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Abstract
Aims: As one of the most fundamental questions in modern science, “what causes 
schizophrenia (SZ)” remains a profound mystery due to the absence of objective 
gene markers. The reproducibility of the gene signatures identified by independent 
studies is found to be extremely low due to the incapability of available feature se‐
lection methods and the lack of measurement on validating signatures’ robustness. 
These irreproducible results have significantly limited our understanding of the eti‐
ology of SZ.
Methods: In this study, a new feature selection strategy was developed, and a com‐
prehensive analysis was then conducted to ensure a reliable signature discovery. 
Particularly, the new strategy (a) combined multiple randomized sampling with con‐
sensus scoring and (b) assessed gene ranking consistency among different datasets, 
and a comprehensive analysis among nine independent studies was conducted.
Results: Based on a first‐ever evaluation of methods’ reproducibility that was cross‐
validated by nine independent studies, the newly developed strategy was found to 
be superior to the traditional ones. As a result, 33 genes were consistently identified 
from multiple datasets by the new strategy as differentially expressed, which might 
facilitate our understanding of the mechanism underlying the etiology of SZ.
Conclusion: A new strategy capable of enhancing the reproducibility of feature se‐
lection in current SZ research was successfully constructed and validated. A group of 
candidate genes identified in this study should be considered as great potential for 
revealing the etiology of SZ.
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1  | INTRODUC TION

Schizophrenia (SZ) is severe and chronic disorder characterized by 
abnormal interpretations of reality.1‐3 It affects over one percent 
of the global population4 and brings about the extremely distorted 
psychological and physiological behaviors with the reduction of life 
expectancy by 20 years compared with that of healthy individu‐
als.5 As one of the most fundamental questions in modern science,6 
“what causes SZ” remains a profound mystery due to the absence 
of objective molecular markers.7‐10 To answer this, the discovery of 
the essential genes in SZ’s occurrence/development has been ex‐
tensively explored,11‐13 and the microarray screening combining the 
filter‐based feature selection approaches (such as Student's t test 
and significant analysis of microarray) has emerged as one of the 
most effective tools.14‐19 Using this tool, some genes of differen‐
tial expression (DEGs, like S100A820) between patients with SZ and 
healthy individuals are identified, and the pathways susceptible to 
SZ (including neurotrophin signaling21‐23) or vital in SZ‐induced cog‐
nitive impairment (including natural killer mediated cytotoxicity24‐26) 
are discovered.

However, the sets of disease‐related DEGs discovered from dif‐
ferent microarray experiments are reported to be largely irreproduc‐
ible,27 and the analytical results of the previous studies on SZ gene 
expression vary significantly.14,28 Particularly, no gene is simultane‐
ously top‐ranked by seven separate studies as the DEG in SZ.29 This 
irreproducibility can significantly hamper the reliability of the iden‐
tified disease signature30 and restrict the clinical application of the 
discovered DEGs.8 Moreover, this may be the reason why there is no 
objective molecular marker available for the diagnosis or treatment 
of SZ, and why the cause of SZ remains a profound mystery in the 
community of biomedical researches.31

The irreproducibility among the signatures discovered from in‐
dependent studies has been attributed to (a) the limited abilities of 
available feature selection approaches to detect the sophisticated/
subtle changes in SZ gene expression14,32 and (b) the lack of effective 
measurements on validating the robustness of analytic results.20,29 
In recent year, some wrapper or embedded approaches for se‐
lecting features were reported to outperform the traditional filter 
ones.33‐36 However, these available approaches did not effectively 
take the robustness among different signatures discovered by inde‐
pendent studies into consideration,27,37 and it is thus crucial to con‐
struct novel approaches with significantly enhanced reproducibility. 
Moreover, the analytical methodology together with multiple ran‐
domized sampling is known as capable of validating the robustness 
of analytic results and usefulness of identified markers by drawing 
conclusion over multiple independent studies.37‐41 Due to its ability 
to produce the more comprehensive and broader conclusions than 
traditional measurements,42 the comprehensive analyses have been 
applied to empirically investigate the replicability failure in current 
SZ research,43,44 substantially facilitate the discovery of risk allele45 
or gene marker46‐48 of SZ, and systematically assess the drug re‐
sponse rate of patient with SZ.49‐52 It is therefore of great interest 

in constructing novel feature selection strategy of significantly en‐
hanced reproducibility.

