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Abstract: Through the centuries, the domestication and modern breeding of wheat led to a significant
loss of genetic variation in the cultivated gene pool with a consequent decrease in food diversity. Current
trends towards low-input and sustainable agriculture call for the revitalization and exploitation of ancient
wheats, which represent a reservoir of biodiversity useful to ensure sustainable wheat production in
the context of climate change and low-input farming systems. Ancient Caucasian wheat species, such
as the hulled wheats Triticum timopheevii (tetraploid AuAuGG) and Triticum zhukovskyi (hexaploid
AuAuAmAmGG), are still grown to a limited extent in the Caucasus for the production of traditional
foods. These Caucasian wheats were grown in Italy and were analyzed for physical, nutritional and
technological characteristics and compared to durum wheat. Both Caucasian species revealed a high
protein content (on average 18.5%) associated with a low gluten index, mainly in T. zhukovskyi, and test
weight values comparable to commercial wheats. The total antioxidant capacity was revealed to be the
double of that in durum wheat, suggesting the use of ancient Caucasian wheats for the production of
healthy foods. Finally, the technological and rheological results indicated that Caucasian wheats could
be potential raw material for the formulation of flat breads, biscuits and pasta.

Keywords: Triticum timopheevii; Triticum zhukovskyi; food diversity; minor cereals; sustainable diets;
ancient wheat

1. Introduction

Through the centuries, domestication and modern breeding made only three cereal
species, rice, corn and wheat, provide almost 60% of the energy intake of the planet’s
population [1]. The narrow focus of modern agriculture on intensive selection has led to a
significantly reduced genetic diversity among wheat cultivars, since only few genotypes
are cultivated on a large scale. The need for food diversification as well as the current
demand for nutritionally healthy food products have driven a renewed interest in ancient
wheats such as emmer, spelt and einkorn because of their desirable nutritional and putative
health-beneficial traits [2,3]. Consequently, some neglected species and old varieties have
been reintroduced in agriculture, having been recognized as interesting raw materials for
the production of niche products. A superior quality, with reference to protein content,
minerals and antioxidant compounds, along with minor adverse health effects in terms
of allergy, intolerance and sensitivity, were observed in ancient wheats compared with
the modern varieties [3–9]. Ancient Caucasian wheat species, such as the hulled wheats
Triticum timopheevii (Zhuk.) Zhuk. subsp. timopheevii (tetraploid AuAuGG) and Triticum
zhukovskyi Menabde et Erizian (hexaploid AuAuAmAmGG), investigated in the present
study, have not been subjected to an extensive breeding activity, representing a reservoir of
genes which could contribute to extending the biodiversity of cultivated wheats in order
to better face climate fluctuations and biotic and abiotic stress. These two species were
probably domesticated in Southern Turkey and Northern Syria and then transferred to
Georgia, where they were cultivated as a mixture in a population called Zanduri which
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also comprises the diploid Triticum monococcum var. hornemannii (diploid AmAm) [10].
The genome analysis revealed that T. zhukovskyi originated from the hybridization of T.
timopheevii with T. monococcum [11,12]. Wild timopheevii (Zhuk.) Zhuk. is also a primary
genetic relative and gene donor to emmer wheat (T. turgidum subsp. dicoccon (Schrank)
Thell.) and to common wheat (T. aestivum L.) [13,14]. It is worth noting that these ancient
wheats are characterized by an immunity to the prevalent wheat diseases such as rusts,
powdery mildew and Fusarium head blast, as well as a tolerance to salt and excessive
humidity; additionally, they are well adapted to cool environments [13,15–18]. Their
cultivation is currently limited to marginal areas for the production of traditional foods,
particularly flat breads, and for feed, whereas straw is made into mats, carpets, baskets and
is used for packing material [16].

To prevent the loss of Caucasian ancient wheat as an indispensable raw material for
the preparation of typical foods and artifacts, a request for their inscription in the List of
Intangible Cultural Heritage in Need of Urgent Safeguarding of UNESCO (United Nations
Educational, Scientific, and Cultural Organization) was proposed in 2019 by the Minister of
Environment, Protection and Agriculture of Georgia [19].

The reintroduction of the large-scale cultivation of undervalued cereal species, beyond
showing acceptable agronomic performances, comes with the identification of feasible prod-
ucts (flours, breads, pasta, biscuits, beverages) appreciated by consumers and constituting
a source of health-promoting bioactives.

Comparative studies on the grain quality of several ancient wheat species revealed
a higher total phenolic and ferulic acids content in T. thimopheevii with respect to other
ancient and common wheat varieties that were analyzed, along with a high antioxidant
activity, balanced iron and zinc content and high protein content [16,20,21].

