
Phil. Trans. R. Soc. B (2008) 363, 3913–3919

doi:10.1098/rstb.2008.0170
A model of evolution and structure for multiple
sequence alignment

Published online 7 October 2008
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We have developed a phylogeny-aware progressive alignment method that recognizes insertions and
deletions as distinct evolutionary events and thus avoids systematic errors created by traditional
alignment methods. We now extend this method to simultaneously model regional heterogeneity and
evolution. This novel method can be flexibly adapted to alignment of nucleotide or amino acid
sequences evolving under processes that vary over genomic regions and, being fully probabilistic,
provides an estimate of regional heterogeneity of the evolutionary process along the alignment and a
measure of local reliability of the solution. Furthermore, the evolutionary modelling of substitution
process permits adjusting the sensitivity and specificity of the alignment and, if high specificity is aimed
at, leaving sequences unaligned when their divergence is beyond a meaningful detection of homology.
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1. INTRODUCTION
Sequence alignment aims to match homologous char-
acters, nucleotides or amino acids that are descended
from a common ancestor. This is complicated by base
substitutions that decrease similarity between sequences
over evolutionary time and insertions and deletions that
add and remove sequence in different evolutionary
lineages. From the end user’s point of view, the sequence
alignment problem is about placing homologous residues
in the same alignment columns and positioning gaps to
indicate inserted and deleted sequence.

Depending on the aim of the analysis, sequences in an
alignment can be seen as descendants of an ancestral
sequence or a set of sequences sharing a common or a
related biological function. Hence, multiple sequence
alignment methods have traditionally modelled either
the hierarchical relationships among the sequences
(Hogeweg & Hesper 1984; Thompson et al. 1994) or
the varying structural and functional constraints along
the sequence sites (Eddy 1998; Karplus et al. 1998).
There have been few attempts to combine the two
alternative approaches (e.g. Edgar & Sjölander 2003;
Arribas-Gil et al. 2007), but so far these methods have
been either not suitable for alignment of several
sequences and genome-scale analysesor computationally
too hard to be biologically realistic (e.g. Satija et al. 2008).

We present a method that combines the strengths of
tree- and profile-based alignment algorithms and
simultaneously describes the evolution and regional
heterogeneity, from here on called sequence structure, of
multiple sequences. Our approach is based on a
pairwise alignment model that consists of a moderate
number of evolutionary processes, each describing a set
of differently evolving sequence sites or a sequence
region. Distinct processes are depicted with structure
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classes, the moves among the structure classes
described as a Markov process, and the whole
alignment process is described with a two-level Hidden
Markov Model (HMM) outputting pairs of aligned
characters. The model of a sequence pair is extended to
progressive multiple alignment using a modification of
the phylogeny-aware algorithm that distinguishes
insertions from deletions (Löytynoja & Goldman
2005), a method that can be seen as a greedy ‘short
cut’ towards full evolutionary alignment (e.g. Thorne
et al. 1991; Hein et al. 2003; Holmes 2003).

We have implemented the method described in the
alignment program PRANK. Analyses of real data show
that the algorithm successfully uses different model
states and the posterior probabilities for alternative
structure classes in different parts of the alignment well
match the known genomic structures of the sequences.
2. MATERIAL AND METHODS
We have implemented our pairwise alignment algorithm for

sequences with a structure as an extension of the homo-

geneous model that distinguishes insertions and deletions and

handles insertions in an evolutionarily meaningful way

(Löytynoja & Goldman 2005). Similar to the basic homo-

geneous model, the structure model can be extended to

multiple alignments by iteration of pairwise alignment

according to a guide tree, though, for clarity, we ignore the

correction for pre-existing insertions here and present the

algorithm for a standard pairwise alignment with affine gap

penalties. General descriptions of HMMs and pair HMMs

for sequence alignment are given by Rabiner (1989) and

Durbin et al. (1998), respectively.