Herein, a comprehensive analysis of datasets from multiple in‐
dependent microarray studies was conducted, and a novel feature 
selection strategy was developed to ensure the reliable signature 
discovery. As assessed, the SZ gene signature identified using this 
strategy was highly accurate and reproducible. A forest plot of the 
results of independent test datasets was applied to evaluate the 
level of enhancement in reproducibility of this strategy compared 
with the traditional ones that were adopted in SZ research. In sum, 
these findings not only confirmed the successful construction of a 
novel feature selection strategy capable of enhancing the discovery 
robustness of SZ molecular signature but also facilitated the iden‐
tification of candidate genes in revealing the molecular mechanism 
underlying the cognitive dysfunction in patients with SZ.

2  | MATERIAL S AND METHODS

2.1 | Selection of independent studies and data 
preprocessing

A variety of public databases providing microarray data were com‐
prehensively reviewed. These databases included Gene Expression 
Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/), Stanley Medical 
Research Institute Online Genomics Database (SMRI),16 and Harvard 
Brain Bank database (HBB).14 The GEO was systematically searched 
using such keyword as “schizophrenia”, “schizophrenia patients”, 
“schizophrenia subjects”, “schizophrenic patients” and “schizophrenic 
subjects”, which gave the microarray datasets with one cohort of SZ 
subjects and another cohort of healthy people. All datasets in SMRI 
database were batch downloaded and processed to assess whether 
they included both patients and controls. The corresponding data from 
the HBB database were collected from published study.14 In addition 
to these three popular SZ‐related databases, the systematic literature 
reviews based on the libraries of PubMed, PsycINFO, Embase, and 
Cochrane were also conducted using the same keywords as provided 
above. For the resulting datasets, their affiliated information, including 
the organism/species origins (human, mouse, HPV etc), study types (ex‐
pression profiling, genome variations, methylation, noncoding RNAs, 
proteins etc), and specific brain loci (frontal cortex, hippocampus, cau‐
date nucleus etc), was extensively collected for analysis. Duplicates 
among those resulting datasets were systematically removed.

Based on the information affiliated to each dataset, the collected 
studies were further selected if they met the following inclusion cri‐
teria: (a) gene expression profiling based on cDNA microarray tech‐
nology; (b) tissues collected from prefrontal cortex (PFC, defined 
as Brodmann areas BA9, BA10 & BA46, since PFC has been widely 
accepted as the major locus of SZ dysfunction based on the results 
from both clinical and neuroimaging studies); (c) the raw dataset (CEL 
file) available for analysis; (d) consisted of one cohort of patients and 
another cohort of healthy controls; and (5) species origin of “Homo 
Sapiens.” As demonstrated in Table S1, the searching process/history, 
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screening, and dataset inclusion in each electronic database were 
described. First, the numbers of resulting records by direct keyword 
searches in the libraries of GEO, SMRI, HBB, PubMed, PsycINFO, 
Embase, and Cochrane were 4,256, 20, 1, 505, 942, 1,346, and 13, 
respectively. Then, the numbers of resulting records by following the 
above 5 sequential criteria were provided in Table S1. Third, the num‐
bers of datasets passing all 5 sequential criteria for the libraries of GEO, 
SMRI, HBB, PubMed, PsycINFO, Embase, and Cochrane were 4, 2, 1, 
9, 0, 8, and 0, respectively. Finally, nine independent microarray studies 
were collected and included in this analysis by removing the duplicates 
across all electronic database. As shown in Table 1, each independent 
study was assigned a unique ID (from A to I). Specifically, 5, 3, and 1 
studies were conducted using the platforms of HG‐U133A, HG‐U133 
Plus 2, and Agilent‐014850, respectively, and 5, 2, 1, and 1 studies fo‐
cused on the brain regions of BA46, BA10/46, BA9, and BA10, respec‐
tively. Moreover, the sample sizes of these studies varied substantially 
(from the 15 to 65), and 4, 2, 1, and 2 studies had the sample sizes of 
>50, 40‐50, 30‐40, and ≤30, respectively. All analyses reported here 
were conducted in the R environment (v3.4.3). The raw data (CEL file) 
were read, log‐transformed, and normalized using the R package of affy 
and limma, and the parameters were all set to default. Then, probe sets 
were mapped to their corresponding genes, and the average expres‐
sion value was retained if one gene was mapped to multiple probes.