Considering the rising demand for ancient and undervalued crops in developed
countries [22] and the paucity of scientific literature data about the nutritional and tech-
nological characteristics of these ancient species, the Caucasian wheats T. thimopheevii and
T. zhukovskyi, grown in Italy, were analyzed in this work. The aim was to investigate both
their capacity to be processed into foodstuff and their health-promoting potential, with a
view to contributing to the sustainability, the resilience and the biodiversity of agrosystems
and to fostering food diversification in the context of healthy and sustainable diets, pillars
of the European ‘Farm to Fork strategy’ action plan [23].

2. Materials and Methods
2.1. Plant Material

T. timopheevii (accession Lonigo, Figure 1A) and T. zhukovskyi (accession Far 75,
Figure 1B) were grown in 2020 in Montelibretti, Rome (Italy), at the experimental fields of
the Research Center for Engineering and Agro-Food Processing (CREA-IT). The reference
material was the T. durum cv San Carlo, largely used in Italy for pasta production. Each
accession was grown in 10 m2 plots in randomized blocks with three replicates. The agro-
nomic practices were those typical for durum wheat production in the selected area [24].
Immediately after harvest, the spikes from Caucasian wheats were threshed, and dehulled
kernels were obtained by two subsequent steps using a bench micro-thresher (Marelli SpA,
Milan, Italy); combined samples of grains from the three replicates were stored at 4 ◦C.
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Figure 1. Ears, hulled and dehulled kernels of (A) T. timopheevii and (B) T. zhukovskyi.  
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The methods ISO 520:2010 [25] and ISO 7971-1:2009 [26] were used to determine the 

thousand kernel weight (TKW) and test weight (TW), respectively. The hardness index 
(HI) of the kernel was performed on 300 kernel samples by the Perten SKCS 4100 (Perten, 
Springfield, IL, USA), following the manufacturer’s operating procedure. The instrument 
was set at a range of hardness values between −40 and +120. The kernel length, width and 
thickness were recorded for 30 random kernels from each species using a calliper, and the 
average values were reported. 

2.3. Chemical Characterization 
All samples were milled to wholemeal flour using a laboratory mill (Cyclotec, FOSS, 

Hillerod, Denmark) at a 0.5 or 1.0 mm sieve, depending on the requirements of each anal-
ysis. All analyses were performed in triplicate. The sample moisture was measured using 
a thermobalance (Sartorius MA 40, Goettingen, Germany) at 120 °C just before the chem-
ical analyses in order to express all data as dry weight (dw). Protein content was measured 
by micro-Kjeldhal nitrogen analysis according to the ICC 105/2 method [27], using as the 
conversion factor N × 5.7. The total and resistant starch (TS and RS) content was deter-
mined by enzymatic method using the Megazyme (Bray, Ireland) kits K-TSTA and K-
RSTAR according to McCleary et al. [28] and McCleary et al. [29], respectively. The content 
of total dietary fiber (TDF) was measured using an enzymatic kit for fiber determination 
(Bioquant, Merck, Darmstadt, Germany) according to the AOAC Official Method 991.42 
[30]. Protein, TS, RS and TDF content were expressed as percentage w/w. The total anti-
oxidant capacity (TAC) was determined according to Ciccoritti et al. [31]. The total soluble 
phenolic content (TSPC) was determined using the Folin–Ciocalteau method as reported 
by Menga et al. [32], and the results were expressed as milligrams of ferulic acid equiva-
lents per gram (mg FAE/g). Ash content was determined according to the approved 
method AACC 08-01.01 [33]. 

2.4. Rheological and Technological Tests 
Semolina from durum and Caucasian wheats was obtained by Buhler MLU 202 mill 

(Utzwill, Switzerland). The total milling yield was considered as the percentage of the 
weight of semolina and flour fractions obtained from 100 g of kernels. The dry gluten 
content and gluten index were determined with the Glutomatic 2200 apparatus (Perten) 
according to the method ICC 158 [34]. Alveograph parameters (W, P and L) of semolina 
were obtained by Chopin Alveograph (Chopin, Villeneuve La Garenne, France) according 
to the manufacturer’s instructions. The SDS sedimentation test was assessed according to 
the standard method AACC 56-70.01 [33]. The AACC 56-81B method [33] was used for 
the determination of the falling number (FN) using the Perten 1500 system. Semolina color 
was evaluated by a Tristimulus colorimeter (ChromaMeter CR-400, Minolta, Milan, Italy) 

Figure 1. Ears, hulled and dehulled kernels of (A) T. timopheevii and (B) T. zhukovskyi.

2.2. Grain Physical Analyses

The methods ISO 520:2010 [25] and ISO 7971-1:2009 [26] were used to determine the
thousand kernel weight (TKW) and test weight (TW), respectively. The hardness index
(HI) of the kernel was performed on 300 kernel samples by the Perten SKCS 4100 (Perten,
Springfield, IL, USA), following the manufacturer’s operating procedure. The instrument
was set at a range of hardness values between −40 and +120. The kernel length, width and
thickness were recorded for 30 random kernels from each species using a calliper, and the
average values were reported.

