workflows, unless the remote resource pro-
vides an application programming interface (API). Finally, users must trust that the server
will be reliably available. Maintaining substantial remote resources requires both staffing
and funding; if staff members change jobs or grant funds run out, critical components of an
effective CADD pipeline might be suddenly and permanently taken offline.

2.3. Browser Applications

In contrast, the “browser app” software deployment model turns the “server app”
model on its head. Browser-app-enabled web pages do not require users to upload their
data to the cloud; instead, the remote server sends the required analysis software to the
user’s local browser, where the calculations occur [9,10]. Given that these apps depend on lo-
cally available compute resources, they are not well suited for high-performance-computing
calculations (e.g., molecular dynamics simulations of whole proteins) or calculations that
require local access to large databases (e.g., homology modeling with AlphaFold2 [11]).
However, many common CADD tasks are far less demanding and can efficiently run in
a browser.

Browser apps retain many of the advantages of server apps. For example, the analysis
software is automatically transferred to users’ local web browsers when they visit a browser
app web page, so no direct download or installation is required. Browser apps are also
accessible from all major operating systems because all such systems have modern web
browsers (e.g., Google Chrome, Firefox, Safari, and Edge). These browsers provide a
standard computing environment that is the same everywhere, so developers do not need
to accommodate different operating systems explicitly. Updating the software is as easy as
updating a web page (requiring no additional end-user action). Finally, users can control
browser apps from easy-to-use HTML5/JavaScript GUIs.
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Browser apps also overcome many of the disadvantages typical of server apps. The
calculations occur in the local web browser, so uploading user data to a third-party server
is never necessary. Moreover, each user provides the required compute resources to run his
or her calculations, eliminating the need for “cloud-based” computing infrastructure and
queue systems. Indeed, hosting a browser app is no more difficult than hosting a standard
web page. Finally, a browser app’s core functionality can be packaged into a library that
other programmers can incorporate into their projects without requiring direct access to a
remote server/resource.

2.4. Recent Advances Enable Complex Browser-Based Applications

Historically, developing complex applications that run in a web browser has been
prohibitively challenging. Browsers use the JavaScript programming language, which
lacks many advanced features typical of languages such as C and C++. Several recent
developments have mitigated this challenge. First, much work has focused on creating
tools that can translate (“transpile”) source code written in feature-rich languages into
JavaScript [9]. For example, the TypeScript [12] programming language has JavaScript-
like syntax but provides features that vanilla JavaScript lacks (e.g., optional static typing,
classes, and interfaces). Once transpiled to JavaScript, TypeScript code runs seamlessly in
a browser. A subset of the Python programming language, which plays a prominent role
in CADD software development, can also be transpiled to JavaScript using tools such as
Transcrypt [13] and Brython [14].

Second, WebAssembly [9,15–17] has made it easier to run complex applications in
the browser environment. WebAssembly allows programmers to compile computer code
written in languages such as C, C++, and Rust to a binary format (unrelated to JavaScript)
that runs in any modern web browser, just as one might compile code to run on Windows,
Linux, or macOS. The browser provides an operating-system-independent environment
(“virtual machine”) to run the software. Several popular CADD libraries and programs
have been successfully compiled to WebAssembly, including software for pocket iden-
tification [18], computer docking [19], chemical file conversion [16,17], cheminformatics
analysis [9,17], and molecular simulation [17]. One can even use WebAssembly to run
scripts written in interpreted (non-compiled) languages if the associated interpreter is
compiled to WebAssembly. For example, Pyodide [20], a WebAssembly-compiled version
of the CPython interpreter, runs Python scripts and even provides access to libraries such
as NumPy [21], SciPy [22], and Biopython [23].

Third, recent JavaScript APIs enable access to host-computer hardware that was pre-
viously inaccessible, greatly expanding JavaScript’s functionality [9,24]. Notable browser
APIs include WebGL and WebGPU, which enable GPU-accelerated graphics and calcula-
tions, and WebXR, which provides access to virtual and augmented reality headsets. The
web community has built on these APIs, creating open-source JavaScript libraries capable
of even more sophisticated tasks. For example, the Babylon.js library [25] leverages WebGL,
WebGPU, and WebXR to provide a full-fledged 3D game engine that runs in a web browser.
And the TensorFlow.js library [26] uses WebGL and WebGPU to enable the training and
inference of complex machine-learning models.

Given these advances, it is now possible to build and run many components of a
typical CADD pipeline in a browser environment. The remainder of this review describes
our efforts to implement some of these components as easily accessed browser apps.