(a) Model states and state transitions

The model can be seen as a two-level HMM (figure 1): on the

higher level, the HMM consists of start and end states (S and

E, respectively) and of two or more structure classes; on the

lower level, each structure class h consists of three character-

emitting states Xh, Yh and Mh emitting a character against a
This journal is q 2008 The Royal Society
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Figure 1. The simplest non-homogeneous alignment model consists of non-emitting start and end states (light grey circles;
S and E) and two structure classes (grey boxes; 1 and 2), each describing an evolutionary process of its own. Moves between
structure classes and moves within a structure class are denoted with grey and black arrows, respectively. For clarity, the moves
from character emitting states (white circles; Xi , Yi and Mi) back to a non-emitting linker state (light grey; Wi) are drawn via
a dummy state (light grey, empty circles).
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gap, a gap against a character and two characters matching,

respectively, and a silent linker state (Wh) connecting the two

levels. Structure classes describe distinct evolutionary pro-

cesses (such as a fast or slowly evolving site or region, or a

codon site), and the moves between the classes define a

sequence structure (i.e. regions/sites evolving differently); the

moves within a structure class describe the character

matching process within a given evolutionary process.

Probabilities bgh for transitions between structure classes g

and h (figure 1) are predefined and fixed. Transition within a

structure is structure class specific: for structure class h, dh is the

probability of moving to one of the gap states, and 1K2dh to a

match state; 3h andghof staying in a gap state or in a match state,

respectively; and 1K3h and 1Kgh of moving back to the wait

state Wh. 3h and gh are fixed (ghZ0 makes sites independent),

whereas dh is jointly defined by a structure-specific insertion–

deletion rate rh and the evolutionary time

dh Z 1KeKrhðjxjCjyjÞ; ð2:1Þ

where jxj and jyj are the evolutionary distances from the

ancestral node to the two child nodes (either extant or

reconstructed ancestral sequences) to be aligned (figure 2a).
(b) Character emission and evolutionary match scores

We consider a pairwise alignment of sequences x and y

consisting of characters x1 . xn and y1 . ym. Sequence sites

are described with vectors of probabilities, phaðxiÞ, that the site

i in sequence x has character a given that the process is in

structure class h. If no sequence structure is imposed, the

observed character at a terminal node is given a probability of

1 and others are set to 0; if the observed character is

ambiguous, the probability is shared among different

characters. For sequences with a known structure (e.g. gene

annotation), character probabilities for some structure classes

can be set positive and for other classes zero. At internal

nodes, phaðxiÞ is defined from the pairwise alignment of the two

child nodes as a conditional probability of all possible parent

characters, given the child sites and all their descendants

related by a phylogenetic tree and the process defined for

structure class h.

Character emission is defined by an evolutionary sub-

stitution model (such as that of Jukes & Cantor (1969) or

Hasegawa et al. (1985)) and the evolutionary distance between

the parent and the child sequences. In state Mh, a conditional
Phil. Trans. R. Soc. B (2008)
probability for a parent charactera at ancestralpositionzk, given

the child character distributions, is defined by

LðMhÞ
zk

ðaÞZ
X
b

shabðxÞp
h
bðxiÞ

X
c

shacðyÞp
h
c ðyjÞ; ð2:2Þ

where shabðxÞ is the substitution probability between characters a

and b given jxj, the evolutionary distance between sequence x

and its immediate ancestor, and an evolutionary substitution

model in structure class h (and similarly for shacðyÞ). As zk cannot

be known, the probabilities are summed over all possible

character assignments a at the parent site, and an evolutionary

score, dh
xi ;yj

, for a match in structure class h is obtained by

dividing the probability of observed character emissions by the

probability of the process emitting the same output randomly

dh
xi ;yj

Z

P
a q

h
aL

ðMhÞ
zk ðaÞP

b q
N
b p

h
bðxiÞ

P
c q

N
c p

h
c ðyjÞ

; ð2:3Þ

where qha denotes the equilibrium frequency of character a in

structure class h, and the superscript N denotes the homo-

geneous null model (i.e. no structure).

In states Xh and Yh, the probability depends only on the

existing child and is defined by the equilibrium frequencies of

the possible characters at the child site and their conditional

probabilities, given the subtree below that child. The score for

a gap in sequence y, dh
xi ;K, is given by

dh
xi ;KZ

P
a q

h
ap

h
aðxiÞP

a q
N
a p

h
aðxiÞ

; ð2:4Þ

and is similarly defined for a gap in sequence x.

The expected number of insertions and deletions observed

between two sequences depends on their evolutionary

distance (equation (2.1)), whereas their length distribution

is not expected to be time dependent. Typically, dh
xi ;K and

dh
K;yj

are close to 1, and the alignment is dominated by dh
xi ;yj

and the expected similarity between the sequences given their

evolutionary divergence.

