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In the face of changes in their environment, bacteria adjust gene expression levels and
produce appropriate responses. The individual layers of this process have been widely
studied: the transcriptional regulatory network describes the regulatory interactions
that produce changes in the metabolic network, both of which are coordinated by
the signaling network, but the interplay between them has never been described in
a systematic fashion. Here, we formalize the process of detection and processing of
environmental information mediated by individual transcription factors (TFs), utilizing a
concept termed genetic sensory response units (GENSOR units), which are composed
of four components: (1) a signal, (2) signal transduction, (3) genetic switch, and (4) a
response. We used experimentally validated data sets from two databases to assemble
a GENSOR unit for each of the 189 local TFs of Escherichia coli K-12 contained
in the RegulonDB database. Further analysis suggested that feedback is a common
occurrence in signal processing, and there is a gradient of functional complexity in
the response mediated by each TF, as opposed to a one regulator/one pathway rule.
Finally, we provide examples of other GENSOR unit applications, such as hypothesis
generation, detailed description of cellular decision making, and elucidation of indirect
regulatory mechanisms.

Keywords: data integration, networks, transcriptional regulation, effector prediction, metabolism, genotype-to-
phenotype mapping, information flow

INTRODUCTION

Jacob and Monod outlined the relevance of coupling between regulation and metabolism in
their discovery of transcriptional regulators (Pardee et al., 1959). They discovered LacI, a protein
later termed a transcription factor (TF), that binds to the lac operon promoter and represses its
expression unless lactose is available. Their model of regulatory activity stated that TFs bind to
signaling molecules called effectors, which promote changes in the expression of genes involved in

Abbreviations: CCR, carbon catabolite repression; GENSOR unit, genetic sensory response unit; TF, transcription factor;
TRN, transcriptional regulatory network.
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the processing of said molecules. They explained how the cell
efficiently manages its resources by only producing specific
enzymes when environmental conditions make them necessary,
and this is still considered the paradigm for transcriptional
regulation: co-regulated genes are assumed to be involved in the
same biological process.

Currently, 189 local TFs are listed in RegulonDB, the
largest database of transcriptional regulation in Escherichia
coli K-12 (Gama-Castro et al., 2016), but a genome-scale
description of the functional effects of their regulatory activities
is still lacking. Previous formalisms have analyzed properties of
gene regulation through genetic circuits. Efforts have spanned
dynamical modeling (Thomas and D’Ari, 1990) to identifying
general network properties (Savageau, 1976, 2001; Kauffman,
1993; Gerosa and Sauer, 2011), but none of them has studied the
complete set of regulatory interactions in their functional context.

In the current genomic era, in which “we are drowning in
information but starved for knowledge” (Naisbitt, 1984), there
is a need for concepts that (a) integrate numerous and different
types of molecules and their interactions, (b) reflect biological
properties of the cooperation between elements, and (c) can be
applied on a small or large scale (Hyduke and Palsson, 2010).
Great strides have been made in network analysis to understand
how cellular behavior arises from interacting molecules (Ravasz
et al., 2002; Shen-Orr et al., 2002; Balazsi et al., 2005). However,
the best-studied networks tend to focus on individual layers
of interactions, such as TF–gene interactions (Gama-Castro
et al., 2016), metabolic reactions (Forster et al., 2003), and
signaling pathways (Papin and Palsson, 2004; Papin et al., 2005),
which portray an incomplete vision of the information that
promotes phenotypes. The goal is to integrate different layers
and obtain a thorough picture of the way that functions emerge
from combinations of individual mechanisms. This poses a
methodological challenge, since some networks are compact
and detailed (Alon et al., 1999; Berthoumieux et al., 2014) and
others are large and less precise (Karr et al., 2012; Brooks et al.,
2014), making it difficult to integrate this information into a
single framework that can be used to generate new knowledge.
Functional descriptions of the integration also require conceptual
improvements. Gene ontologies (GOs) have been the reference
for gene classification into biological processes for the past 16
years, but they were conceived to describe individual components
rather than the interactions among them (The Gene Ontology
Consortium, 2000).

Here, we formalized the process of signal detection to the
outset of a functional response, mediated by an individual
TF, into four components: (1) signal, (2) conversion of signal
into the effector, (3) genetic switch, and (4) response. The
integration product of the four components is termed a genetic
sensory response unit (GENSOR unit). Ideally, GENSOR units
describe the information that flows through different layers
of cellular organization to produce an appropriate response
(Supplementary Figure S1). We assembled a GENSOR unit
for each of the 189 local TFs present in RegulonDB by
integrating experimentally validated data from the literature
using simple regulons as starting points. Further analysis of
the GENSOR unit set showed that less than a quarter of

the TFs regulate genes that belong to the same metabolic
flux, but feedback is a common occurrence. A gradient of
response complexity can be observed and is partially explained
by the regulatory effect of the corresponding TF. Beyond
the biological insights presented here, we provide the set of
GENSOR units as a standardized framework for small- and
large-scale analyses of the interplay between transcriptional
regulation and metabolism. Last, we show examples of practical
applications, such as hypothesis generation, detailed description
of cellular decision making, and elucidation of indirect regulatory
mechanisms.

RESULTS

GENSOR Units of Local TFs in E. coli
K-12
GENSOR units are integrative networks that describe in detail
the information flow that goes along the molecular circuitry
from signal detection to generation of a response (Figure 1A).
They formalize the signal-response process in four components.
(1) Signal: the molecule that begins the information flow by
reflecting a change in the external or internal environment. (2)
Signal transduction: the conversion of the signal into a molecule
that will prompt a regulator. In the case of TFs, it refers to
the conversion of the signal into the effector molecule that
binds to the TF. For example, the signal lactose is transformed
into allolactose, the molecule that binds to the regulator LacI.
(3) Genetic switch: the repression/activation of the specific
set of genes needed to contend with the signaled change. (4)
Response: the effect of the gene products, which together produce
a new phenotype, a change in metabolism, or signal other
regulators.