2.2 | Consistent discovery of gene signature based 
on the newly constructed strategy

As one of the most popular machine learning algorithms, the sup‐
port vector machine (SVM) showed good performance in classifying 

microarray datasets,53,54 and the corresponding wrapper or embed‐
ded recursive feature elimination algorithm (SVM‐RFE55) was widely 
used in current study.37 During SVM‐RFE‐based feature selection, a 
gene ranking function was initially generated based on the artificial 
intelligence (AI) classifier (SVM), and the signature was then identi‐
fied by discarding the genes that were not differentially expressed.55 
In this study, a novel strategy based on SVM‐RFE was thus proposed 
and constructed by (a) integrating repeated random sampling with 
consensus scoring and (b) evaluating the consistency of gene rank‐
ings among multiple independent datasets. Workflow of this strat‐
egy was provided in Figure S1 and described in detail below.

First, one study (the ith study) was randomly selected from the 
nine independent studies, and the remaining eight studies were used 
as independent test datasets. The ith study was separated into 1000 
unique training‐test datasets using repeated random sampling.27 For 
each training‐test dataset, half of the SZ patient cohort and half of 
the healthy cohort were randomly selected to construct the train‐
ing dataset, and the remaining samples were all placed in the corre‐
sponding test dataset.

Then, the 1000 training‐test datasets were randomly grouped 
into 10 sampling groups (each of 100 unique training‐test datasets). 
In each dataset, the signature was identified from the training data‐
set by SVM‐RFE, and the corresponding test set was used to as‐
sess the classification performance of the identified signature. The 
consistency of gene rankings among 100 training‐test sets in each 
sampling group was assessed using the sequential methods of con‐
sensus scoring described below to enhance the consistency among 
signatures identified from different datasets: (α) the genes ranked in 
the bottom (<50%, depending on the number of remaining genes in 

TA B L E  1   Datasets collected from nine independent microarray studies (sorted by sample size)

ID Dataset reference
Brodmann's 
area code

Sample 
size 
(SZ:HEA)

Platform 
ID Platform description

A BMC Genomics. 7:70, 2006 46 65 (34:31) GPL96 Affymetrix Human Genome U133A Array (HG‐U133A)

B Schizophr Res. 77:241‐252, 2005 10/46 60 (31:29) GPL96 Affymetrix Human Genome U133A Array (HG‐U133A)

C Schizophr Res. 161:215‐221, 2015 46 59 (29:30) GPL4133 Whole Human Genome Microarray 4x44K G4112F 
(Agilent‐014850)

D Brain Res. 1239:235‐248, 2008 46 54 (25:29) GPL570 Affymetrix Human Genome U133 Plus 2.0 Array (HG‐
U133 Plus 2)

E Mol Psychiatry. 14:1083‐1094, 2009 10 47 (26:21) GPL570 Affymetrix Human Genome U133 Plus 2.0 Array (HG‐
U133 Plus 2)

F Proc Natl Acad Sci USA. 
102:15533‐15538, 2005

9 45 (19:26) GPL96 Affymetrix Human Genome U133A Array (HG‐U133A)

G PLoS One. 10:e0121744, 2015 46 32 (13:19) GPL570 Affymetrix Human Genome U133 Plus 2.0 Array (HG‐
U133 Plus 2)

H BMC Psychiatry. 8:87, 2008 10/46 20 (09:11) GPL96 Affymetrix Human Genome U133A Array (HG‐U133A)

