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Simple Summary: Gliomas infiltrating the corpus callosum (G-I-CC) may carry significant tumor
burden by causing severe neurocognitive and functional impairments. The role of surgical resection
has been widely debated over the years, as it has been correlated with significant survival improve-
ment but may also predispose the patient to major post-operative complication risks. The aim of
our systematic review was to comprehensively analyze the current literature on G-I-CC, describing
clinical presentations, management strategies, outcomes, and prognoses. We found that most G-I-CC
are IDH-wildtype grade-4 glioblastomas involving the corpus callosum genu and with bilateral
lobe infiltration. In patients with high-grade G-I-CC, surgical resection, especially gross-total, led to
significantly longer survival when coupled with post-surgery radiation and temozolomide. Rates of
symptom improvement and complications did not significantly differ in preservation versus resection
of tumor-infiltrated corpus callosum. Overall, maximally safe resection should be considered in
patients with G-I-CC, co-adjuvated with intraoperative neuromonitoring and cortical mapping to
further reduce complication risks.

Abstract: Background: Gliomas infiltrating the corpus callosum (G-I-CC) majorly impact patient
quality-of-life, but maximally safe tumor resection is challenging. We systematically reviewed the
literature on G-I-CC. Methods: PubMed, EMBASE, Scopus, Web of Science, and Cochrane were
searched following the PRISMA guidelines to include studies of patients with G-I-CC. Clinicopatho-
logical features, treatments, and outcomes were analyzed. Results: We included 52 studies comprising
683 patients. Most patients experienced headache (33%), cognitive decline (18.7%), and seizures
(17.7%). Tumors mostly infiltrated the corpus callosum genu (44.2%) with bilateral extension (85.4%)
into frontal (68.3%) or parietal (8.9%) lobes. Most G-I-CC were glioblastomas (84.5%) with IDH-
wildtype (84.9%) and unmethylated MGMT promoter (53.5%). Resection (76.7%) was preferred over
biopsy (23.3%), mostly gross-total (33.8%) and subtotal (32.5%). The tumor-infiltrated corpus callo-
sum was resected in 57.8% of cases. Radiation was delivered in 65.8% of patients and temozolomide
in 68.3%. Median follow-up was 12 months (range, 0.1–116). In total, 142 patients (31.8%) experienced
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post-surgical complications, including transient supplementary motor area syndrome (5.1%) and
persistent motor deficits (4.3%) or abulia (2.5%). Post-treatment symptom improvement was reported
in 42.9% of patients. No differences in rates of complications (p = 0.231) and symptom improve-
ment (p = 0.375) were found in cases with resected versus preserved corpus callosum. Recurrences
occurred in 40.9% of cases, with median progression-free survival of 9 months (0.1–72). Median
overall survival was 10.7 months (range, 0.1–116), significantly longer in low-grade tumors (p = 0.013)
and after resection (p < 0.001), especially gross-total (p = 0.041) in patients with high-grade tumors.
Conclusions: G-I-CC show clinicopathological patterns comparable to other more frequent gliomas.
Maximally safe resection significantly improves survival with low rates of persistent complications.

Keywords: butterfly glioma; corpus callosum; glioblastoma; neuro-oncology; survival

1. Introduction

Gliomas are the second most common primary tumors of the central nervous system
(CNS), causing high morbidity and mortality burden worldwide [1]. Despite the promising
advances in targeted therapy, oncolytic viral therapy, and immunotherapy, the favorable
prognostic role of maximally safe tumor resection with adjuvant chemotherapy and radia-
tion defines the current gold standard [2–4]. However, the infiltrative behavior of gliomas,
theorized to be carried out via white-matter tracts and/or blood vessels, coupled with
their frequent location in eloquent areas, poses major challenges in achieving gross-total
resection while minimizing complications [5,6].