To assemble a GENSOR unit for each of the 189 local TFs,
we used a data-driven approach. We automatically retrieved
from the RegulonDB database (Gama-Castro et al., 2016) the
genes directly regulated by a TF (regulon), its known effectors,
its active/inactive conformations, and the TF’s regulatory effect
over the regulated genes. From the EcoCyc database (Keseler
et al., 2013), we automatically obtained the gene products of the
regulated genes, the reactions catalyzed by the gene products,
the substrates and products of the catalyzed reactions, and the
protein complexes in which gene products participate. It is
important to note that the only heuristics included in our method
is to include no more genes than those directly regulated by
the TF. An exhaustive search is performed to retrieve all the
available elements that have been experimentally validated, so all
the interactions in GENSOR units have been proved to occur
naturally.

According to the Jacob and Monod paradigm, each TF
will directly regulate genes that together give rise to a
cellular capacity, for example, uptake of lactose as the carbon
source, production of osmoprotectants, or flagellar assembly.
From this assumption, it follows that the four components
of the GENSOR unit can be identified within the retrieved
set of elements and their interactions (Figure 1B). Eighty
GENSOR units included a known effector, and it was possible
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FIGURE 1 | GENSOR units. (A) The general GENSOR unit concept includes four components: (i) signal, (ii) signal transduction (shown in blue), (iii) a genetic switch
(shown in yellow), and (iv) the response (shown in green). The concept can be applied to any regulator that produces a genetic switch. (B) The BetI GENSOR unit.
This is an example of a GENSOR unit based on a bacterial TF; color coding for components is as depicted for panel (A). Signal transduction involves transport of
choline through the membrane, a genetic switch causes the repression of two transcription units, betT and betIBA, and the response involves the transformation of
choline into glycine betaine. From the higher perspective provided, it is possible to infer that mechanistically in presence of choline, BetI will cease to repress the
necessary enzymes for its transport and transformation into glycine betaine. Physiologically, BetI negatively regulates the expression of genes involved in the
response to osmotic stress in the absence of choline. The presence of choline induces the expression of the genes required for transport and conversion of choline
to glycine betaine, an osmoprotectant. (C) Pathways involved in production of L-tryptophan from D-erythrose-4P. The 3-dehydroquinate biosynthesis I pathway is
shown in red; the chorismate biosynthesis from 3-dehydroquinate pathway is shown in purple; the L-tryptophan biosynthesis pathway is shown in orange. Enzymes
that catalyze reactions are shown beside the reactions. Enzymes regulated by TrpR are shown in green. (D) In the TrpR GENSOR unit, the three reactions catalyzed
by AroB, AroD, and AroE are summarized in one secondary reaction without indication of the involved enzymes or intermediate metabolites. Another secondary
reaction includes reactions catalyzed by AroA and AroC.

to identify their four components. The resulting integrative
networks described in detail the steps from signal detection
to metabolic impact, which were summarized in a short
sentence (Figure 1B). For the remaining 109 GENSOR

units, only genetic switches and response information was
pinpointed, reflecting the physiological effect of the TF. It
is relevant to note that our previous assumption excluded
three occurrences: constitutive enzymes, cooperation between
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TFs, and yet-unknown regulatory interactions. Any of them
could account for genes involved in the biological process
depicted by a GENSOR unit, but they are not present because
they are not directly regulated by the TF. In order to
enrich GENSOR units with known functional interactions, we
considered canonical metabolic pathways. Links were added
between metabolites already present in a GENSOR unit if they
belonged to the same metabolic pathway and the directionality
of the pathway permitted metabolic flux between them. For
example, TrpR regulates seven enzymes of the 13 enzymes
involved in the production of L-tryptophan from D-erythrose-4P
(Figure 1C). Considering only TrpR’s direct targets, it would
appear that the reactions catalyzed by AroH and AroL are
not related. However, the metabolic pathways of chorismate
biosynthesis from 3-dehydroquinate (Figure 1C, purple arrows)
and 3-dehydroquinate biosynthesis I (Figure 1C, red arrows)
indicate the existence of a metabolic flux that converts
3-deoxy-D-arabino-heptulosonate-7P into shikimate and then
shikimate-3P into chorismate, respectively. In the TrpR GENSOR
unit, the reactions catalyzed by AroB, AroD, and AroE are
summarized in one link, termed a secondary reaction, without
indication of the involved enzymes or intermediate metabolites
(Figure 1D, dashed lines). The same happens for reactions
catalyzed by AroA and AroC. A total of 144 secondary reactions
were added to 48 GENSOR units (Supplementary Figure S2).
The 189 GENSOR units are publicly available in the RegulonDB
database1.

Feedback Is a Common Occurrence in
GENSOR Units
The next step was to identify general properties of GENSOR
units. The regulation model by Jacob and Monod (Pardee et al.,
1959; Monod et al., 1963) includes the ability of TFs to autotune
their activity according to cellular needs and is explained by a
direct effect of the regulated response on effector availability.
We considered the 80 GENSOR units with known effectors and
looked for the presence of reactions that were part of the response
while also having a role in the conversion of the signal into
the effector. Sixty-five of 78 GENSOR units (83%) included this
type of feedback. Two GENSOR units were excluded from the
analysis because they did not include regulated enzymes and
therefore had no reactions. The simplest feedback consisted of
an effector transport through the membrane, and it is interesting
that TFs with two or more known effectors had as many feedback
loops. The AllS GENSOR unit was the only one whose feedback
involved a secondary reaction, suggesting that feedback loops
underlie the most basic layer of bacterial decision-making by
relying on a single TF switch that senses and responds to these
changes. It is possible that feedback loops are a general property
of GENSOR units and at least one exists in each, but our method
was unable to identify the remaining 17% because they did
not rely on metabolic fluxes or use common metabolites that
our methodology excludes from the analysis, like DnaA, whose
effector is ATP. We expect to identify more feedback loops as new
information is included in GENSOR units.