2.3. Chemical Characterization

All samples were milled to wholemeal flour using a laboratory mill (Cyclotec, FOSS,
Hillerod, Denmark) at a 0.5 or 1.0 mm sieve, depending on the requirements of each
analysis. All analyses were performed in triplicate. The sample moisture was measured
using a thermobalance (Sartorius MA 40, Goettingen, Germany) at 120 ◦C just before the
chemical analyses in order to express all data as dry weight (dw). Protein content was
measured by micro-Kjeldhal nitrogen analysis according to the ICC 105/2 method [27],
using as the conversion factor N × 5.7. The total and resistant starch (TS and RS) content
was determined by enzymatic method using the Megazyme (Bray, Ireland) kits K-TSTA
and K-RSTAR according to McCleary et al. [28] and McCleary et al. [29], respectively.
The content of total dietary fiber (TDF) was measured using an enzymatic kit for fiber
determination (Bioquant, Merck, Darmstadt, Germany) according to the AOAC Official
Method 991.42 [30]. Protein, TS, RS and TDF content were expressed as percentage w/w.
The total antioxidant capacity (TAC) was determined according to Ciccoritti et al. [31]. The
total soluble phenolic content (TSPC) was determined using the Folin–Ciocalteau method
as reported by Menga et al. [32], and the results were expressed as milligrams of ferulic acid
equivalents per gram (mg FAE/g). Ash content was determined according to the approved
method AACC 08-01.01 [33].

2.4. Rheological and Technological Tests

Semolina from durum and Caucasian wheats was obtained by Buhler MLU 202 mill
(Utzwill, Switzerland). The total milling yield was considered as the percentage of the
weight of semolina and flour fractions obtained from 100 g of kernels. The dry gluten
content and gluten index were determined with the Glutomatic 2200 apparatus (Perten)
according to the method ICC 158 [34]. Alveograph parameters (W, P and L) of semolina
were obtained by Chopin Alveograph (Chopin, Villeneuve La Garenne, France) according
to the manufacturer’s instructions. The SDS sedimentation test was assessed according to
the standard method AACC 56-70.01 [33]. The AACC 56-81B method [33] was used for the
determination of the falling number (FN) using the Perten 1500 system. Semolina color
was evaluated by a Tristimulus colorimeter (ChromaMeter CR-400, Minolta, Milan, Italy)
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equipped with a D65 illuminant, using the CIELab color space coordinate b* (yellowness),
a* (redness) and L* (lightness); brownness was expressed as 100-L*.

2.5. Statistical Analysis

Replicated results were expressed as mean ± standard deviation. A one-way analysis
of variance was performed with MSTATC program (Michigan State University, East Lansing,
MI, USA), followed by the Duncan multiple range test for a post-hoc comparison of means,
applied to assess significant differences (p ≤ 0.05) for each considered parameter.

3. Results and Discussion
3.1. Physical Kernel Traits

Thousand kernel weight (TKW) and test weight (TW) are the main technological
parameters indicating grain quality and play a large role in flour yield at milling [35]. The
TKW values of de-hulled kernels were very similar in the Caucasian wheats, and they
resulted in almost half of those of T. durum (Table 1). The TKW values were comparable to
those obtained from the ancient wheats einkorn, spelt and emmer [36], but they were lower
than those observed as the mean of more than 50 T. timopheevii accessions by Mikò et al. [37]
and by Relina et al. [20], who found TKW values ranging from 33 to 39 g. These differences
could be due to the agronomic practices, growing environment and genotypes used in
the different studies. Similarly, no differences were observed between T. timopheevii and
T. zhukovskyi for the TW values, which resulted in being statistically lower (p ≤ 0.05) than
those observed in durum wheat (Table 1).

Table 1. Physical kernel traits of the two ancient Caucasian wheats and T. durum cv San Carlo.

Thousand Kernel
Weight (g)

Test Weight
(kg/hL)

Hardness Index
Kernel Dimensions

Length (mm) Width (mm) Thickness (mm)

T. timopheevii
accession Lonigo 28.0 ± 0.4 b 72.2 ± 0.1 b 83 ± 15 a 8.7 ± 0.6 b 2.3 ± 0.1 c 2.4 ± 0.2 b

T. zhukovskyi
accession Far 75 27.7 ± 0.4 b 72.0 ± 0.5 b 85 ± 17 a 8.9 ± 0.8 a 2.7 ± 0.2 b 2.5 ± 0.1 b

T. durum cv San Carlo 56.2 ± 0.3 a 84.3 ± 0.3 a 84 ± 12 a 8.1 ± 0.7 c 3.7 ± 0.4 a 3.5 ± 0.5 a

Results are expressed as mean ± standard deviation for three replications. Within the same column, values with
different letters indicate significant differences determined by Duncan’s test (p ≤ 0.05).