The corpus callosum (CC) represents the largest interhemispheric brain commissural
tract, composed of dense myelinated white-matter fibers that connect two homologous
cortical brain areas [7]. The CC may provide a feasible bridge for tumor cells to migrate
into the contralateral hemisphere, as is often reported in gliomas arising from frontal or
parietal lobes [8]. Sometimes referred to as “butterfly gliomas” due to their radiological
appearance when symmetrically invading both hemispheres around the CC, gliomas
infiltrating the corpus callosum (G-I-CC) are characterized as rare entities of complex
management and poor prognosis [9,10]. Historically, the attempt to achieve maximally
safe resection has been widely debated, as opposed to diagnostic biopsy followed by
chemotherapy and radiation [11]. More recently, surgery has been preferred as it shows
benefits in overall survival superior to biopsy, but it still comes with an increased risk of
aggravating preexisting neurological deficits [10,12,13]. Novel intraoperative imaging and
neuromonitoring techniques may serve as favorable adjuncts to improve surgical resection
safety and extent, but are limited by strict requirements in costs and personnel training [14].

Due to the uncommon incidence of G-I-CC, most conclusions on the management of
these lesions derive from case reports and small series with heterogeneous data on clinical
outcomes [15,16]. In this systematic review, we comprehensively summarized clinical
features, molecular alterations, management strategies, and their impact on survival in
patients with G-I-CC.

2. Materials and Methods
2.1. Literature Search

A systematic review was conducted following the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) guidelines [17] and registered to PROS-
PERO (ID: 324555). PubMed, EMBASE, Scopus, Web of Science, and Cochrane were
searched from database inception to 27 March 2022, using the combination of Boolean oper-
ators “OR” and “AND” and search terms: “corpus callosum”, “butterfly”, “glioblastoma*”,
and “gliom*”. Studies were uploaded to Mendeley, and duplicates were deleted.
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2.2. Study Selection

Predetermined inclusion and exclusion criteria were set. Studies were included if
they: (1) involved ≥1 patients with histologically confirmed gliomas involving the corpus
callosum as explicitly mentioned by the authors or extracted from radiological images;
(2) reported data on clinical features, treatments, and outcomes; (3) were written in English.
Studies were excluded if they were: (1) reviews, conference abstracts, animal studies,
or autopsy reports; (2) studies with unclear distinction between patients with G-I-CC
and without; (3) studies lacking data on ≥2 of the following: clinical characteristics,
histomolecular alterations, treatments, and/or outcomes. In the case of studies with
overlapping cohorts, only the ones with the longest follow-up were included.

Two independent reviewers (G.W. and C.O.) screened titles and abstracts of all col-
lected articles, and then assessed full-texts of those meeting the inclusion criteria. A third
reviewer (P.P.) resolved any conflict. Eligible articles were included and references were
scrutinized to retrieve additional relevant studies.

2.3. Data Extraction

Data were extracted by two reviewers (G.W. and C.O.) and confirmed by one ad-
ditional reviewer (P.P.). Missing data were not reported by the authors. Extracted data
included: authors, year, sample size, age, gender, symptoms, tumor location in the CC and
laterality, hemisphere extension, WHO grade and type valid at the time of study publica-
tion, histomolecular patterns, extent-of-surgery, CC resection, complications, post-surgery
treatments, symptom response, recurrence, progression-free survival (PFS), overall survival
(OS), and survival status. Extent-of-resection was defined as “gross-total resection” for
90–100% tumor resection, “subtotal resection” for 80–90%, and “partial resection” for <80%.
Surgical complications were divided into “transient”, if self-resolved at later follow-ups,
and “persistent”, if untreatable or requiring additional operations. Symptom responses
were assessed at last available follow-up.

2.4. Data Synthesis and Quality Assessment

Primary outcomes of interest were clinicopathological characteristics, management,
and outcomes in patients with G-I-CC. For each article, two independent reviewers (P.P.
and C.O.) appraised level of evidence using the 2011 Oxford Centre For Evidence-Based
Medicine guidelines, and risk of bias using the Joanna Briggs Institute checklists for case
reports and case series [18,19]. The overall risk of bias for this review was determined by
considering the aggregate risk of bias of all included studies. A study-level meta-analysis
was precluded because the included studies had levels IV–V of evidence and hazard ratios
could not be deducted. A patient-level meta-analysis was conducted using individual
patient-level data [20].