1http://regulondb.ccg.unam.mx/

Complexity of TF Responses Covers a
Continuum
We would expect that all of the genes directly regulated by a
TF are necessary and sufficient to give rise to a cellular capacity.
In fact, bacterial regulators are often referred to as “regulator of
X metabolism.” We used the complete set of GENSOR units to
obtain a genome-wide distribution of the functional homogeneity
of TF responses. In order to exploit the interactions between
elements rather than the individual functions of genes, we
developed a metric termed connectivity. Connectivity considers
the number of individual metabolic fluxes present in a GENSOR
unit (and therefore regulated by an individual TF). A metabolic
flux is defined as a consecutive set of reactions where the product
of a reaction is the reactant of the next one, for example, as in
a metabolic pathway (see Materials and Methods). Enzymes that
catalyze individual reactions in a metabolic flux are considered
“connected,” because we assume that enzymes present in the
same metabolic flux will be part of the same functional process.
Connectivity is calculated as the ratio of connected enzymes
(Ec) to total enzymes (Et). If all enzymes are indeed sufficient
and necessary for a functional process, we would expect all
the regulated enzymes to be connected, and so we penalize
deviations by calculating the total independent metabolic fluxes
in the GENSOR unit (MFt) and adding the extra fluxes to the
denominator. Hence, connectivity is calculated as:

C =
Ec

Et+ (MFt− 1)

Connectivity values range from 0 to 1. A value of 1 indicates a
paradigmatic GENSOR unit where all the enzymes are connected
and involved in a single metabolic flux. On the other hand, a value
of 0 reflects a disconnected topology where each enzyme catalyzes
a reaction disconnected from the rest of the GENSOR unit. To
validate the biological significance of our metric, we calculated
the connectivity of the 293 base pathways reported in EcoCyc
(Figure 2A). The majority of metabolic pathways (55%) scored
a value of 1, and 84% scored 0.7 or higher. A value of 0 was
present for pathways such as tRNA charging, in which metabolic
reactions are not successive but are functionally related. Results
showed that connectivity does reflect a biological property, albeit
with an expected 7% margin of error due to pathways that are not
linear.

We calculated the connectivity distribution of 149
GENSOR units. Forty were excluded from the analysis
because they included less than two catalytic reactions
and would produce artificial values of 0. The resulting
connectivity distribution (Figure 2B) was significantly
different (Wilcoxon–Mann–Whitney; p-value < 2.2e-16)
from the metabolic pathway distribution (Figure 2A), which is
noteworthy because we enriched the GENSOR unit set to include
known metabolic pathways through the addition of secondary
reactions. This result showed that the metabolic response
mediated by TFs does not correlate with canonical metabolic
pathways. The largest proportion of GENSOR units (21%) had a
response involved in an individual metabolic flux, including 23%
of GENSOR units for which feedback was present. In contrast,
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in the second largest proportion, 15% of GENSOR units had a
connectivity of 0, followed by 11% with values of 0.5 and 0.6. The
resulting gradient of connectivity is not likely to be an artifact of
unknown binding sites, since it is present in the set of the most
extensively studied TFs (TFs with known effectors; Figure 2B,
red and blue bars), as well as in the set of less-studied TFs (TFs
without known effectors; Figure 2B, yellow bars). It is important
to note that connectivity of a GENSOR unit did not depend on
the number of enzymes present in it (Supplementary Figure S3).
Moreover, the gradient is still observed if only GENSOR units
with five enzymes or less are considered.

The connectivity of GENSOR units in the presence of
feedback (Figure 2B, red bars) can be interpreted as a measure of
autonomy of the TF response. Having a value of 1 means that, in
the presence of the signal, the TF will impact a single metabolic
flux that has an effect on said signal availability. Therefore, the
response will continue until the signal concentration changes.
Other forces can act on the metabolic flux, but from the TF
perspective its effect is straightforward. A total of 19 TFs fall
into this category, including those with responses involved
in allantoin (AllS, AllR), arsenite (ArsR), hydroxybutyrate
(AtoC), choline (BetI), chitobiose (ChbR), cyanate (CynR),
nickel (NikR), zinc (Zur, ZntR), Fe2+ (YqjI), acetylneuraminate
(NanR), 3-(3-hydroxyphenyl)propanoate (MhpR), idonate
(IdnR), glycine (GcvA), citrate (PrpR), gluconate (GntR),
tryptophan (TrpR), and xanthosine (XapR) metabolism.

The TF regulatory effect could account for low connectivity
values and a higher complexity of a GENSOR unit response.
Activation of a metabolic flux needs the presence of all the
necessary enzymes, but inhibition of a pathway and redirection
of the metabolic flux can be achieved by repressing a single
gene. Following this logic, we would expect lower connectivity
values for repressed enzymes. To test this hypothesis, we
calculated connectivity of activated and repressed genes in each
GENSOR unit separately. Consistent with our hypothesis, the
connectivity distribution of repressed genes had a peak at 0 that
included 67% of tested GENSOR units (Figure 2C) and was
significantly different from the distribution of activated genes
(Wilcoxon–Mann–Whitney; p-value = 7.724e-11). GENSOR
units with the lowest connectivity values might be regulatory
checkpoints that affect several independent metabolic fluxes
in response to a stimulus, producing a more global response.
Ultimately, connectivity reflects the complexity of the response
mediated by a TF and, as we have shown, it is a continuum
with peaks on both sides of the scale. Physiologically relevant
metrics like connectivity might aid in more accurate functional
classifications for regulators.