The kernel dimensions of Caucasian Triticum were significantly lower than those of
durum wheat (Table 1), suggesting that the small kernel size of Caucasian wheats affected
the kernel weight more than the TW, as already observed by Wang and Fu [38]. However,
the TW value of 72 kg/hL, found in the two ancient wheats, met the current TW requirement
for the No. 4 wheat class (TW ≥ 71 kg/hL) of Canada Western Amber Durum (CWAD) [39],
whereas durum wheat cv San Carlo fell into the No. 1 CWAD class (TW ≥ 80 kg/hL) [39].
The mean values of 72 kg/hL of TW have also been reported for the ancient hulled wheats
einkorn, spelt and emmer [40].

Endosperm texture in wheat exerts a strong indirect impact on a bulk of technological
and rheological quality traits including flour yield, dough rheological properties, bread
volume and crumb structure [41]. Almost all tetraploid cereal species are characterized by
an extra-hard kernel texture with an SKCS hardness index (HI) > 80 [42], mainly due to the
lack of expression of puroindolines proteins. Both T. timopheevii and T. zhukovskyi revealed
a very hard kernel texture (HI > 80, Table 1), comparable to that of durum wheat. These
results agree with Relina et al. [20] who classified the T. timopheevii kernels as hard-textured.

It is worth noting that even if the physical traits of Caucasian kernels showed signifi-
cantly lower values than durum wheat (Table 1), their milling yield was satisfactory (61%
and 70%, in T. timopheevii and T. zhukovskyi, respectively) and comparable to that of durum
cv San Carlo (69%).
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3.2. Chemical and Nutritional Traits

Besides their nutritional properties, proteins are important for the processing capacity
of cereals, especially for the texture of poor-gluten quality foods. The whole wheat flour of
T. timopheevii showed a significantly higher protein content (20.1%) than both T. zhukovskyi
(16.9%) and durum wheat (14.3%) (Table 2).

Table 2. Chemical and nutritional traits of the two ancient Caucasian wheats and T. durum cv San
Carlo.

Protein (%) Total Starch (%) TDF (%) Ash (%) TAC (mmol TEAC/kg) TSPC (mg FAE/g)

T. timopheevii
accession Lonigo 20.1 ± 0.8 a 62.2 ± 0.19 b 9.3 ± 0.2 c 2.13 ± 0.01 a 87.4 ± 0.5 b 0.94 ± 0.05 b

T. zhukovskyi
accession Far 75 16.92 ± 0.03 b 62.0 ± 0.3 b 9.6 ± 0.2 b 1.96 ± 0.02 b 89.7 ± 0.3 a 0.997 ± 0.005 b

T. durum cv San Carlo 14.3 ± 0.5 c 65.0 ± 0.8 a 12.3 ± 0.3 a 1.65 ± 0.01 c 44.1 ± 0.3 c 1.19 ± 0.04 a

Results are reported as dry weight and expressed as mean ± standard deviation for three replications. Within the
same column, values with different letters indicate significant differences determined by Duncan’s test (p ≤ 0.05).
TDF = total dietary fiber; TAC = total antioxidant capacity; TEAC = trolox equivalent antioxidant capacity;
TSPC = total soluble phenolic content; FAE = ferulic acid equivalents.

A higher protein content in hulled ancient wheats with respect to modern wheat
varieties was also observed in previous works [43–45], suggesting that the hulled wheat
species have a better potential than modern wheat varieties for using nitrogen [43] and
could therefore be considered as suitable crops for low input agriculture. However, one
should take into consideration that the high protein content in ancient wheats is also
ascribable to their low agronomic yield. As a consequence of the higher protein content,
Caucasian wheats presented a lower total starch content than T. durum [46]. In any case,
the very high protein and total starch content of about 62% make these wheats a valuable
alternative raw material for producing highly nutritious cereal foods. The quantification of
RS, i.e., the fraction of the starch that cannot be digested by human gastrointestinal enzymes,
revealed, in all species, a RS content lower than the limit of 2% required for an adequate
accuracy of the method used [29]. However, the method allowed for the discernment of
a statistically different RS content between durum wheat (0.26%) and Caucasian wheats
(0.17%). Dietary fiber is the main bioactive component of wheat grain, due to its health
benefits in colon cancer prevention, prebiotic activity and modulation of blood glucose and
insulin levels [47]. Durum wheat cv San Carlo had a significantly higher level of TDF when
compared to both Caucasian wheats (Table 2). Generally, flours made from smaller kernels
have a higher percentage of fiber; however, a lower content of dietary fiber in ancient wheat
species has been reported in several studies related to the comparison between ancient and
modern wheats [2,22,48]. Both T. timopheevii and T. zhukovskyi resulted in higher levels of
minerals, as suggested by the significantly higher ash content (Table 2). A mean value of
the ash content of 2% was also reported in spelt, einkorn and emmer [40,49]. The higher ash
values in Caucasian wheats resulted from a higher share of outer kernel layers compared
to durum wheat due to the smaller size of the grains. An adequate intake of minerals is an
important contribution to human health, even if a higher content of minerals does not mean
an improved uptake and bio-accessibility and kernels may also contain toxic metals [45].