I Neuropsychopharmacol H. 10:9‐14, 
2008

46 15 (09:06) GPL96 Affymetrix Human Genome U133A Array (HG‐U133A)

Notes: These studies were in vivo investigations conducted within the prefrontal cortex of the postmortem brain tissue. Each dataset contained one 
cohort of SZ subjects (SZ) and another cohort of healthy individuals (HEA). The study IDs assigned in this table were used to indicate those nine 
datasets throughout the manuscript.
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different rounds) were selected out if their collective contribution 
did not surpass the top‐ranked genes; (β) among the selected genes, 
those ranked in the bottom half during previous round of ranking 
were chosen to ensure that they consistently received low rankings 
among iterations; and (γ) the low‐ranking genes appearing in >90% 
of the 100 training‐test datasets were discarded.

Finally, the signature was identified based on the highest aver‐
age classification accuracy among 100 test datasets. Ten sampling 
groups were all analyzed using the same method, and the gene sig‐
nature comprised DEGs that were simultaneously identified from 
all sampling groups. All calculations were achieved using a high‐
performance computing (HPC) server with 768 GB RAM and CPU 
E7‐8168 × 24 cores and further accelerated by GPU NVIDIA Tesla 
K80. Due to the numerous iterations required for maker discovery, 
2‐4 weeks (depending on the nature of dataset) were needed to de‐
termine the signature of a single study.

2.3 | Assessing the consistency of gene signatures 
identified from independent datasets

The signatures derived from nine independent studies (Table 1) 
were analyzed by consistency scores (CSs) to evaluate the consist‐
ency among signatures identified from independent datasets. The 
CS was new metric quantitatively assessing the consistency of sig‐
natures discovered from multiple independent studies.56,57 A larger 
value of CS indicates that a greater number of DEGs were shared 
among those independent studies. As reported, Student's t test cor‐
rected by Benjamini‐Hochberg algorithm14 and significant analysis of 
microarray (SAM)20,58 have emerged as the most popular approaches 
employed to discover SZ signatures. Therefore, the CS of the new 
strategy was compared with that of these popular methods.

2.4 | Analysis of the reproducibility of gene 
signatures identified from independent datasets

The performances of one study in predicting the SZ outcome of an‐
other and vice versa were critical criteria for assessing the reproduc‐
ibility of the signatures identified from independent datasets.59‐62 
Thus, each of the nine independent datasets (Table 1) was initially se‐
lected and used to identify SZ signature. Then, the identified signature 
was used to construct the SVM classifier, and the resulting model was 
optimized using five‐fold cross validation. Next, the reproducibility of 
the signature identified from each independent study was assessed by 
predicting the SZ outcomes of the remaining eight studies (Table 1). 
Two popular metrics (accuracy (ACC) and Matthews correlation coeffi‐
cient (MCC)) in biomedical researches63 were applied to assess the pre‐
dictive performances of nine independent studies (the performance 
of one study in predicting SZ outcomes of another and vice versa). 
Collective analysis of eight performance values (ACCs and MCCs) for 
each independent dataset could systematically reflect the reproduci‐
bility of identified signatures. ACC indicated the number of successfully 
predicted true samples divided by all samples in all eight independent 
test datasets, and MCC reflected the stability of the classifier based on 

the identified signature.63 ACC and MCC ranged from 0 to 1 and −1 to 1, 
respectively. The higher value of each metric denoted better predictive 
performance. An MCC of −1 represented total disagreement between 
the predicted results and independent test dataset, 0 denoted no bet‐
ter than random prediction, and 1 indicated a perfect prediction. As t 
test and SAM were popular methods for discovering SZ gene signature, 
the reproducibility of the strategy proposed in this study was com‐
pared with that of these two popular methods in Section 31.