Prediction of Effectors Using GENSOR
Unit Topology
The value of GENSOR units lies partially in the depiction of the
interactions between their elements. They turn lists of regulated
genes, enzymes, and reactions into a comprehensive network
that reflects the functional effect of a TF. We proceeded to
analyze topological properties of the GENSOR units regarding
the relationship between effectors and TFs. We considered the set

FIGURE 2 | Connectivity distributions. (A) Distribution of connectivity values of
293 metabolic pathways. Only sets of genes that catalyze two or more
reactions were considered. (B) Distribution of connectivity values of 149
GENSOR units. GENSOR units with known effectors and identified feedback
loops are shown in red, GENSOR units with known effectors and no identified
feedback loops are shown in blue, GENSOR units with no known effectors
where only a genetic switch and response have been identified are shown in
yellow. The distributions of values in panels (A) and (B) were significantly
different (Wilcoxon–Mann–Whitney; p-value < 2.2e-16). (C) Distribution of
connectivity values of activated (yellow) and repressed (orange) genes in
GENSOR units. Only sets of genes that catalyze two or more reactions were
considered. Activated and repressed distributions were significantly different
(Wilcoxon–Mann–Whitney; p-value = 7.724e-11).
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of GENSOR units with known effectors and feedback (Figure 2B,
red bars), and we identified the position of the effector in
the regulated metabolic flux. Effectors were classified into two
categories: “substrate/product” if the effector was the first or
last metabolite in the metabolic flux, or “intermediate” if it was
in any other position. First and last metabolites were grouped
in the same category to eliminate ambiguity due to reversible
reactions. Ninety-seven percent of the known effectors (75/77)
are intermediate metabolites of a metabolic flux (Supplementary
Table S1). The high proportion of intermediate effectors is
relevant given that only 40% of all metabolites in these GENSOR
units with known effectors classify as intermediates under
the same criteria. A high proportion of intermediate effectors
had been previously observed in inducible catabolic systems
(Savageau, 1976). The global analysis presented here suggests that
intermediate effectors are a general property, irrespective of the
TF mode of action.

It has been shown that using intermediate metabolites as
effectors is an effective strategy to increase the stability of a system
(Savageau, 1974, 2001). In GENSOR units, stability is crucial
to avoid unnecessary production of enzymes under fluctuating
signals, which can affect cellular growth rate. Additionally,
an intermediate effector will produce two feedback loops.
The enzymes upstream of the effector will create a positive
feedback loop, where more enzymatic activity will produce
more effector. The enzymes downstream of the effector will
be involved in a negative feedback loop where the opposite
will happen: the more enzymatic activity, the less effector
will be present. This dual dynamic produced by intermediate
metabolites has been demonstrated by comparing the expression
patterns of upstream and downstream enzymes (Chubukov
et al., 2012). Accordingly, we observed that upstream and
downstream enzymes in GENSOR units tend to be present in
different operons. The most frequent case in GENSOR units
are effectors positioned as products of transport reactions (here
considered within the set of intermediate metabolites), for
example, BetI GENSOR unit (Figure 1B), and most GENSOR
units involved in carbon source utilization and amino acid
metabolism. This dynamic might explain why transport enzymes
are commonly encoded in a different operon. It is also possible
that different dynamics present in the same pathway account
for fine-tuning of the metabolic flux in branched pathways,
where transport of a metabolite is maximized (through the
positive feedback loop), but utilization is modulated so that
other pathways can use the metabolite as well. From an
evolutionary perspective, an intermediate effector producing
two different dynamics would allow the cell to produce
more complex metabolic behaviors without the need of new
TFs.

The high proportion of intermediate effectors suggested
that it would be possible to extrapolate this property to the
GENSOR units with no known effector, and to predict effector
candidates by retrieving their intermediate molecules. Given the
gradient of complexity observed in the GENSOR unit set, it
is important to note that the number of effector candidates
(and as a result, the number of false positives) will increase
according to the complexity of the GENSOR unit in which the

method is applied. The median of intermediate metabolites in
each GENSOR unit is 11, which is considerably lower than the
number of metabolites screened in some heuristic studies (Ibañez
et al., 2000). Intuitively, the best predictions would be derived
from the simplest GENSOR units, so we applied our method
to the 15 GENSOR units with a connectivity value of 1 and no
known effector (Table 1). Since candidates are taken from the
response component of the GENSOR unit, all putative effectors
are expected to produce feedback. To support the predictions,
experimental evidence was searched in the literature and TFs
were searched for ligand-binding domains to further support the
mechanism of action.

Predictions for FabR and UlaR were validated. Supporting
evidence was found for hypothetical effectors of Dan, FeaR,
HcaR, MtlR, KdgR, and MngR, suggesting that they are excellent
candidates for validation experiments. Predictions for AscG,
CsiR, GatR, RtcR, CaiF, and YiaJ have not been previously
reported in the literature. Evidence for CadC supports a
mechanism of action that does not rely on ligand binding
(Buchner et al., 2015), which is consistent with its lack of a
molecule-binding domain. Two interesting examples of new
predictions are CaiF and YiaJ. It has been shown that CaiF acts
as an activator in the presence of L-carnitine (Eichler et al., 1996).
However, no binding of L-carnitine was identified in a mobility
shift assay (Buchet et al., 1999). CaiF GENSOR unit (Figure 3A)
shows that one of our predictions, gamma-butyrobetaine, would
render an end-product inhibition dynamic that fits with the
observation of L-carnitine acting as inducer, particularly because
it is a substrate in the reaction producing gamma-butyrobetaine.
YiaJ negatively regulates the conversion of xylulose and
2,3-dioxo-L-gulonate into D-xylulose 5-phosphate (Figure 3B).
Ibañez et al. (2000) tested 80 different compounds, including
D-xylulose, and none showed a significant increase in expression
of target genes. It is possible that our predictions might yield
different results, given that they rely on the global interpretation
of the interactions in the GENSOR unit. For example, 2,3-dioxo-
L-gulonate might act as an effector whose presence unbinds
YiaJ from DNA. When bound to DNA, YiaJ would repress
the enzymes needed for 2,3-dioxo-L-gulonate utilization as the
carbon source, and enzymes would be produced only when
it is present in the environment. Since 2,3-dioxo-L-gulonate
is converted into D-xylulose 5-phosphate, its uptake would
probably only take place when D-xylulose 5-phosphate is not
obtained from other carbon sources, like arabinose, xylulose, or
ascorbate. Another predicted effector, D-xylulose 5-phosphate,
might also act as an effector promoting YiaJ binding to DNA in
its presence, rendering an end product inhibition dynamic. We
omitted ribulose-5-P from the predictions because it is a central
metabolite constantly present in the cell, and the activity of YiaJ
has not been reported as central to its metabolism.