Currently, antioxidant activity is the most common in vitro parameter that is used to
assess or predict the potential benefits of phytochemical compounds. The level of TAC was
significantly higher in T. zhukovskyi (+103%) and T. timopheevii (+98%) than in durum wheat
cv San Carlo (Table 2). A higher antioxidant activity in T. timopheevii compared to durum
wheat was also observed by Relina et al. [20]. The highest TAC level in ancient Caucasian
wheats could not be ascribed to the presence of a major phenolics content compared
to T. durum, since their TSPC was statistically lower than in the modern wheat cultivar
(Table 2). Data on the phenolics content of ancient wheats usually [50] showed that wild
tetraploid wheat ancestors had the lowest phenolic content, and, even if contradictory data
are present in the literature, wild wheats do not seem to possess valuable characteristics for
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the improvement of TPC in wheat [48]. Hence, the very high level of TAC found in ancient
Caucasian grains cannot be explained by their level of TSPC but rather by the occurrence
of other bioactive compounds, such as carotenoids. This hypothesis should be confirmed
by further studies; in any case, as T. zhukovskyi possesses the einkorn Am genome, it can be
assumed that it shares a high lutein content, einkorn being indicated as the wheat with the
highest level of lutein [48,51]. Moreover, the higher yellow index (b*) shown by Caucasian
wheats’ semolina, as reported in the following section, could reinforce this assumption.

3.3. Technological and Rheological Traits

Because of their poor-gluten quality, ancient wheats result in less structured doughs
with a low elasticity and high extensibility [43]. The SDS-sedimentation test is one of the
most useful single small-scale tests for screening for gluten strength and consequently
for pasta-cooking and bread-making quality in durum wheat [52]. Significant differences
(p ≤ 0.05) in SDS values (Table 3) were observed between the two ancient Caucasian wheats;
in particular, T. zhukovskyi was considered as ‘poor gluten quality’, having an SDS value
<30 mL, whereas ‘good gluten quality’ could be ascribed to T. timopheevii, which presented
an SDS value in the range of 30–40 mL [53].

Table 3. Technological and rheological traits and semolina color of the two ancient Caucasian wheats
and T. durum cv San Carlo.

SDS
Sedimenta-

tion Volume
(mL)

Gluten
Index

(%)

Dry Gluten
Content

(%)

Alveograph
Parameters Falling

Number
(s)

Color

W P/L
Yellow
Index
(b*)

Brown
Index

(100-L*)

Red
Index
(a*)

T. timopheevii
accession
Lonigo

34.5 ± 0.7 b 34 ± 1 b 17.13 ± 0.07 a 29 ± 15 b 1.2 ± 0.7 ab 467 ± 1 b 29.2 ± 0.2 a 15.4 ± 0.2 a −2.69 ± 0.09 a

T. zhukovskyi
accession
Far 75

22.5 ± 0.7 c 1.3 ± 0.6 c 15.3 ± 0.2 b 9 ± 8 b 0.8 ± 0.1 b 476 ± 8 a 27.7 ± 0.2 b 15.6 ± 0.2 a −2.23 ± 0.09 b

T. durum
cv San Carlo 37.5 ± 0.7 a 93 ± 1 a 10.5 ± 0.1 c 227 ± 21 a 1.8 ± 0.1 a 483 ± 2 a 22.1 ± 0.2 c 14.9 ± 0.5 b −2.3 ± 0.2 b

Results are expressed as mean ± standard deviation for three replications. Within the same column, values with
different letters indicate significant differences determined by Duncan’s test (p ≤ 0.05).

These results were in agreement with the gluten index values found in T. zhukovskyi
and in T. timopheevii (Table 3). Indeed, according to the standard quality classes UNI
10709 [54] and UNI 10940 [55], T. zhukovskyi fell into the worst quality class, showing values
slightly >1, whereas T. timopheevii showed a gluten index about three-fold lower than that
recorded in durum wheat, falling into the quality class III. Despite the low gluten index,
both Caucasian semolina showed a gluten content that was significantly higher than durum
wheat (Table 3), due to the higher protein content (Table 2). It is worth noting that in T.
timopheevii and T. zhukovskyi, the gluten content accounted for 85% and 90% of the total
protein content, respectively, whereas in durum wheat cv San Carlo, it accounted for 73%.

Alveograph P and W values are indicators of dough elasticity and strength, respec-
tively, and the L value is the indicator of dough extensibility. As expected, the poor quality
of glutenin Caucasian wheat affected the rheological quality of semolina, as demonstrated
by the W and P/L alveograph values (Table 3). The highest W value was observed in T.
durum cv San Carlo, which met the requirements for the UNI 10709 [54] and UNI 10940 [55]
standard quality class II, followed by T. timopheevii and T. zhukovskyi, which presented
non-classifiable values (W < 100). The P/L ratio is a measurement of the balance between
the elasticity and extensibility of dough and, with some exceptions, is higher than 1.0 in
durum wheat [56], reflecting the tenacious and inextensible dough properties of this wheat
species well. T. timopheevii showed a P/L value >1, similar to durum wheat cv San Carlo,
whereas in T. zhukovskyi the low alveograph P value resulted in a significantly lower P/L
ratio when compared to T. timopheevii and durum wheat. These results suggested that
flours deriving from Caucasian wheats could be more suitable for being processed into
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pasta, flat breads and unleavened products than into traditional bread and baked products
that require long leavening and processing.