3. Examples of CADD Browser Apps
3.1. FPocketWeb: Pocket Identification

Small-molecule drug discovery aims to find chemical compounds that bind in pockets
on macromolecular (e.g., protein) surfaces. Often, the location of a candidate pocket is
unambiguous. For example, perhaps the protein has been cocrystallized with a bound
ligand, homologous proteins provide insight into the pocket location, or mutagenesis
studies have identified binding-implicated residues. However, many binding pockets
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are uncharacterized, especially when a drug target has no known ligands or possesses
uncharacterized allosteric sites.

Several computational tools aim to identify binding pockets based on the structure of
the drug target (e.g., FINDSITE [27], COACH [28], and SITEHOUND [29]; reviewed recently
in Ref. [30]). Among these programs, fpocket is particularly popular [31]. fpocket accepts a
receptor PDB file as input and returns a ranked list of potential binding pockets identified
using a sphere-based approach. First, fpocket lines the protein surface with so-called “alpha”
spheres using Voronoi tessellation. It then identifies clusters of spheres as candidate pockets.
Finally, it ranks each candidate pocket by its predicted ability to bind small molecules. Of
note, fpocket has been recently used in projects focused on druggable SARS-CoV-2 RNA
structural elements [32], AT1-receptor allosteric sites [33], and Hv1-channel inhibitors [34].

Though powerful, fpocket is a CLI tool. To improve usability, the fpocket creators
implemented the algorithm as a server application, making it as easy to use as visiting a
website. This focus on usability is laudable and serves the needs of many users. However,
in some cases, the limitations of server apps described above may give some users pause.
Moreover, because other programmers are (understandably) denied direct access to the
fpocket server, they cannot easily incorporate this server-based implementation into their
own applications and workflows.

To build on this past work, we created FPocketWeb, a browser app implementation
of fpocket3. FPocketWeb consists of two components: (1) a browser-based library that
implements the CADD tool itself and (2) a GUI that allows the user to configure the tool,
run it in the browser, and visualize the output. To create the FPocketWeb library, we used
the Emscripten toolchain [35] to compile fpocket3 [36] to WebAssembly. The compiled
FPocketWeb library is available from our website (Table 1) and can be freely incorporated
into other browser-based projects.

To create the FPocketWeb GUI, we used the TypeScript programming language and
the open-source Vue.js framework [37]. Vue.js allows programmers to create reusable
components (e.g., buttons and text fields), ensuring a user interface consistency that also
contributes to usability. We styled these components according to the Bootstrap frame-
work [38] originally developed at Twitter. Incorporating Bootstrap styling into a Vue.js app
is straightforward thanks to the open-source BootstrapVue [39] library. Finally, given that
in-browser molecular visualization is critical for many of our browser apps, we developed
a Vue.js component based on the popular 3Dmol.js visualization library [40] (Figure 1).

Once we finalized the FPocketWeb library and GUI, we compiled, assembled, and
optimized the components using Webpack [41] and Google’s Closure Compiler [42] to
produce the final browser app. The app and source code are available online under the
open-source Apache License, version 2.0 (Table 1). We have published full details regarding
FPocketWeb use, performance, and benchmarking on bioRxiv [18] and intend to publish a
related peer-reviewed manuscript soon.

Table 1. Examples of CADD browser apps created in the Durrant lab.

Name App URL 1 Source Code URL 1 License/Method 2 Step

FPocketWeb /fpocketweb /fpocketweb-download AL2/Wasm Pocket
Webina /webina /webina-download AL2/Wasm Dock

BINANA /binana /binana-download AL2/Transcrypt Assess
DeepFrag /deepfrag /deepfragmodel AL2/TF.js Optimize
ProteinVR /pvr /protein-vr BSD3/Babylon.js Visualize

1 All URLs are relative to durrantlab.com (e.g., http://durrantlab.com/fpocketweb). 2 “AL2” stands for the
Apache License, version 2.0; “BSD3” stands for the 3-Clause BSD License; “Wasm” stands for WebAssembly;
“TF.js” stands for TensforFlow.js.

http://durrantlab.com/fpocketweb
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Figure 1. Three examples of browser app output. All three examples demonstrate how molecular
visualization is a critical component of our in-browser approach. (A) Webina outputs predicted ligand
poses and scores. (B) BINANA represents identified protein/ligand interactions as solid and dashed
lines. (C) DeepFrag shows the protein, ligand, and ligand atom to which optimizing fragments
should be added (yellow sphere). The recommended fragment additions are displayed below.