The evolutionary modelling of substitution and insertion–

deletion processes ensures that the structure classes

are correctly scaled for the alignment of sequences that are

differently diverged. The character substitution processes

are described by instantaneous rate matrices (figure 2b), and

given the evolutionary distances between the two nodes to

align, substitution probability matrices that correctly reflect

the expected divergence between the sequences are computed
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Figure 2. (a) A multiple alignment is built from pairwise
alignments performed in order of decreasing relatedness ( ,

and ), each alignment describing the ancestral node for
the two nodes (extant or ancestral sequences) to be aligned.
(b) The substitution process in each structure class is
described by an instantaneous rate matrix Qi , here indicated
by plots and showing the rates between different
nucleotides as relative sizes of bubbles. In this example,
structure classes 1 and 2 model regions of DNA sequence that
evolve at the rate that is 150 and 50 per cent of the average
rate, respectively. (c) For each pairwise alignment, indicated
by different shades in the tree (a), substitution probability
matrices for every structure class are computed from the
corresponding matrix Qi. The evolutionary divergence
between the sequence/ancestral node pairs to be aligned varies,
as shown by the relative length of horizontal bars in the tree,
and the alignments contain unequal amounts of information to
distinguish the two evolutionary processes. (i) Between human
and chimpanzee, both fast and slowly evolving regions (left and
right matrix, respectively) are mostly conserved and the
diagonal bubbles indicating no change are dominant. In the
alignment of (ii) primate ancestor to mouse and (iii)
mammalian ancestor to chicken, the fast evolving regions
(left matrix) contain greater numbers of substitutions and the
off-diagonal bubbles are relatively bigger.

Evolution and structure for alignment A. Löytynoja & N. Goldman 3915
(figure 2c). Closely related sequences are expected to be

similar just by their recent ancestry and, if the base

frequencies in the structure classes are not drastically

different, the sequences contain little information to dis-

tinguish the regions evolving under different processes.

However, correct homology between sequences, especially

on nucleotide level that has low information content, may not

be detectable even between moderately diverged sequence

pairs (Pollard et al. 2004). By modelling the substitution

process between the sequences aligned, our approach allows

for setting an upper limit for the accepted pairwise distance

and thus adjusting the sensitivity and specificity of the

alignment. By setting the distance low, the sequence
Phil. Trans. R. Soc. B (2008)
matching becomes stringent and, while it aligns the conserved

parts normally, the method leaves the more uncertain

diverged sequence regions unmatched.
(c) Pairwise and progressive multiple alignment

Given the probabilities for state transitions and character

emissions, two sequences are aligned by searching the most

probable state path through the HMM. The algorithm

finding the path is generally called Viterbi algorithm, and

for a pair HMM similar to ours, it resembles the affine

gap-cost algorithm of Gotoh (1982) as described by Durbin

et al. (1998). Our approach differs from the standard

algorithm in two respects: (i) the recursions are not only

computed over the sequence sites x0 . xn and y0 . ym, but

also over the structure classes 1 . r such that the state

transition probability bgh contributes to the probability of

each move, and (ii) we correctly allow for the moves between

states Xh and Yh indicating independent insertion–deletion

events at the same or neighbouring sites.

The recursion for pairwise alignment with an affine gap

penalty is described in algorithm A.1 (appendix), and its

extension to progressive multiple alignment is straightforward

(Löytynoja & Goldman 2005). For the latter, we define

the probability vector phaðzkÞ for parent site zk as the

conditional probabilities of characters a, given the child

sites in the pairwise alignment. Given equation (2.2) and

defining L
ðXhÞ
zk ðaÞ for the single child xi as

LðXhÞ
zk

ðaÞZ
X
b

shabðxÞp
h
bðxiÞ; ð2:5Þ

(and similarly L
ðYhÞ
zk for the single child yj), in an internal node

phaðzkÞZLð$Þ
zk
ðaÞ, where $ denotes Mh, Xh or Yh depending on

which is the most probable character-matching event.