2.5. Statistical Analysis

SPSS V.25 (IBM Corp, Armonk, NY, USA) was operated and bilateral p-values < 0.05
were considered significant for all tests. Continuous variables are summarized as me-
dians and ranges, and categorical variables as frequencies and percentages. Rates of
post-treatment outcomes and complications based on CC resection were compared using
χ2 and Fisher exact tests. Time intervals between surgery and tumor recurrence (PFS curve)
or death (OS curve) were estimated with the Kaplan–Meier method, and survival analyses
were conducted with the log-rank test.

3. Results
3.1. Study Selection

Figure 1 illustrates the study selection process. The initial search yielded 2867 citations
(PubMed: 540; EMBASE: 1513; Scopus: 573; Web of Science: 239; Cochrane: 2). A total of
19 case series and 33 case reports were included, categorized as level IV and V of evidence
(Supplementary File S1) [9,10,12–14,21–67]. Critical assessment returned low risk of bias for
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all included studies, predisposing this review to a low overall risk of bias (Supplementary
File S2) [9,10,12–14,21–67].
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Figure 1. PRISMA 2020 flow diagram.

3.2. Clinicoradiological Characteristics and Histomolecular Patterns

Table 1 summarizes the clinical characteristics of all 683 included patients. Median
age was 54 years (range, 0.5–83) with a male prevalence (56.1%). Patients experienced
various degrees of debilitating symptoms, most commonly headache (33%), confusion
or cognitive decline (18.7%), seizures (17.7%), motor deficits (13.5%), and memory loss
(13.1%). Altered consciousness was reported in 11 cases (2.2%) and personality changes in
9 (1.8%). Bouali et al. [50] treated one infant with CC gliosarcoma presenting with hydro-
cephalus, macrocephalia, and failure to thrive. In five patients (1%), asymptomatic G-I-CC
were diagnosed incidentally at oncological follow-up imaging. Tumors most frequently
invaded the genu of the CC (44.2%) and extended bilaterally (i.e., “butterfly glioma”)
(85.4%) into frontal (68.3%) or parietal (8.9%) lobes. Less commonly, G-I-CC unilater-
ally infiltrated the adjacent brain hemispheres (14.4%). Azriel et al. [45] described one
patient with a glioblastoma located only in the CC, showing no hemisphere infiltration.
Grade-4 glioblastomas comprised the most common lesions (84.5%), followed by grade-2
astrocytomas (9.7%). Three cases (0.4%) of grade-4 gliosarcoma [50,51,62] and one case
each (0.1%) of grade-1 ganglioglioma [55], grade-1 pilocytic astrocytoma [59], and grade-1
subependymoma [67] were reported. Among cases with available histomolecular data,
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most tumors showed IDH-wildtype (84.9%), unmethylated MGMT promoters (53.5%),
non-amplified EGFR (61.6%), mutated p53 (53.5%), non-mutated PTEN (46.3%), and nor-
mal ATRX (100%). La Rocca et al. [47] reported one case of an H3 K27-altered butterfly
splenium glioblastoma.

Table 1. Summary of clinicoradiological and histomolecular features of all pooled patients.

Characteristics Value

Cohort size (no.) 683

Demographics

Age (years), median (range) 54 (0.5–83)
Gender (male) 383 (56.1%)

Presenting symptoms (n = 503) No. (%)

Headache 166 (33%)
Confusion/cognitive decline 94 (18.7%)
Seizure 89 (0.2%)
Motor deficit 68 (13.5%)
Memory loss 66 (13.1%)
Nausea and vomit 43 (8.5%)
Speech disorder 38 (7.6%)
Vision deficit 32 (6.4%)
Sensory deficit 24 (4.8%)
Altered consciousness 11 (2.2%)
Ataxia 11 (2.2%)
Behavior/personality change 9 (1.8%)
Cranial nerve neuropathies 3 (0.6%)
Intracranial hemorrhage 1 (0.2%)
Macrocephalia and failure to thrive 1 (0.2%)
No symptoms 5 (1%)