3.2. Webina: Small-Molecule Docking

After one identifies the location of a potential binding pocket, a natural next step is to
identify drug-like small molecules that might bind in that pocket. Docking programs lever-
age protein and small-molecule structures to predict binding. They first position virtual
small molecules within a specified binding pocket. The geometry of the bound molecule
relative to the target is called the predicted pose. Second, they map that pose to some score
that (hopefully) correlates with affinity. Ranking compounds by their docking scores allows
one to prioritize top-ranked compounds for subsequent experimental evaluation.

Several powerful docking programs are free for academic use, and some are released
under even less restrictive licenses [43]. Examples of these include AutoDock 4 [44],
AutoDock Vina [45,46], UCSF DOCK [47], FLIPDock [48], EADock [49,50], and Patch-
Dock [51]. AutoDock Vina [45,46] (Vina) is particularly popular because of its reasonable
accuracy and straightforward use. As input, Vina accepts models of the protein receptor
and candidate small-molecule ligand in the PDBQT format, as well as the location and
size of a docking box that encompasses the binding pocket of interest. As output, Vina
produces a list of candidate ligand poses with associated docking scores.

Although several programs (requiring separate download, installation, and use) serve
as GUI wrappers around the Vina executable (e.g., AMDock [52], PyRx [53], AUDocker
LE [54], DockoMatic [55], the PyMOL AutoDock plugin [56], and DockingApp [57]), Vina
itself uses a CLI. The CLI approach is particularly challenging in this context, given that
proper Vina use depends on molecular visualization, which is only available through
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third-party viewers [44,58–61]. For example, visualization is critical when defining the
pocket-encompassing docking box. The box must not be so small that it excludes some
portions of the pocket, but it must not be so large that the subsequent conformational search
is prohibitively expensive. Molecular visualization is also essential for analyzing Vina’s
output, which includes predicted ligand poses.

To address these challenges, we compiled the Vina codebase (version 1.1.2) to We-
bAssembly. Using the same approach used to create FPocketWeb, we integrated the
compiled library into a GUI-based browser app called Webina [19]. Aside from running
Vina in the browser, Webina allows users to specify the docking box via our 3Dmol.js-
powered molecular viewer component. Once the calculation finishes, Webina displays the
predicted ligand poses and associated scores in the browser without requiring a third-party
molecular visualization program (Figure 1A). Webina thus simplifies the docking process,
making it accessible even to novices. Though only recently published, several researchers
have already used Webina to study compounds with analgesic [62], anti-cancer [63,64], anti-
bacterial [65], anti-viral [66–68], and antioxidant [69] properties, among others [70,71]. The
Webina app and source code are freely available online under the terms of the open-source
Apache License, version 2.0 (Table 1).

3.3. BINANA: Pose Assessment

After one identifies a predicted ligand pose, a natural next step is to characterize and
visualize the interactions that the candidate ligand may form with the drug-target receptor
(e.g., hydrogen, hydrophobic, salt-bridge, and van der Waals interactions). Understanding
these interactions can provide insight into the target protein’s mechanism of action. It is
also useful for assessing the pharmacological potential of small-molecule drug candidates
and so can guide decision making during the development process.

Several popular desktop molecular visualization programs [58,59,61] can identify
protein/ligand interactions, but users cannot access these tools through a browser-based
interface and so must download and install them on their local machines. Some of these
programs are also free only for noncommercial use [58,61]. Recognizing the importance
of easy access, others have created server apps to characterize protein/ligand interactions
(e.g., Arpeggio [72] and PLIP [73]); though laudably accessible, these tools are copyleft
licensed, which may also limit commercial use. Furthermore, the server-app approach
makes it difficult for other programmers to easily incorporate the third-party functionality
into their own programs and workflows.

To address these issues, we recently modernized the BINding ANAlyzer (BINANA)
program [74,75], which aims to improve the efficiency of ligand-binding characterization
by automating ligand-pose analyses. Specifically, we updated the Python codebase and
created a JavaScript library to enable analysis in the browser. To generate the JavaScript
version, we used Transcrypt [13] to translate (or “transpile”) the BINANA Python code
directly into JavaScript. Others are free to use this library in their browser-based projects; to
demonstrate, we integrated it into a browser app created using the same TypeScript/Vue.js
approach described above.

BINANA accepts the structures of a drug target and bound small molecule as input.
Considering the locations and orientations of the chemical groups on both, it predicts
hydrophobic, salt-bridge, π–π, T-stacking, cation−π, hydrogen-bond, halogen-bond, and
metal-coordination interactions. The browser app displays the interactions without requir-
ing a third-party visualization program (Figure 1B). The app and source code are available
online under the terms of the open-source Apache License, version 2.0 (Table 1).