In summary, 53% of predictions were supported, 7% were
rejected, and 40% have never been reported, including two
cases where the GENSOR unit dynamics support the prediction.
Because larger data sets are not available, it was not possible
to assess our method using receiver operating characteristic
curves, but it is important to note that our approach did not
require additional tools and it could be used to significantly
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TABLE 1 | Effector predictions in 15 GENSOR units with no reported effector in RegulonDB, and a connectivity value of 1.

GENSOR unit Ligand binding domain Predicted effectors Prediction status Evidence Reference

FabR Fatty acids attached to
acyl-ACP

Validated Gel mobility shift assay Zhu et al., 2009

UlaR DeoR C terminal sensor
domain (Pfam:PF00455)

Ascorbate-6P Validated Gel mobility shift assay Garces et al., 2008

Dan Bacterial regulatory
helix-turn-helix protein,
lysR family
(Pfam:PF00126)

Tartrate Supporting
evidence

Change in gene expression
due to addition of the
compound
(β-galactosidase assay)

Kim et al., 2009

FeaR AraC-binding-like domain
(Pfam:PF14525)

Hyacinthin (phenyl
acetaldehyde)

Supporting
evidence

Inference from operon
dynamics

Zeng and Spiro,
2013

HcaR LysR substrate binding
domain (Pfam:PF03466)

3-(5,6-
Dihydroxycyclohexa-1,3-
dien-1-yl)propanoate

Supporting
evidence

Inference from operon
dynamics

Turlin et al., 2001

MtlR Mannitol-1P Supporting
evidence

Inference from operon
dynamics

Figge et al., 1994

KdgR Bacterial transcriptional
regulator (Pfam:PF01614)

2-Keto-3-
deoxygluconate-6-P

Supporting
evidence

2-Keto-3-deoxyguconate
has been reported as
effector of KdgR ortholog in
Erwinia chrysanthemi

Nasser et al., 1992

MngR UTRA domain
(Pfam:PF07702)

2 (Alpha-D-mannosyl-6-
phosphate)-D-glycerate

Supporting
evidence

Change in gene expression
due to addition of the
external form of the
compound (microarray).
Mutation of downstream
enzymes did not affect
induction.

Sampaio et al.,
2004

AscG Periplasmic binding
protein-like domain
(Pfam:PF13377)

Arbutin-6P,
beta-D-cellibiose-6P

New

CaiF Gamma-butyrobetaine,
crotonobetainyl-CoA,
carnityl-CoA, gamma-
butyrobetaine-CoA

New. Supported by
dynamics of the
GENSOR unit (see
text). Evidence
against other
predictions.

Mobility shift assay reflected
no binding of L-carnitine or
crotonobetaine

Buchet et al., 1999

YiaJ Bacterial transcriptional
regulator (Pfam:PF01614)

Xylulose-5P,
2-3,dioxo-L-gulonate,
3-keto-L-gulonate,
3-keto-L-gulonate 6-P

New. Evidence
against other
predictions (see
text).

80 candidate effectors did
not show changes in target
gene expression

Ibañez et al., 2000

CsiR FCD domain
(Pfam:PF07729)

L-Glutamate,
ketoglutarate, succinate
semialdehyde

New

GatR DeoR C terminal sensor
domain (Pfam:PF00455)

Galactitol 1-phosphate,
keto-L-tagatose
6-phosphate,
tagatofuranose
1,6-diphosphate

New

RtcR RNA terminal-2′,3′-cyclic-
phosphate

New

CadC Cadaverine, lysine Evidence against
mode of action

Anchored to the
membrane; works as a
one-component system.
Responds to PH stress.

Buchner et al.,
2015

Ligand-binding domains identified in TF sequences are shown alongside their Pfam identifiers. Predicted effectors were inferred from the GENSOR unit topology; the
prediction status indicates whether the prediction has been validated in the literature, evidence exists that supports or contradicts the hypotheses, or that predictions are
new. ‘Evidence’ column indicates the relevant experiments that have been reported in the literature.
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reduce the search space for possible effectors before experimental
procedures.

GENSOR Units Can Be Used as a
Standardized Framework for Integrative
Studies
The collection of regulatory interactions in RegulonDB has been
widely used as the gold standard to test new algorithms and as
a reliable data set for analysis of the transcriptional regulatory
network (TRN). GENSOR units reflect the metabolic impact
of that gold standard. Since they were assembled through a
data-driven, exhaustive approach, they describe a new layer
of biologically relevant knowledge and can be used by the
community as a standardized framework for the study of the
interplay between transcriptional regulation and metabolism in
E. coli K-12. One of the main advantages is that GENSOR units
are useful for small-scale studies, for example, by analyzing those
with high connectivity whose effect is modular. In addition,
GENSOR units can be used as building blocks for higher-level
descriptions, as high as a whole-cell description that integrates
the complete set of GENSOR units through their overlapping
elements (Supplementary Figure S4). By merging individual
GENSOR units, it is possible to elucidate complex cellular
behaviors that involve more than one TF, for example, carbon
catabolite repression (Monod, 1942; Görke and Stülke, 2008).
When presented with two or more different carbon sources,
E. coli will begin uptake and utilization in a fixed order: first
glucose, then lactose, arabinose, xylose, sorbitol, or rhamnose,
and finally ribose (Aidelberg et al., 2014). AraC and XylR are TFs
that bind to arabinose and xylose, respectively, and coordinate
their utilization. Both regulate the xylAB transcription unit, so
their GENSOR units can be merged into a complex GENSOR
unit (Figure 4A). The AraC–XylR complex GENSOR unit shows
that when arabinose and xylose are present at the same time,
xylAB will be repressed by AraC and activated by XylR. Given
that in E. coli repression tends to be dominant (Collado-Vides
et al., 1991), transcription of xylAB will be halted and arabinose
will be used preferentially. Once arabinose is depleted from the
environment, AraC will return to an inactive state. xylAB can
be induced by XylR, and xylulose will be used as the second
carbon source. In summary, the opposite regulation of xylAB
is the switch where E. coli decides on the uptake of arabinose
over xylose. AraC–XylR complex GENSOR unit shows the
descriptive power of merging individual GENSOR units. More
complex decisions can involve more than two GENSOR units,
but regardless of the size they retain the same level of detail.
Availability of gold standard data sets is a current limitation for
studies that integrate regulation and metabolism (Imam et al.,
2015). The GENSOR units presented here seek to fill that gap
and can also be used for dynamic modeling or analysis of general
properties from the complete set of interactions.