Given all the sites on the alignment path, the ancestral

sequence is fully defined and can be aligned with another

sequence. Ancestral sequences are technically not treated

differently from extant ones.
(d) Structure class posterior probabilities

The posterior probability of the process being in a certain state

at a given moment is traditionally computed using forward/

backward algorithms (Rabiner 1989). We use a similar

approach to compute the posterior probabilities for alternative

structure classes across the sites of a pairwise alignment.

For sites 1 . l, the probability of observing site zk, an

ancestor for column k in the alignment, that either matches

two sites or creates a gap using structure class h is given by

Lð$ÞðzkÞZ
X
a

qhaL
ð$Þ
zk
ðaÞ; ð2:6Þ

where $ denotes Mh, Xh or Yh depending on which is the most

probable character-matching event and Lð$Þ
zk
ðaÞ is given by

equations (2.2) and (2.5). Then, forward moves from the site

zkK1 to a matching site zk, and to a site zk that aligns xi against

a gap, in structure class h are defined as

f hðzkÞZ
X
g

f gðzkK1Þh
gh
$ML

ðMhÞ
h ðzkÞ and

f hðzkÞZ
X
g

f gðzkK1Þh
gh
$XL

ðXhÞ
h ðzkÞ; ð2:7Þ

respectively, where $ denotes either X, Y or M depending if

the previous site was one of the two gaps or a match,

respectively (algorithm A.1). This is similarly defined for

moves aligning the site yj against a gap.

For the forward computation, the initialization and

termination conditions are defined as in algorithm A.1 except

that we denote them f h(z0) and f h(zlC1), respectively. For the

backward computation, the initialization and termination
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terms, bh(zlC1) and bh(z0), simply change their places

and then a backward move from a matching site zkC1 to the

site zk in structure class h is defined as

bhðzkÞZ
X
g

h
hg
$ML

ðMg Þ
g ðzkC1Þb

gðzkC1Þ; ð2:8Þ

and is similarly computed for moves from sites aligning a site

against a gap.

Given the forward and backward algorithms, the relative

probability of being in structure classes h at the site zk is

PhðzkÞZ
f hðzkÞb

hðzkÞ

f E
; ð2:9Þ

where f E denotes the full probability of the forward recursion,

i.e. the sum of all possible paths through the structure classes.

(e) Alignment reliability

Our approach requires normalization of the match and gap

scores (equations (2.3) and (2.4)) and does not allow for the

computation of an unnormalized probability for a specific

solution. However, we can still use forward and backward

computation similar to Durbin et al. (1998), sum the

probabilities of all possible moves in the alignment recursion

(cf. max( ) in algorithm A.1) and calculate the proportion of the

total score supporting the transition in the alignment path.

As the support score is defined for a given alignment

solution, we sum the probabilities of transitions that give the

same alignment of characters (i.e. moves to eitherXh,Yh orMh)

across all structure classes h. The score is computed for each

transition on the Viterbi path in each pairwise alignment and, if

the insertion-aware algorithm (Löytynoja & Goldman 2005) is

used, the computation in ancestral nodes skips over the pre-

existing insertions. The support score can be seen as a measure

of the local reliability of a specific alignment solution.
3. APPLICATION
We have implemented the recursions described above
in the alignment program PRANK that is downloadable
under http://www.ebi.ac.uk/goldman/prank. Our imple-
mentation allows for defining different alignment HMMs
in text files, such that the method can easily be adapted to
the alignment of sequences from any alphabet using
models of any complexity. Here, we describe results from
alignment of genomic sequences.

(a) Test data and alignment model

We aligned the CAPZA2 gene from 15 mammalian
species using a simple nucleotide model and a more
complex codon model. Genomic sequences for the
protein coding region and 500 bases of upstream and
downstream flanking sequence were extracted from the
multiple alignment of ENCODE target region 1 (The
ENCODE Project Consortium 2007), and alignment
gaps were removed. The alignment guide trees were
based on the ENCODE neutral tree.

A model is described by state transition probabilities
bgh and parameters qha, shabðxÞ, dh and 3h for the
evolutionary processes in different structure classes.
The alignment model FAST/SLOW consists of two classes,
F and S, describing fast and slowly evolving sequence
sites. The average lengths of fast and slow regions
are 200 and 50 bases, respectively, and the gap
opening rate and the expected gap length are higher
in the former (1/20 subst. versus 1/40 subst.; and
10 bases versus 2 bases, respectively). The transition–
transversion ratio is set to 2 and character frequencies
Phil. Trans. R. Soc. B (2008)
qha are defined by the empirical estimate p in both
classes, whereas the instantaneous rate matrices
(to define the substitution rate matrices shabðxÞ) are
based on Q: in class S, Q is scaled down giving a
substitution rate that is 0.75 of the estimated rate,
and in class F, it is scaled up such that, given the
equilibrium distribution of the structure classes, the
average rate of the model equals the estimated rate.