3.4. DeepFrag: Lead Optimization

Small-molecule ligands identified through virtual and ex silico screening rarely have
the binding kinetics typical of FDA-approved drugs. Hit-to-lead optimization is the process
by which an initial “hit” (i.e., a molecule that interacts with a drug target even if only
weakly) is transformed via molecular fragment additions or replacements into a “lead” (i.e.,
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a compound with improved potency, selectivity, or other pharmacokinetic/toxicological
properties [76]). Further lead optimization similarly transforms leads into improved com-
pounds ready for preclinical assessment [77].

Identifying chemical modifications that improve drug-relevant properties is rarely
straightforward. Several existing machine-learning approaches serve as structure-based
hypothesis-generation tools to assist with hit-to-lead and lead optimization. These tools can
be broadly divided into ligand-based and structure-based approaches [78]. Ligand-based
techniques leverage known ligands to predict optimization strategies without regard for the
structure of the target binding pocket. Examples of these include Mol-CycleGAN [79], JT-
VAE [80], GENTRL [81], CGVAE [82], and MolDQN [83], among others [84–88]. In contrast,
structure-based approaches leverage 3D structural information (e.g., crystallographic,
NMR, or modeled receptor structures) to suggest optimization strategies. Examples of
these include DeepLigBuilder [89], DEVELOP [90], and 3D-Scaffold [91], among others [76].

Building on this previous work, we created a deep convolutional neural network
capable of recommending optimizing fragment additions. Our DeepFrag model [92,93]
uses a structure-based approach; as input, it takes the 3D structure of a protein drug target,
the 3D structure of a posed (bound) ligand, and the 3D coordinates of a ligand atom to
which some optimizing molecular fragment should be added. DeepFrag voxelizes the
receptor and ligand by projecting them onto a 3D grid. It then applies a series of (primarily)
3D convolutional layers to the voxelized images. The last convolution is flattened and
eventually fed into a fully connected neural network whose output is an RDKFingerprint-
like vector [94] of floating-point numbers that describes the topological features of the
predicted optimizing fragments. To find the structures of suitably similar fragment matches,
one can compare the DeepFrag-predicted fingerprint to the pre-computed fingerprints of
many known fragments in a molecular library. To the best of our knowledge, DeepFrag is
the first machine-learning approach that formulates lead optimization as a classification
problem (rather than a generative-modeling problem) by predicting fragment fingerprints
from 3D voxel representations.

DeepFrag was originally implemented in Python and designed for use via a CLI. To
encourage broad adoption, we converted the trained model to a format compatible with the
TensorFlow.js JavaScript library, which enables deep learning in the browser. TensorFlow.js
relies on several browser technologies, including WebAssembly and WebGL, to perform the
required computations quickly. Using TensorFlow.js, others can incorporate our DeepFrag
model into their browser apps.

To demonstrate, we created a browser app that incorporates the DeepFrag model [92].
We used the same TypeScript/Vue.js approach described above to create the GUI. The
app also performs the fingerprint-matching step of the DeepFrag workflow, returning
the actual structures (rather than fingerprints) of suitable fragments for scaffold addition
(Figure 1C). The app and source code are available online under the open-source Apache
License, version 2.0 (Table 1).

3.5. ProteinVR: Molecular Visualization in Virtual Reality

The importance of molecular visualization in any CADD pipeline cannot be overstated.
To fully understand how a small-molecule ligand might bind to a protein target, one must
fully appreciate the spatial relationships between the ligand’s chemical moieties and the
protein’s amino acids. This understanding also provides valuable insights that can guide
lead optimization.

Existing molecular visualization programs include VMD [58], PyMOL [59], UCSF
Chimera [61], and ChimeraX [60]. These programs primarily convey structural information
by projecting 3D molecular models onto 2D screens. Rotating the molecular structures or
using simulated fog can convey some three-dimensional information. However, it is diffi-
cult to immediately and fully intuit protein/ligand interactions and other spatial elements
using this approach. Molecular visualization in virtual reality (VR) helps overcome this
challenge. Such visualization grows in popularity as the price of VR headsets declines.
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Indeed, one can purchase a standalone VR headset for under USD 300, and the price will
likely continue to drop.

Most VR molecular visualization programs run as dedicated desktop applications [60,95–97].
The desktop approach is ideal in many cases because it enables innovative navigation
methods [95], resource-intensive molecular-editing tools [97], and real-time user interac-
tions with ongoing molecular dynamics simulations [96,98–103]. However, many situations
call for quick, easily accessible VR visualization, and desktop programs require download,
installation, and experience to use effectively. Additionally, many desktop programs only
support high-end VR devices [60,95], and some require a commercial license to enable
anything beyond the most basic functionality [97].