Using GENSOR units as building blocks can also shed light
onto indirect regulatory mechanisms that rely on metabolism
to tune the activity of a TF in the presence of a signal sensed
by another TF. The presence of feedback in a GENSOR unit
conveys that the response mediated by a TF has a direct effect

on its effector availability. Nevertheless, the response can also act
on the availability of the effector of a second TF. For example,
AlaS binds to L-alanine to solely repress its own promoter;
since no other TFs regulate its transcription, it appears as
an isolated node in the TRN. However, IscR, NsrR, Fur, and
OxyR GENSOR units include the production of alanine in their
response through the action of SufS, an L-cysteine desulfurase.
In the presence of iron–sulfur clusters, nitric oxide, iron, or
oxidative stress (IscR, NsrR, Fur, and OxyR signals), the cellular
concentration of alanine will fluctuate, and in turn the AlaS
functional conformation will be affected. This rationale can be
applied on a larger scale to identify cascades of indirect TF–TF
regulation (Figure 4B). It will be interesting to couple metabolic
and transcriptional regulation cascades, since conformational
changes are rarely considered in large-scale analyses of the TRN.

DISCUSSION

During their lifetimes, cells are challenged with a plethora
of perturbations from the environment and their internal
machinery. To survive, they rely on genetic circuits that sense
changes and give an appropriate response. Understanding how
the cell processes information is crucial for advancing the
elucidation of design principles. The GENSOR unit concept
presented here integrates relationships between the signaling,
regulatory, and metabolic networks to depict the information
flow behind individual signal → response processes. We have
performed a genome-scale analysis of the complexity of the
response mediated by each TF, testing the paradigm set by Jacob
and Monod (1961) with the regulation of the lac operon, whereby
regulators work as on/off switches for a particular capacity. Our
results showed that, at the genome scale, the relationship between
regulated genes and metabolism does not follow an evident one
TF/one process rule (Figures 2A,B), but design principles can still
be observed (Figure 2C).

GOs and metabolic pathways are the most used concepts to
describe functional units in bacteria. They are mostly used for
obtaining functional overviews of groups of genes. However, their
definitions of where a process begins and ends are sometimes
based on historical and organizational reasoning (such as the
presence of common metabolites). Interpretations derived from
them are not likely to reflect the way bacteria “understand”
function (Bordbar et al., 2014). As an example, 25% of GENSOR
units do not include any genes present in a canonical pathway.
As for GO enrichment analysis, enriched GO terms in individual
GENSOR units range from 0 to 228 (Supplementary Figure S5).
Forty percent of GENSOR units have more than 50 enriched
GO terms. The hierarchical tree structure of the ontology makes
difficult the interpretation of such data, since researchers have
to guess to what extent parent–child terms can be thought of
as being the same process. Clusters of Orthologous Groups
functional categories are also widely used to describe gene
function. Given the broadness of the functional terms, they are
complementary to GENSOR units. They could be used as a
guide to merge individual GENSOR units and describe higher
level interactions between their elements. GENSOR units are
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FIGURE 3 | GENSOR unit topologies that allow the inference of hypothetical effectors. (A) The CaiF GENSOR unit is active under anaerobic conditions. It is involved
in transport of L-carnitine, efflux of gamma-butyrobetaine, and the synthesis of the latter from L-carnitine and gamma-butyrobetaine–CoA. Gamma-butyrobetaine
could work as an effector that creates a complex with CaiF and promotes its unbinding from DNA, thus inhibiting the activation of the necessary enzymes for its
synthesis and yielding an end product inhibition dynamic that stops the production of the enzymes if the gamma-butyrobetaine concentration inside the cell reaches
a threshold. (B) The YiaJ GENSOR unit is involved in the transport of 2,3-dioxo-L-gulonate and its transformation into ribulose-5P. The presence of
2,3-dioxo-L-gulonate could promote unbinding of YiaJ from DNA, thus inhibiting the repression of the necessary enzymes for its utilization. Alternatively, xylulose-5P
in complex with YiaJ could bind to DNA and promote the inhibition of the necessary enzymes for its synthesis in an end product inhibition dynamic.
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FIGURE 4 | GENSOR unit merging. (A) The XylR-AraC complex GENSOR unit. Activation of transcription units is shown in green, and repression is shown in red.
Coregulation of xylAB with opposite effects creates a switch in carbon source utilization; if arabinose is present and xylose is absent, xylAB will be repressed and
arabinose will be used as the main carbon source. If xylose is present and arabinose is absent, AraC will stop repressing xylAB, XylR will activate it, and xylose will be
used. When both carbon sources are present, AraC repression will produce the preferential use of arabinose. (B) Cascade of TF–TF regulation through the
production of effectors. The cascade is elicited by the activation of the two-component system AtoC in the presence of acetoacetate. AtoC is involved in
biosynthesis of polyamines, catabolism of short-chain fatty acids, motility, and chemotaxis and directly regulates only four genes. The metabolic effect of its response
produces the effector GlcC, whose response produces other effectors that give rise to a succession of changes in 16 other TF conformations. Edges link TFs that
produce an effector in their response to TFs (arrow in edge) that bind to that effector. Orange edges indicate the presence of an effector produces an active
conformation in the second TF (arrow in edge), and blue edges indicate inactive conformations.
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a stepping stone toward building a framework that integrates
transport, signal transduction, gene regulation and metabolism,
in a directional regulated process that should capture the logics
of information flow as it happens in the cell. They make it
possible to trace relationships between genes of interest in their
transport, signaling, metabolic, and regulatory contexts at the
same time. GENSOR units can address questions such as “Is a
group of genes responding to the same signal?” As a conceptual
tool, they aim at facilitating the task of making biological sense
of high-throughput expression data by reflecting the way that the
cell is interpreting the changes that it is being subjected to.