2.5 | Elaborating the role of the identified SZ 
Signature based on enrichment analysis

An enrichment analysis of identified signature was conducted to 
identify the significantly overrepresented gene ontology (GO) terms 
such as the biological process, the molecular function, the cellular 
component, and the KEGG pathways based on hypergeometric test 
(P‐value <.05) provided by gene set enrichment analysis (GSEA).64 
Based on the comprehensive literature review of GO term and 
KEGG pathway known to play key roles in SZ, the enriched terms 
and pathways were applied to reveal the mechanism underlying the 
cognitive dysfunction in patients with SZ. Moreover, the identified 
SZ signature was expected to contain a substantial percentage of 
SZ‐related genes.65 Here, a comprehensive literature review was 
thus performed to investigate the relevance of the signature to the 
etiology of SZ.

3  | RESULTS AND DISCUSSION

3.1 | Consistency among the SZ signatures 
discovered from multiple independent datasets

Based on the novel strategy developed here, gene signatures were 
identified from nine independent studies (Table S2). As shown, the 
total numbers of genes in these signatures varied from 111 to 119. 
Meanwhile, Student's t test (corrected by the Benjamini‐Hochberg 
algorithm) and SAM were applied to discover the gene signature. 
By selecting the top‐ranked genes (top 100 as frequently applied 
and widely accepted in DEGs study66), a variety of signatures were 
identified by the Student's t test (Table S3) and SAM (Table S4). 
The CS values have been frequently used for quantitative evalu‐
ation on the consistency among the signatures discovered from 
multiple independent datasets.56,67‐69 Therefore, based on the sig‐
natures identified from nine independent datasets, the CS for each 
method was calculated. As shown in Table 2, the CSs among the 
nine signatures discovered by the new strategy, t test, and SAM 
were 429, 50, and 82, respectively. This result indicated a sub‐
stantial increase in the consistency of signatures discovered by the 
new strategy compared with those two popular methods.

Increase in consistency of signature identification might 
improve the reliability and accuracy of identified markers.30 
Therefore, it was of great interest to assess the predictive per‐
formances of those three methods on independent test data‐
set. Herein, one of the nine independent datasets (Table 1) was 
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selected and used to identify the SZ signature and was then used 
to construct the SZ classifier. By predicting the SZ outcomes of the 
remaining eight studies, the reproducibility of the signature iden‐
tified from each study was assessed. Taking the study A in Table 1 
as an example, its prediction performances for the remaining data‐
sets were illustrated in Table 2. The ACCs for this novel strategy, t 
test, and SAM ranged from 64.4% to 87.5%, 51.1% to 69.5%, and 
53.3% to 66.7%, respectively, and MCCs were from 0.35 to 0.76, 
0.15 to 0.46, and 0.21 to 0.45, respectively. A substantial improve‐
ment in the performance of new strategy was observed compared 
with traditional ones. The predictive performance of one study on 
the SZ outcome of another was reported to be a key criterion for 
evaluating the reproducibility of the signatures identified by dif‐
ferent datasets.59,60 The predictive performance (both ACCs and 
MCCs) of all nine studies on the remaining eight independent data‐
sets must be assessed to achieve the comprehensive assessment 
of the reproducibility of the method.

3.2 | Reproducibility of the gene signatures 
identified from multiple independent datasets

The predictive performance of nine studies was assessed using ACCs 
and MCCs to achieve comprehensive evaluation of methods’ repro‐
ducibility (Table 2 and Table S5). Based on the result, forest plots 
(Figure 1) were drawn to depict the effects of different methods 
(new strategy, t test, and SAM) on reproducibility. Forest plots have 
been widely adopted in current analyses to discover SZ risk alleles45 

or assess the drug response rates in patients with SZ.49,50 In this 
study, the comparisons between the new strategy and SAM, between 
new strategy and t test, and between t test and SAM were shown in 
Figure 1A‐C, respectively. The odds ratios (ORs) for those nine inde‐
pendent studies (A‐I) were calculated by random effects models. On 
one hand, Figure 1A, 1 revealed large and significant overall average 
effect sizes for the comparison between the new strategy and SAM 
(OR = 1.49, 95%‐CI [1.34; 1.66]) and between the new strategy and t 
test (OR = 1.52, 95%‐CI [1.36; 1.69]), which indicated the significant 
increase in the reproducibility by employing the new strategy com‐
pared with traditional feature selection method. On the other hand, 
small and nonsignificant effect size was observed between t test and 
SAM (OR = 0.99, 95%‐CI [0.89; 1.09]; Figure 1C), which indicated that 
statistically significant difference in reproducibility was not observed 
between t test and SAM. As shown in Table 1, nine studies were or‐
dered and labeled (A‐I) by their sample sizes. Clear decreasing trend in 
the ORs was observed as the sample size decreased (from 1.95 to 1.30 
in Figure 1A; from 1.83 to 1.22 in Figure 1B). Based on these results, 
the reproducibility of the new strategy was found to be dependent on 
the sample size of a specific study.