Location in corpus callosum (n = 486) No. (%)

Genu 215 (44.2%)
Genu/body 89 (18.3%)
Body 65 (13.4%)
Body/splenium 27 (5.6%)
Splenium 90 (18.5%)

Laterality (n = 576) No. (%)

Butterfly (bilateral) 492 (85.4%)
Unilateral 83 (13.4%)
Limited to the corpus callosum 1 (0.2%)

Hemisphere infiltration (n = 347) No. (%)

Frontal lobe 237 (68.3%)
Parietal lobe 31 (8.9%)
Frontoparietal lobe 26 (7.5%)
Frontotemporal lobe 24 (6.9%)
Parietooccipital lobe 17 (4.9%)
Parietotemporal lobe 11 (3.2%)
Limited to the corpus callosum 1 (0.3%)

WHO grade and type No. (%)

1-Ganglioglioma 1 (0.1%)
1-Pilocytic astrocytoma 1 (0.1%)
1-Subependymoma 1 (0.1%)
2-Astrocytoma 66 (9.7%)
2-Oligodendroglioma 4 (0.6%)
3-Anaplastic astrocytoma 18 (2.6%)
3-Anaplastic oligoastrocytoma 7 (1%)
3-Anaplastic oligodendroglioma 5 (0.7%)
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Table 1. Cont.

Characteristics Value

4-Glioblastoma 577 (84.5%)
4-Gliosarcoma 3 (0.4%)

Molecular patterns (n = 392) No. (%)

IDH-1 mutated 52/344 (15.1%)
IDH-1 wildtype 292/344 (84.9%)
MGMT promoter methylated 106/228 (46.5%)
MGMT promoter unmethylated 122/228 (53.5%)
EGFR amplified 53/138 (38.4%)
P53 mutated 60/96 (53.5%)
PTEN mutated 25/54 (46.3%)
ATRX normal 30/30 (100%)
H3 K27-altered 1/1 (100%)

3.3. Management Strategies

Treatment strategies are reported in Table 2. Tumor biopsy was obtained in 159 patients
(23.3%), while resection was pursued in 524 (76.7%): gross-total (33.8%), subtotal (32.5%), or
partial (10.4%). The tumor-infiltrated CC was resected in 395 cases (57.8%). Surgeries were
mostly performed with open interhemispheric transcallosal or trans-sulcal approaches,
often using intraoperative adjuncts including awake cortical/subcortical mapping [9,37], ul-
trasound [9,10,13], MRI [13,14], and/or sensorimotor neuromonitoring [10,13,14]. Dadario
et al. [62] described their endoscopic-assisted interhemispheric trans-sulcal and transcortical
techniques in 70 butterfly G-I-CC. Among patients with available data, 443 (73.6%) received
post-surgery treatments, including radiotherapy (65.8%) and chemotherapy (68.8%), mostly
temozolomide (68.3%). In early series, two patients (0.3%) were treated with procarbazine,
lomustine, and vincristine [21], and one patient (0.2%) with intrathecal methotrexate [31].

Table 2. Summary of treatment strategies and outcomes of all pooled patients.

Characteristics Value

Surgical Management No. (%)

Biopsy 159 (23.3%)
Tumor resection 524 (76.7%)

Gross-total (90–100%) 231 (33.8%)
Subtotal (80–90%) 222 (32.5%)
Partial (<80%) 71 (10.4%)

Resection of corpus callosum 395 (57.8%)
Post-surgery treatments (n = 602) No. (%)

Radiotherapy 396 (65.8%)
Chemotherapy 414 (68.8%)

Temozolomide 411 (68.3%)
Procarbazine + lomustine + vincristine 2 (0.3%)
Intrathecal methotrexate 1 (0.2%)

Surgical complications (n = 447) No. (%)

Transient 47 (10.5%)
Supplementary motor area syndrome 23 (5.1%)
Motor deficit 10 (2.2%)
Abulia 5 (1.1%)
Sensory deficit 4 (0.9%)
Confusion 3 (0.7%)
Dysphasia 3 (0.7%)
Vision deficit 3 (0.7%)
Neglect 2 (0.4%)

Persistent 95 (21.3%)
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Table 2. Cont.