The alignment model CODON is an extension of the
fast–slow model and consists of five structure classes,
the two single-character classes S and F and three
consecutive nucleotide classes modelling a codon. The
character-matching states in the three codon classes are
connected and, when two characters are matched in the
first class, characters have also to be matched in the
second and third class; similarly, the lengths of
alignment gaps are always multiples of three and gaps
are only possible in phase 0. The average lengths of
non-coding and coding sequences are 500 and 100
bases, respectively, and moves to and from a codon are
only possible through the S state. The gap-opening rate
and the expected gap length in the codon are 1/40
substitutions and 3 bases, respectively. The evolution-
ary process in states S and F is as described above; for
the three codon sites, qha and the instantaneous rate
matrices are defined by first computing the parameters
for a codon with the selection parameter u value 0.25
(Nielsen & Yang 1998), and then collapsing the
parameters p and Q for the three distinct sites.

In both cases, the qNa equals the empirical p.

(b) Results

The true alignment for the given genomic region is
obviously not known. Instead, we assume that the use
of a structure state that more accurately describes the
underlying evolutionary process produces improved
alignments, and compare the posterior probabilities of
being in different structure classes across the sequence
sites to the known biological features, namely the 10
protein-coding exons.

The simplistic model FAST/SLOW is able to identify the
protein-coding exons along the alignment of human and
mouse CAPZA2 sequences (figure 3a). However, the
posterior probability curve is rather smooth and the
accuracy of exon prediction based on any cut-off value
would be poor. Also, the model describes single unlinked
sites and many conserved non-protein-coding regions
obtain high probabilities of being aligned by the slowly
evolving class (such as 5 0 and 30 UTRs and sequence
immediately flanking the exons). With the model CODON,
which adds three classes describing the periodicity of
codon, the separation between the protein-coding exons
and the conserved splicing signal becomes clearer,
though parts of the 50 and 30 UTRs still obtain high
probabilities for the codon classes (figure 3b). The model
detects protein-coding regions purely based on the
periodicity of substitution rates and gap lengths of
multiples of three, and it may be misled by few random
substitutions or gaps that happen to be in the right frame.

The performance of our method in the pairwise
alignment of human and mouse seems satisfactory but
the benefits of structure modelling should be more
significant in multiple alignments. First, the alignments
of closely related more similar sequences should

http://www.ebi.ac.uk/goldman/prank
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Figure 3. The panels in (a)–(c) show the posterior probability of different structure classes (top) across the full alignment and
(bottom) around the known protein-coding exons. In (a) and (b), the models FAST/SLOW and CODON are used to align the human
and mouse sequences; in (c), the model CODON to align fifteen mammalian sequences. Light grey, dark grey and black represent
the structure states modelling fast and slowly evolving sites and protein-coding regions, respectively. In (c), the addition of more
distantly related sequences (dark grey and light grey frames in the tree correspond to panels in (i) and (ii) respectively) increases
the evolutionary information and the high posterior probability for the codon states (in black) more accurately matches the
locations of known exons. The known locations of the coding exons are marked with black bars (top). The empty gaps in the
plots indicate insertions in some other part of the tree.
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provide information of the spatial variation of

evolutionary processes and help the more difficult

alignment of distantly related sequences. Second,

multiple sequences provide more information of the

sequence structure than two sequences only, and

multiple closely related sequences can provide infor-

mation on features that do not exist in a more distantly

related sequence. As the method is progressive,

information is generated for each internal node and

can be used to study e.g. lineage-specific differences.

As expected, the alignment of very close sequences,

such as human and chimpanzee, does not provide

information on the sequence structure and, with the

exception of long gaps, the posterior probabilities of

different structure classes roughly reflect their back-

ground frequencies (not shown). On the other hand,

the posterior probabilities for the codon classes in the

alignment of five primate species rather accurately

match the known protein-coding exons and provide

an exon annotation comparable with that of the
Phil. Trans. R. Soc. B (2008)
human–mouse pairwise alignment—with the difference

that the former would potentially identify novel exons

only existing in primates (figure 3c (i)).