The falling number (FN) is used to assess the baking quality of wheat flour in relation
to the amylolytic enzymes activity, with which it is negatively correlated. FN values
higher than 400 s were observed in the three analyzed species (Table 3), indicating a scarce
amylolytic activity and, consequently, a poor bread-making performance in terms of crumb
texture and low loaf volume. These data reinforced the idea, supported by alveograph tests,
that Caucasian flours are optimal for being processed into pasta or flat breads, as already
reported for einkorn, emmer and spelt wheat [57].

Kernel and milling products’ color is an important factor in anticipating the end-
product color quality; it is used in the durum grain trade, and the higher the b* value, the
more intense the yellow coloring of the sample. Elevated values of the b* parameter (Table 3)
were found in Caucasian wheats’ semolina, mainly in T. timopheevii, which presented a
higher b* value (+32%) than that of durum wheat semolina. On the contrary, the brown
(100-L*) and red (a*) indexes, even if statistically different, were very similar in the three
wheat species (Table 3).

4. Conclusions

The exploitation of ancient wheat species, besides playing a key role in plant breeding
as a reservoir of useful genes, could contribute to providing new raw materials for the
production of health-promoting foods, while increasing the agro-food biodiversity. The
assessment of grain physical parameters, products’ feasibility, flours’ technological and
rheological quality, and the presence of some health-promoting molecules revealed the
ancient Caucasian wheats to be a valuable option for the entire supply chain, from farm
to fork, meeting the main requirements that are used to evaluate the suitability of wheat
for food production. Indeed, T. timopheevii and T. zhukovskyi, despite having a seed weight
that was about half that of durum wheat, showed an excellent milling yield and an accept-
able test weight, which suggests a promising use for processing. The technological and
rheological parameters identified the Caucasian wheats as a potential raw material for the
formulation of flat breads or biscuits, while the very high protein content could result in
a good pasta-making capacity. Finally, the very high TAC level recorded in these wheats
could satisfy the increasing demand for healthier and high-quality foods, encouraging the
introduction of novel raw materials and products into diets, in developed countries as well.
Future work will be necessary to evaluate the GxE effect on agronomical, nutritional and
technological parameters and to investigate the most suitable technological processes and
food.
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11. Dvořák, J.; Terlizzi, P.D.; Zhang, H.B.; Resta, P. The evolution of polyploid wheats: Identification of the A genome donor species.
Genome 1993, 36, 21–31. [CrossRef]

12. Matsuoka, Y. Evolution of Polyploid Triticum Wheats under Cultivation: The Role of Domestication, Natural Hybridization and
Allopolyploid Speciation in their Diversification. Plant Cell Physiol. 2011, 52, 750–764. [CrossRef] [PubMed]

13. Zair, W.; Magos Brehm, J. Triticum timopheevii. In The IUCN Red List of Threatened Species; IUCN: Gland, Switzerland, 2017.
14. Vincent, H.; Wiersema, J.; Kell, S.; Fielder, H.; Dobbie, S.; Castaneda-Alvarez, N.P.; Guarino, L.; Eastwood, R.; León, B.; Maxted, N.

A prioritized crop wild relative inventory to help underpin global food security. Biol. Conserv. 2013, 167, 265–275. [CrossRef]
15. Devi, U.; Grewal, S.; Yang, C.Y.; Hubbart-Edwards, S.; Scholefield, D.; Ashling, S.; Burridge, A.; King, I.P.; King, J. Development

and characterisation of interspecific hybrid lines with genome-wide introgressions from Triticum timopheevii in a hexaploid wheat
background. BMC Plant Biol. 2019, 19, 183. [CrossRef] [PubMed]

16. Jorjadze, M.; Berishvili, T.; Shatberashvili, E. The ancient wheats of Georgia and their traditional use in the southern part of the
country. Emir. J. Food Agric. 2014, 26, 192–202. [CrossRef]

17. Brown-Guedira, G.L.; Gill, B.S.; Bockus, W.W.; Cox, T.S.; Hatchett, J.H.; Leath, S.; Peterson, C.J.; Thomas, J.B.; Zwer, P.K. Evaluation
of a collection of wild Timopheevii wheat for resistance to disease and arthropod pests. Plant Dis. 1996, 80, 928–933. [CrossRef]

18. Järve, K.; Jakobson, I.; Enno, T. Tetraploid wheat species Triticum timopheevii and Triticum militinae in common wheat improvement.
Acta Agron. Hung. 2002, 50, 463–477. [CrossRef]

19. Intagible Cultural Heritage UNESCO. Available online: https://ich.unesco.org/doc/src/47213-EN.doc (accessed on 15 February
2022).