The conceptual integration presented here has opened
new questions. For instance, the paradigmatic functional
homogeneity among regulons is not a general property.
Connectivity values yield a gradient that goes from
monothematic to epistatic GENSOR units. It is noteworthy that
most GENSOR units are on opposite sides of the connectivity
gradient. We propose three non-exclusive hypotheses to
explain this. (1) Differences in regulatory mechanisms might
produce differences in response properties. For example,
two-component systems might account for global responses
with low connectivity. (2) Some cellular functions require a
more coordinated response. Nutrient uptake and efflux of toxins
need fast responses, but flagellum assembly or cell cycle are
capacities that depend on the presence of a large set of stable
signals. (3) TFs regulate different subgroups of genes under
different conditions, creating condition-specific subunits within
GENSOR units. Higher-connectivity GENSOR units might pool
independent metabolic fluxes that become active under different
conditions. This shows the challenge ahead of making sense of
the cell circuitry at higher levels of integration.

It has been proposed that coordination of multiple signals
is embedded in a series of nested loops where general signals
control several modules and local signals control the metabolic
flux within modules (Chubukov et al., 2014). In this scenario,
feedback loops would be a common occurrence. Small, local
loops are for simple and fast responses, like carbon uptake, and
larger loops are for central responses, like cell division. The
latter requires a combination of signals, encompassed in smaller
loops, to be present at a given time. This hypothesis agrees with
our observations of GENSOR units. (1) Feedback loops are a
common occurrence. (2) There is a gradient of modularity in
GENSOR units reflected by connectivity values, from evident
self-sufficient topologies to unrelated reactions that need the
presence of other GENSOR units to be interpreted. (3) GENSOR
units can be linked through “reporter molecules,” such as effectors
that can signal to general regulatory programs (Figure 4B). (4)
GENSOR units can be merged to create a broader feedback loop
(Supplementary Figure S6).

To the best of our knowledge, there is no other framework
that comprises the complete catalog of natural genetic circuits
mediated by TFs. Since GENSOR units place regulation in its
natural cellular context, the concept is in line with operons and
regulons and can be interpreted as a higher-level natural unit.
GENSOR units also provide twofold methodological novelty.
First, there is the automatic integration of data through an
exhaustive search that eliminates any bias toward what the

curator knows about the regulator. For example, rarely is it
mentioned in descriptions of the lac operon that LacY can also
transport melibiose. The only inherent bias is the availability of
data in the two databases used. However, GENSOR units could
be updated, as for any data set, with each new database release.
The second methodological novelty is the prediction of effectors
from the topology of the GENSOR unit alone. Although further
validations are needed, we have proved that the information
provided by GENSOR units can meaningfully reduce the number
of effector candidates before designing an experiment.

GENSOR units can be used as templates for dynamic
modeling. Either individually or merged to trace metabolic
fluxes of interest, the GENSOR units can be used to predict
the effects of adding molecules in the medium and to identify
functional modules. They can also be used as a gold standard
for new methodologies that predict properties of the interplay
between transcriptional regulation and metabolism. Efforts
are currently being made to assemble GENSOR units for
other bacteria. It will be interesting to compare rewiring of
their components, considering that TF binding sites diverge
faster than coding sequences (Borneman et al., 2007). It
might be possible to identify “orthologous” topologies that
produce the same functional output using different network
architectures. Identifying GENSOR units in pathogenic strains
could also help in antibiotic design. Finally, the conceptual
framework of GENSOR units can be expanded to other
types of regulators. We have assembled a GENSOR unit of
sigma factor 19 from E. coli that shows the four components
and a feedback loop (Figure 5). Eventually, GENSOR units
could be applied to eukaryotic regulators involved in disease
to understand the mechanisms that cause disruptions in
cellular dynamics, for example, the disappearance of feedback
loops.

MATERIALS AND METHODS

GENSOR Unit Assembly
Active and inactive conformations, effectors, and regulated
genes of the 189 local TFs with experimental evidence for
their regulatory activities were obtained automatically from
RegulonDB data sets; the Perlcyc API of Pathway Tools
was used for automatic retrieval of gene products, catalyzed
reactions, substrates, products, and directionality of reactions,
heteromultimeric protein complexes in which gene products
participate, and the rest of the monomers involved in the
complex. Data were used to automatically generate an SBML
file using CellDesigner 4.4 (Funahashi et al., 2008), the
resulting network that was manually inspected and components
in GENSOR units were identified. Secondary reactions were
included by identifying pairs of reactions in the GENSOR unit
that belonged to the same metabolic pathway using Perlcyc API of
Pathway Tools software, the connecting reactions were added as
a single secondary reaction only if directionality was maintained.
Reversible reactions were considered. The resulting network and
the information on each element and interaction were added to
RegulonDB.
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FIGURE 5 | The sigma 19 (FecI) GENSOR unit. In the presence of ferric dicitrate, FecI activates transcription of genes that code for proteins involved in transport of
ferric dicitrate. Events occur as follows: external ferric dicitrate binds to FecA and causes a conformational change that allows FecA binding to TonB. FecA, TonB,
and ExbD, and ExbB forms a complex that transports external ferric dicitrate into the periplasmic space. Alternatively, this complex binds to FecR, a protein that
binds to sigma 19 and stimulates the binding of sigma 19 to RNA polymerase. Finally, the complex stimulates the transcription of the genes that code for proteins
involved in the transport of ferric dicitrate from the periplasmic space to the cytoplasm. The signal and signal transduction is shown in blue, the genetic switch is
shown in yellow, and the response is shown in green.