To further advance the community’s interest in VR applied to molecular visualization,
we created the ProteinVR browser app [104]. ProteinVR provides many of the same
molecular insights as desktop VR programs. However, it delivers those insights via a web
browser, bypassing the need for separate download and installation. Users simply load
molecular structures into their browsers’ memory, either from a file on their computer or by
automatically interfacing with online resources (e.g., the PDB). Once a file is loaded, users
can modify the visualization (e.g., which color scheme to use; whether to represent proteins
as ribbons, surfaces, etc.; whether to represent small molecules as sticks, spheres, etc.). They
can also easily share molecular scenes by simply sending custom URLs to colleagues.

ProteinVR is built using the Babylon.js JavaScript library [25], a full-featured browser-
based game engine that we repurposed for molecular visualization. Implementing a game
engine in the browser is only possible because of recent JavaScript APIs that improve access
to host-computer hardware. Babylon.js specifically leverages WebGL for browser-based
3D graphics and WebXR to support browser-based virtual reality on a broad range of
VR headsets.

A freely accessible ProteinVR implementation and the app’s source code are available
online under the open-source 3-Clause BSD License (Table 1).

4. Browser Apps as Educational Tools

The CADD browser apps highlighted in this review were designed primarily as
research tools, but the emphasis on easy access and usability also makes them well suited
to educational settings. Indeed, the corresponding author has successfully used some of
these tools (Webina, ProteinVR, and DeepFrag) in the classroom and has received positive
feedback from other educators.

Browser apps are valuable tools for incorporating active-learning exercises into the
classroom [105]. Active learning encourages students to actively participate in the learning
process, beyond just passive listening. It promotes learning by engaging students in real-
world problem solving [106]. Such exercises are particularly useful for new computational
biology/chemistry students; scientific computation is foreign to many of them, so even
small barriers can limit the benefit of CADD-focused active-learning exercises.

The first common barrier is accessibility. Some undergraduate classes have dozens or
even hundreds of students. Expecting so many students to separately download and install
a CADD tool that may not even be compatible with their operating system is impractical.
Yet nearly all students know how to visit a web page, and browser apps work seamlessly
on all major operating systems. These apps can thus introduce students to advanced
computational tools that they could not otherwise access.

The second barrier is usability. While advanced undergraduates may be familiar with
CLIs, younger students often are not. Active-learning projects using CLI CADD tools
require students to not only understand the tool itself but also the non-intuitive command-
line interface required to run that tool. In contrast, browser apps provide easy-to-use GUIs
that students can launch by simply visiting a URL, allowing them to focus on their results
rather than on usability hurdles.

The third barrier is technical. In large classroom settings, active-learning activities
often require many students to use the same tool simultaneously. If these activities leverage
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server apps, the many simultaneous requests can quickly overwhelm the remote resource.
The remote server must often implement lengthy wait times to deal with the sudden
demand, and such delays are not conducive to student learning. In contrast, browser
apps perform the calculations on each student’s own computer and so are less likely to be
overwhelmed at moments of high demand.

Finally, socioeconomic barriers also complicate CADD-focused active learning. Stud-
ies suggest students from challenging socio-economic backgrounds tend to select uni-
versities closer to their homes [107,108], but many live far from universities with the
shared infrastructure required to support a computationally oriented curriculum. Browser
apps distribute the computations to each student’s personal device rather than requir-
ing a shared resource. They thus have potential to democratize computational chemical
biology education.

5. Conclusions

Many powerful CADD tools accelerate early-stage drug discovery. Though broadly
adopted, these tools do not always provide an easy-to-use interface that can enable even
greater adoption. Our group found that browser apps are well-suited for CADD tool
deployment. A simple web server sends a CADD analysis program to the user’s local
browser when they first visit the app webpage, thus eliminating the need for manual
download and installation. Calculations take place on the user’s local computer rather
than on a third-party resource, so the user never needs to send proprietary data to a remote
system. All major operating systems have modern browsers, so browser apps are broadly
compatible by design. Moreover, thanks to HTML, JavaScript, and other tools, one can
easily create user-friendly GUIs to set up calculations and visualize results.

As JavaScript and related web technologies advance, we anticipate that browsers will
become increasingly powerful platforms for software deployment. This migration to the
browser is already apparent in other areas; for example, both Google and Microsoft have
developed web-based word processors, spreadsheets, and presentation applications with
substantial browser-side components. Given that web browsers are ubiquitous, operate
across multiple platforms, and are well suited to visualization, we anticipate that CADD
tools will increasingly leverage the browser as a software deployment platform.
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