Characteristics Value

Motor deficit 19 (4.3%)
Aphasia 12 (2.7%)
Abulia 11 (2.5%)
Hemorrhage 10 (2.2%)
Hydrocephalus 10 (2.2%)
Skin infection 9 (2%)
Infarct 8 (1.8%)
Memory loss 7 (1.6%)
Seizure 6 (1.3%)
Meningitis 5 (1.1%)
Vision deficits 4 (0.9%)
Cognitive decline 3 (0.7%)
Cranial nerve neuropathies 2 (0.4%)
Neglect 1 (0.2%)

Symptom improvement (n = 198) 85 (42.9%)

Recurrence (n = 328) 134 (40.9%)

Survival

Follow-up (months), median (range) 12 (0.1–116)
Progression-free survival (months), median (range) 9 (0.1–72)
Overall survival (months), median (range) 10.7 (0.1–116)

Status No. (%)

Alive 175 (25.6%)
Dead 508 (74.4%)

3.4. Outcomes, Complications, and Survival

Patients were followed-up for a median of 12 months (range, 0.1–116) (Table 2). A total
of 142 patients (31.8%) experienced post-surgical complications, which were transient in
47 (10.5%), mostly supplementary motor area syndrome (SMAS, 5.1%) and motor deficits
(2.2%), and persistent in 95 (21.3%), mostly motor deficits (4.3%), aphasia (2.7%), and abulia
(2.5%). Post-operative persistent memory loss (1.6%) and cognitive decline (0.7%) were also
reported. No significant differences in complication rates were noted between patients with
resected-tumor-infiltrated CC and patients without (p = 0.231). Post-treatment symptom
improvement was described in 42.9% of patients with available data, with no significant
differences between CC resection and preservation (p = 0.375). Tumor recurrences were
reported in 40.9% of patients with available data, with median PFS of 9 months (range,
0.1–72) in patients with high-grade G-I-CC (Figure 2). A total of 508 patients died at
last follow-up (74.4%), showing a median OS of 10.7 months (0.1–116). Survival was
significantly longer in low-grade (grade-1 and grade-2) G-I-CC than high-grade (grade-3
and grade-4) G-I-CC (p = 0.013). In patients with high-grade G-I-CC receiving post-surgery
chemotherapy and/or radiation, survival was significantly longer after resection than
biopsy (p < 0.001), and after gross-total than subtotal or partial resection (p = 0.041).
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4. Discussion

Gliomas infiltrating the CC are uncommon yet challenging entities that significantly
affect patient quality-of-life. While maximally safe resection remains the gold standard for
providing symptom and survival improvement, complications related to CC resection need
to be considered. In this review, we provided a comprehensive summary of the current
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literature on G-I-CC, showing that CC resection had no significant impact on post-surgery
complications and symptom response, but tumor resection, especially gross-total, led to a
significant increase in overall survival when compared to biopsy alone.

The CC regulates the functional connectivity and integration between the two cerebral
hemispheres in transferring sensory, language, motor, and high-order functions [68]. Pathol-
ogy disrupting the white-matter fibers alters the neural activity of functional networks and
may result in major neurological impairment. Deemed to originate from subventricular
pluripotent progenitor cells, glioma cells have been shown to preferentially migrate and
infiltrate the healthy brain tissue along with the white-matter tracts [69]. As found in this
review, progressive tumor growth within the CC may lead to a wide range of symptoms
secondary to mass-effect and altered white-matter networks connectivity, induced by either
direct tumor infiltration or surrounding edema. In addition to the increased intracranial
pressure with severe headache, epilepsy and high-order function disorders, including
cognitive decline, memory loss, and personality change, were frequently reported across
our included studies [9,37,62]. Some presenting symptoms may be strictly related to the
tumor’s involvement of frontal, parietal, or temporo-occipital lobes, with a smaller role de-
termined by CC infiltration. Only the early study of Chaichana et al. [10] in 2014 compared
the clinical presentation of butterfly and non-butterfly glioblastomas, reporting signifi-
cant higher incidence of seizures (p < 0.001), language deficits (p = 0.05), and confusion
(p < 0.001) in non-butterfly glioblastomas. Most recent studies noted the occurrence of
specific high-function disorders in patients with G-I-CC, especially personality and/or
behavioral changes. Although the recent literature has focused more on identifying the
role of CC in high-function networks, no recent study compared the clinical presentations
of gliomas with versus without CC involvement for high-function activities, limiting a
clear understanding on how the CC invasion and disruption of white-matter tracts may
uniquely affect patients’ well-being on a daily basis. Hence, our pooled findings from the
literature highlight the importance of promptly diagnosing CC infiltration and devising
appropriate management strategies to limit progressive deterioration of patient’s social
interactions and functional autonomy, but further studies are necessary to elucidate and
quantify the impact of G-I-CC compared to non-CC infiltrating gliomas.