The predictive performance (both ACCs and MCCs) of all nine 
studies for the remaining eight independent datasets was assessed 
for further comparing the reproducibility of the three methods, and 
the results were presented in Figure S2 and Figure 2; statistical sig‐
nificance of the differences (P‐values) among methods was also cal‐
culated. As shown in Figure S2, the significant differences (P‐value 
<.05) in ACCs for the first six studies (A‐F) were observed between 

Eight datasets used as the test 
dataset Measure This study

Student's t 
test SAM

Consistency score among nine signatures discov‐
ered by different methods

429 50 82

B: Schizophr Res. 77:241‐252, 
2005

ACC (%) 77.4 56.7 60.0

MCC 0.53 0.15 0.21

C: Schizophr Res. 161:215‐221, 
2015

ACC (%) 64.4 69.5 64.4

MCC 0.36 0.45 0.36

D: Brain Res. 1239:235‐248, 
2008

ACC (%) 75.9 63.0 61.1

MCC 0.52 0.28 0.25

E: Mol Psychiatry. 14:1083‐1094, 
2009

ACC (%) 66.0 68.1 59.6

MCC 0.38 0.43 0.23

F: Proc Natl Acad Sci USA. 
102:15533‐8, 2005

ACC (%) 64.4 51.1 53.3

MCC 0.35 0.16 0.24

G: PLoS One. 10:e0121744, 2015 ACC (%) 87.5 68.8 62.5

MCC 0.76 0.46 0.38

H: BMC Psychiatry. 8:87, 2008 ACC (%) 85.0 65.0 65.0

MCC 0.72 0.45 0.45

I: Neuropsychopharmacol H. 
10:9‐14, 2008

ACC (%) 73.3 66.7 66.7

MCC 0.44 0.39 0.29

Notes: The consistency and reproducibility were assessed using CSs among gene signatures discov‐
ered from nine independent datasets and the ACCs and MCCs for study A (with the largest sample 
size) to the remaining eight datasets (Table 1).

TA B L E  2   The reproducibility of 
two popular feature selection methods 
(Student's t test and SAM) and the new 
strategy proposed in this study
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new strategy and traditional ones, but the difference in ACCs for all 
nine studies between t test and SAM was not significant. Regarding 
the MCCs, the results were similar to that of the ACCs, with signifi‐
cant differences in MCCs for the first six studies observed between 
the new strategy and traditional methods and a lack of statistically 
significant difference between t test and SAM for all nine studies 
(Figure 2). These results were highly consistent with the data pre‐
sented in Figure 1, which revealed a significant enhancement in 
reproducibility when the new strategy was employed. For those 
studies with relatively small sample sizes (G‐I), although a statistically 
significant difference (P‐value ≥.05) was not observed between the 
new strategy and traditional methods, the median values (ACCs and 

MCCs) obtained by the new strategy were consistently higher than 
the values obtained using traditional ones in all three studies (G‐I). 
Moreover, MCC was reported as a powerful measure for evaluating 
the reproducibility due to its complete consideration of the testing 
data,63,70 Figure 2 could therefore be used as another line of evi‐
dence confirming the increased reproducibility of the new strategy.