The addition of the rest of the eutherian mammals

(figure 3c (ii)) further sharpens the posterior prob-

ability curve at the exon boundaries but does not fully

resolve the over-prediction of coding sequence in the

beginning and end of the gene. Interestingly, the exon

seven is consistently predicted to start 50 bases earlier

than the true splice site (figure 3c). The upstream

region is nearly identical all the way until monodelphis

but a one-base insertion in mouse and rat suggests non-

protein-coding function (not shown). The inclusion of

monodelphis sequence would have only a marginal

effect on the exon annotation, and the platypus

sequence is incomplete and lacks the first exon.

Using alignment anchoring, the pairwise alignments

of human and mouse sequences took approximately

600 and 1500 s on an AMD Opteron workstation when

using the models FAST/SLOW and CODON, respectively. In
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multiple alignment, long insertion–deletions and miss-
ing data slow down the alignment significantly.
4. DISCUSSION
We have developed an alignment method that allows
for incorporating sequence structure information into
the alignment process while still taking into account the
evolutionary relatedness among the sequences. In
contrast to an earlier approach extending the profile
alignment (Edgar & Sjölander 2003), we base our
method on progressive alignment and model the
structural regions/sites with distinct evolutionary pro-
cesses. Although our approach is not based on a full
evolutionary model such as that of Arribas-Gil et al.
(2007) and Satija et al. (2008), it is computationally
APPENDIX A

Algorithm A.1. An algorithm for pairwise alignment of s

Initialization:

v$hði;K1Þ; v$hðK1; j Þ are set to 0; vXh ð0; 0ÞZ vYh ð0;0ÞZ bBh

Recursion:

i Z 0;.; n; j Z 0;.;m; except ð0;0Þ; g Z 1;.; r;

vXh ði; j ÞZ dh
xi ;K!max

vXg ðiK1; j Þhgh
XX if ðg Z hÞ

vYg ðiK1; j Þhgh
YX hgh

XX Z h

vMg ðiK1; j Þhgh
MX hgh

MM Zg

8>>><
>>>:

vYh ði; j ÞZ dh
K;yj

!max

vXg ði; j K 1Þhgh
YX if ðgshÞ

vYg ði; j K 1Þhgh
YY hgh

XX Z h

vMg ði; j K 1Þhgh
MY hghMM Z ð

8>>><
>>>:

vMh ði; j ÞZ dh
xi ;yj

!max

vXg ðiK1; j K 1Þh
gh
XM

always

h
gh
YX Z h

vYg ðiK1; j K 1Þh
gh
YM h

gh
MX Z h

vMg ðiK1; j K 1Þh
gh
MM h

gh
XM Z h

8>>>>><
>>>>>:

Termination:

vEh ZmaxðvXh ðn;mÞð1K 3hÞ; v
Y
h ðn;mÞð1K 3hÞ; v

M
h ðn;mÞð1Kg
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less demanding and can be easily extended to describe
large numbers of processes and biologically realistic
sequence structures. The computational complexity of
our approach naturally grows with the number of
processes described, but our preliminary analyses have
shown that in many cases even a moderate number of
structure classes is able to capture a significant
proportion of the evolutionary signal, such as nucleo-
tide sequences’ codon structure and more variable
third positions. Also, the complexity reduces signi-
ficantly when the structure classes are only sparsely
connected, and we have successfully tested models with
few tens of different classes.

We thank Simon Whelan for his help with modelling multiple
evolutionary processes and many ideas and suggestions
during this work.

equences with structure.

dh; vMh ð0;0ÞZ bBhð1K2dhÞ:

hZ 1;.; r;

gh
YY Z ð3g C ð1K 3gÞbghdhÞ

g C ð1KggÞbghð1K2dhÞ

gh
YY Z ð1K 3gÞbghdh

1KggÞbghð1K2dhÞ

gh
XY Z ð1K3gÞbghdh
gh
MY Z ð1KggÞbghdh

gh
YM Z ð1K 3gÞbghð1K2dhÞ

hÞÞbhE :
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