Properties of GENSOR Units
All properties were automatically identified and/or quantified
using custom perl scripts available at GitHub2.

Metabolic Fluxes in GENSOR Units
A metabolic flux was considered a chemical transformation of
one metabolite into another; it could comprise one or more
enzymatic reactions. A metabolic flux of two or more enzymatic
reactions was created when substrates of one reaction were
present in another either as substrates or products. Directionality
of the reactions was considered to infer directionality of
metabolic flux.

Feedback
All the possible metabolic fluxes in each GENSOR unit were
obtained. Feedback was considered present when an effector
was involved in one or more metabolic fluxes. Two-component
systems were not considered, because their effector molecule was
annotated as phosphate.

Connectivity
Connectivity was calculated through the following formula:

C =
Ec

Et+ (MFt− 1)

where Ec is the connected enzymes in the GENSOR unit; Et
is the total enzymes in the GENSOR unit; and MFt is the
total independent metabolic fluxes in the GENSOR unit. Two

2https://github.com/dledezma/gensor_units/tree/master/perl_scripts

enzymes were connected if any of their catalyzed reactions were
also connected. Two reactions were connected if they shared
substrates or the product of a reaction was also the reactant of
a second reaction. Metabolic fluxes are independent groups of
connected reactions (by the criteria described above), e.g., two
components were present in a GENSOR unit if two groups of
reactions were not connected between them but reactions within
each group created a continuous flux.

Connectivity of Metabolic Pathways
Canonical pathways and the genes involved in each were obtained
from EcoCyc by using the Pathway Tools software, Perlcyc
API, and custom Perl scripts. A total of 362 base pathways
were introduced to a modified version of the GENSOR unit
pipeline; only 293 included two or more enzymatic reactions, and
connectivity was calculated for these. Regulation of the genes was
not considered. The pipeline used for the analysis can be found at
GitHub3.

Connectivity of GENSOR Units,
Considering Their Regulatory Effects
Metabolic fluxes identified in each GENSOR unit only considered
reactions catalyzed by enzymes whose genes were subject to
the same type of regulation (activation/repression). Dual and
unknown regulatory interactions were considered in both sets.
Connectivity was obtained with the same algorithm, considering

3https://github.com/dledezma/gensor_units/blob/master/pipelines/pipeline_
connectivity_pathways.sh
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activated and repressed metabolic fluxes separately. The pipeline
used for the analysis can be found at GitHub4.

Effector Predictions
Position of Effector in Pathway
Seventy-eight GENSOR units with known effectors were
analyzed. The position of each effector in the regulated pathway
was automatically retrieved using a custom Perl script. The
classification criteria were as follows:

- Substrate/product. Effectors that had a role as reactant in
only one enzymatic reaction in the GENSOR unit. First and last
positions were grouped to decrease ambiguity due to reversible
reactions.

- Intermediate. Effectors that had a role as reactant in two
or more enzymatic reactions in the GENSOR unit. Effectors
that were products of transport reactions were considered
intermediates to follow the classification defined by Savageau
(1976).

Selection of Effector Candidates
GENSOR units with a connectivity value of 1 and no reported
effectors in RegulonDB were used to predict effectors from
their topology. All metabolites in the GENSOR unit were
classified as substrate/product or intermediate according to the
criteria mentioned above. Resulting intermediate metabolites
were searched in the literature for experimental evidence of
ligand function. The metabolites with supporting evidence on
each GENSOR unit were considered hypothetical effectors; if
no information was available for any of the molecules, all were
reported as new candidates. Ligand-binding domains of the 15
TFs were identified using the NCBI Conserved Domains and
Pfam (Finn et al., 2016) databases.

Statistical Analyses
Wilcoxon–Mann–Whitney tests were performed through a
Wilcoxon rank sum test with continuity correction, using R
software.

AtoC Cascade of Indirect TF Regulation
GENSOR units that included a reaction producing the effector of
their own reaction of or another GENSOR unit were identified
using custom Perl scripts on the relational tables of the GENSOR
unit data set. The AtoC cascade was identified manually using
AtoC as the starting point; all GENSOR units whose TFs bound to
a metabolite produced in the AtoC GENSOR unit were included
in the cascade and used as new starting points. The algorithm was
run recursively until no more effectors were present in the lowest-
level GENSOR unit response. The cascade network was produced
using Cytoscape v3.1.1 (Shannon et al., 2003).

Metabolic Pathways and Gene
Ontologies in GENSOR Units
Metabolic pathways of all genes were obtained from EcoCyc
using Pathway Tools software. GOs of all genes were obtained

4https://github.com/dledezma/gensor_units/blob/master/pipelines/pipeline_
connectivity_with_effect.sh

from the Gene Ontology Consortium5. GO enrichments were
obtained using the SmartTables tool in EcoCyc. Enrichments
were calculated using all the genes in a GENSOR unit, along with
analysis via the Fisher exact statistic with Bonferroni correction;
p-values of <0.05 were considered statistically significant.
A pathway/GO term was considered “present” in all the GENSOR
units that included at least one gene from the pathway/GO term.

Data and Code Availability
GENSOR units in network form are publicly available in
RegulonDB6, and GENSOR units in tab-delimited files are
publicly available at GitHub7. All scripts and files generated in
the analysis are also available at GitHub8.
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