3.3 | Discovery of the SZ gene signature with 
enhanced reproducibility

Since the reproducibility of the new strategy depended on the sam‐
ple size of the studied dataset, six studies with >40 samples (A‐F) 

F I G U R E  1   The effect of feature selection methods on reproducibility. Comparisons between A, the newly proposed strategy of this 
study and SAM; B, this study and Student's t test (t test); and C, t test and SAM are shown. The size of the square indicates the relative 
weight assigned to the corresponding study in this analysis. The error bars represent 95% confidence interval of the effect. The analysis 
revealed significant increase in reproducibility when new strategy was employed compared with traditional methods, as shown in (A) and (B), 
while no significant difference in reproducibility was observed between t test and SAM
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were further selected to determine the SZ signature with enhanced 
reproducibility. The signature of high reproducibility was essential 
for revealing the molecular mechanism underlying the etiology of 
SZ.29,30 In this study, the gene markers identified by ≥50% of these 
selected studies (A‐F) were ultimately chosen as the SZ signature 
of enhanced reproducibility. As a result, 33 DEGs (Table S6) were 
identified, and the relevance between each DEG and the molecular 
mechanism underlying the etiology of SZ was comprehensively re‐
viewed based on published studies (Table S7). Twenty‐five of those 
33 DEGs were closely related to SZ or its associated cognitive dys‐
function. The high percentage (75.8%) of DEGs related to SZ further 
reflected the reliability of the new strategy.

Additionally, the top 10 ranked GO terms (biological process, 
molecular function, and cellular component), in which those 33 
DEGs were enriched, were listed in Table S8 and the hypergeometric 
test P‐values based on the GSEA64 were provided. The response to 
the stimuli of patient with SZ was attenuated compared with control 
subjects,71 and the positive affects played an important role in reg‐
ulating the cognitive control.72 This result was in accordance with 
the top‐ranked biological process shown in Table S8 (BP1: positive 
regulation of response to stimuli). Additionally, increased dopami‐
nergic synaptic transmission and spillage into the extracellular space 
were reported to be closely associated with SZ,73 and an enlarge‐
ment of extracellular space was frequently observed in the patient 

F I G U R E  2   Reproducibility assessed by MCCs for each of the nine studies (A‐I) to the remaining eight. The statistical significance of 
differences among the three methods (this study, t test, and SAM) was calculated, and significant differences were observed (* and ** 
indicated the P‐values <.05 and <.01, respectively). The IDs of the nine studies (A‐I) are defined in Table 1
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of cognitive impairment.74‐77 These were consistent with the top‐
ranked cellular components shown in Table S8 (CC1: extracellular 
space). Moreover, the transition metal ion binding (MF1 in Table S8) 
was reported to be significantly associated with SZ.78 Furthermore, 
the enrichment analysis of pathways using those 33 DEGs identified 
two pathways: (a) the neurotrophin signaling and (b) natural killer 
cell‐mediated cytotoxicity. The neurotrophin signaling was found 
substantially related to SZ,21,22 and natural killer cell‐mediated cy‐
totoxicity was key for the cognitive deterioration.24 Enrichment 
analysis of transcription factor binding sites based on the 33 DEGs 
identified two transcription factors as overrepresented, both of 
which were SZ‐related (Table S9). In summary, this analysis con‐
firmed that the reproducibility of the identified signature was sig‐
nificantly enhanced.

3.4 | Limitations

The enhanced reproducibility of the newly constructed strategy 
was primarily derived from its numerous iterations required for 
marker discovery. The entire calculation process was performed 
on an HPC server with 768 GB RAM and CPU E7‐8168 × 24 cores 
and accelerated by a GPU NVIDIA Tesla K80. However, 2‐4 weeks 
(depending on the nature of studied dataset) were required to de‐
termine SZ signature for single study. Thus, this AI‐based strategy 
was very time‐consuming and relied heavily on the performance of 
the applied computing server. Thus, further study should be con‐
ducted to improve the programming algorithm and server archi‐
tecture (such as parallel computing) for enhancing computational 
efficiency.

4  | CONCLUSIONS

The SZ signature identified in this study by new strategy exhibited 
significantly enhanced reproducibility compared with that of the tra‐
ditional methods in current SZ studies. Thus, this study not only pro‐
vided a new strategy for enhancing the reproducibility of SZ study, 
but also identified several DEGs as candidates for revealing the mo‐
lecular mechanism underlying the etiology of SZ.
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