20. Relina, L.I.; Boguslavskyi, R.L.; Vecherska, L.A.; Didenko, S.Y.; Golik, O.V.; Sheliakina, T.A.; Pozdniakov, V.V. Grain quality of
tetraploid wheat Triticum timopheevii (zhuk.) zhuk. Plant Breed. Seed Prod. 2018, 114, 106–119. [CrossRef]

21. Engert, N.; Honermeier, B. Characterization of grain quality and phenolic acids in ancient wheat species (Triticum sp). J. Appl. Bot.
Food Qual. 2012, 84, 33.

22. Zamaratskaia, G.; Gerhardt, K.; Wendin, K. Biochemical characteristics and potential applications of ancient cereals-An underex-
ploited opportunity for sustainable production and consumption. Trends Food Sci. Technol. 2021, 107, 114–123. [CrossRef]

23. The EU Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System. Available online: https://ec.
europa.eu/food/system/files/2020-05/f2f_action-plan_2020_strategy-info_en.pdf (accessed on 2 February 2022).

24. Quaranta, F.; Amoriello, T.; Aureli, G.; Belocchi, A.; D’Egidio, M.G.; Fornara, M.; Melloni, S.; Desiderio, E. Grain yield, quality
and deoxynivalenol (DON) contamination of durum wheat (Triticum durum Desf.): Results of national networks in organic and
conventional cropping systems. Ital. J. Agric. 2010, 4, 353–366. [CrossRef]

25. International Organization for Standardization (ISO 2010). Cereals and Pulses-Determination of the Mass of 1000 Grains; Method
520:2010; ISO: Geneva, Switzerland, 2010; p. 10.

26. International Organization for Standardization (ISO 2009). Determination of Bulk Density, Called Mass per Hectolitre-Part 1: Reference
Method; Method 7971-1:2009; ISO: Geneva, Switzerland, 2009; p. 8.

https://www.fao.org/3/u8480e/u8480e07.htm
http://doi.org/10.1111/1541-4337.12262
http://www.ncbi.nlm.nih.gov/pubmed/33371554
http://doi.org/10.1016/j.jcs.2017.11.010
http://www.ncbi.nlm.nih.gov/pubmed/29497244
http://doi.org/10.1016/j.jnutbio.2017.09.001
http://www.ncbi.nlm.nih.gov/pubmed/29065353
http://doi.org/10.1016/j.jcs.2007.07.005
http://doi.org/10.1021/jf3054092
http://www.ncbi.nlm.nih.gov/pubmed/23414336
http://doi.org/10.1053/j.gastro.2004.11.003
http://doi.org/10.1053/j.gastro.2005.06.017
http://doi.org/10.1002/mnfr.201901032
http://doi.org/10.1270/jsbbs.59.571
http://doi.org/10.1139/g93-004
http://doi.org/10.1093/pcp/pcr018
http://www.ncbi.nlm.nih.gov/pubmed/21317146
http://doi.org/10.1016/j.biocon.2013.08.011
http://doi.org/10.1186/s12870-019-1785-z
http://www.ncbi.nlm.nih.gov/pubmed/31060503
http://doi.org/10.9755/ejfa.v26i2.17522
http://doi.org/10.1094/PD-80-0928
http://doi.org/10.1556/AAgr.50.2002.4.9
https://ich.unesco.org/doc/src/47213-EN.doc
http://doi.org/10.30835/2413-7510.2018.152144
http://doi.org/10.1016/j.tifs.2020.12.006
https://ec.europa.eu/food/system/files/2020-05/f2f_action-plan_2020_strategy-info_en.pdf
https://ec.europa.eu/food/system/files/2020-05/f2f_action-plan_2020_strategy-info_en.pdf
http://doi.org/10.4081/ija.2010.353


Foods 2022, 11, 1209 9 of 10

27. International Association for Cereal Science and Technology. ICC Standard Methods (Methods No. 105/2); ICC: Vienna, Austria,
2003.

28. McCleary, B.V.; Gibson, T.S.; Lugford, D.C. Measurement of total starch in cereal products by amyloglucosidase-α-amylase
method: Collaborative study. J. AOAC Int. 1997, 80, 571–579. [CrossRef]

29. McCleary, B.V.; McNally, M.; Rossiter, P. Measurement of resistant starch by enzymatic digestion and selected plant materials:
Collaborative study. J. AOAC Int. 2002, 5, 1103–1111. [CrossRef]

30. Association of Official Analytical Chemists. Official Methods of Analysis 991, 16th ed.; Cunniff, P., Ed.; AOAC: Gaithersburg, MD,
USA, 1995; p. 42.

31. Ciccoritti, R.; Taddei, F.; Nicoletti, I.; Gazza, L.; Corradini, D.; D’Egidio, M.G.; Martini, D. Use of bran fractions and debranned
kernels for the development of pasta with high nutritional and healthy potential. Food Chem. 2017, 225, 77–86. [CrossRef]
[PubMed]

32. Menga, V.; Amato, M.; Phillips, T.D.; Angelino, D.; Morreale, F.; Fares, C. Gluten-free pasta incorporating chia (Salvia hispanica L.)
as thickening agent: An approach to naturally improve the nutritional profile and the in vitro carbohydrate digestibility. Food
Chem. 2017, 221, 1954–1961. [CrossRef] [PubMed]

33. American Association of Cereal Chemists. Approved Methods of Analysis, 11th ed.; AACC International: St. Paul, MN, USA, 2009.
34. International Association for Cereal Science and Technology. ICC Standard Methods (Methods No. 158); ICC: Vienna, Austria, 1995.
35. Dexter, J.E.; Marchylo, B.A. Recent Trends in Durum Wheat Milling and Pasta Processing: Impact on Durum Wheat Quality

Requirements. In Proceedings of the International Workshop on Durum Wheat, Semolina and Pasta Quality: Recent Achievements
and New Trends, Montpellier, France, 27 November 2000; Abeccassis, J., Autran, J.C., Feillet, P., Eds.; Institut National de la
Recherche: Montpellier, France, 2001; pp. 139–164.

36. Belcar, J.; Sobczyk, A.; Sobolewska, M.; Stankowski, S.; Gorzelany, J. Characteristics of Technological Properties of Grain and
Flour from Ancient Varieties of Wheat (Einkorn, Emmer and Spelt). Acta Univ. Cibiniensis Ser. E Food Technol. 2020, 24, 269–278.
[CrossRef]

37. Mikó, P.; Megyeri, M.; Molnár-Láng, M.; Kovács, G. Characterization of Triticum timopheevii Zhuk. gene bank accessions for the
development of synthetic amphiploid wheat lines. Acta Agron. Hung. 2013, 61, 113–121. [CrossRef]

38. Wang, K.; Fu, B.X. Inter-relationships between test weight, thousand kernel weight, kernel size distribution and their effects on
durum wheat milling, semolina composition and pasta processing quality. Foods 2020, 9, 1308. [CrossRef]

39. Canadian Grain Commission. Wheat: Export Grade Determinants Tables for Canada Western Amber Durum (CWAD) Wheat.
2020. Available online: https://www.grainscanada.gc.ca/en/grain-quality/official-graingrading-guide/04-wheat/export-grade-
determinants/cwad-en.html (accessed on 12 February 2022).

40. Kulathunga, J.; Reuhs, B.L.; Zwinger, S.; Simsek, S. Comparative study on kernel quality and chemical composition of ancient
and modern wheat species: Einkorn, emmer, spelt and hard red spring wheat. Foods 2021, 10, 761. [CrossRef]

41. Tsilo, T.J.; Hareland, G.A.; Chao, S.; Anderson, J.A. Genetic mapping and QTL analysis of flour color and milling yield related
traits using recombinant inbred lines in hard red spring wheat. Crop Sci. 2011, 51, 237–246. [CrossRef]

42. Gazza, L.; Conti, S.; Taddei, F.; Pogna, N.E. Molecular characterization of puroindolines and their encoding genes in Aegilops
ventricosa. Mol. Breed. 2006, 17, 191–200. [CrossRef]

43. Geisslitz, S.; Longin, C.F.H.; Scherf, K.A.; Koehler, P. Comparative study on gluten protein composition of ancient (einkorn,
emmer and spelt) and modern wheat species (durum and common wheat). Foods 2019, 8, 409. [CrossRef] [PubMed]

44. De Santis, M.A.; Giuliani, M.M.; Giuzio, L.; De Vita, P.; Lovegrove, A.; Shewry, P.R.; Flagella, Z. Differences in gluten protein
composition between old and modern durum wheat genotypes in relation to 20th century breeding in Italy. Europ. J. Agric. 2017,
87, 19–29. [CrossRef] [PubMed]

45. Rachon, L.; Bobryk-Mamczarz, A.; Kiełtyka-Dadasiewicz, A. Hulled Wheat Productivity and Quality in Modern Agriculture
Against Conventional Wheat Species. Agriculture 2020, 10, 275. [CrossRef]

46. Hucl, P.; Chibbar, R.N. Variation for starch concentration in spring wheat and its repeatability relative to protein concentration.
Cereal Chem. 1996, 73, 756–758.

47. Prasadi, V.P.N.; Joye, I.J. Dietary Fibre from Whole Grains and Their Benefits on Metabolic Health. Nutrients 2020, 12, 3045.
48. Shewry, P.R.; Hey, S. Do “ancient” wheat species differ from modern bread wheat in their contents of bioactive components? J.

Cereal Sci. 2015, 65, 236–243. [CrossRef]
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