G-I-CC may show variable involvement of the CC with different infiltrating radiolog-
ical patterns along the white-matter fibers [34,44]. Most of our pooled G-I-CC involved
the genu of the corpus callosum and bilaterally infiltrated the adjacent frontal lobes, while
unilaterally infiltrating tumors were less common. This likely derived from the superior
prevalence of highly invasive glioblastomas, which majorly disrupt white-matter interhemi-
spheric networks with rapid neurological impairment, and from the surgeon’s hesitancy
to operate on the more challenging G-I-CC involving the splenium [13]. Dayani et al. [44]
found significantly longer survival in unilateral G-I-CC, which may suggest the impact of
underlying molecular differences between bilateral and unilateral G-I-CC in determining
distinct outcomes. In regards to butterfly G-I-CC, lesions showed symmetric or asymmet-
ric lateralization patterns, with larger resection rates for asymmetric tumors reported by
Dziurzynski et al. [34]. While conventional imaging can detect late CC infiltration after
significant white-matter damage and brain-barrier disruption, it is less valuable at early
tumor stages. Contrarily, Mohan et al. [70] effectively quantified “occult” early CC infil-
tration using diffusion tensor imaging techniques, which can serve as valuable prognostic
indicators for G-I-CC.

In line with the current literature on gliomas, the majority of our pooled cases were
diagnosed with grade-4 glioblastoma, unsurprisingly related with significantly shorter OS
than low-grade G-I-CC [1,71]. CC infiltration has been demonstrated as an independent
prognostic factor of worse OS in glioblastoma patients [10,42,72], further confirmed by
the fact that our pooled median OS in G-I-CC (10.7 months) was lower than the pooled
median OS in non-CC glioblastomas (13.2 months) [13]. It is reasonable to hypothesize
the presence of underlying molecular alterations responsible for the higher aggressive-
ness and poorer prognosis of G-I-CC compared to other gliomas, as shown by the large
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prevalence of IDH-wildtype gliomas (84.9%) within our pooled cohort. Although the IDH
mutation status defines distinct subsets of high-grade gliomas, especially grade-4 glioblas-
tomas, Dadario et al. [62] found no significant survival differences between IDH-mutant
(n = 33) and IDH-wildtype (n = 11) (p = 0.64). However, granular patient-level data on IDH
mutation status were lacking across all included studies, preventing the characterization of
G-I-CC clinical presentation and prognosis based on distinct molecular patterns. Future
studies adopting the most recent WHO CNS tumor classification [73] should better describe
and characterize the differences across G-I-CC on a molecular basis.

Shen et al. [74] and Cui et al. [75] found that mutations of the platelet-derived growth
factor receptor alpha (PDGFRA) gene were significantly correlated with CC glioma infil-
tration and worse OS. PDGFRA is known to participate in gliomagenesis by transducing
multiple downstream proliferative signals, and seems to also be involved in glioma inva-
sion into dense white-matter fibers, as confirmed by studies on diffuse intrinsic pontine
gliomas [76]. Since no reports of PDGFRA status were available across our included studies,
future research should be conducted in large patient cohorts to validate or disprove the
prognostic role of PDGFRA alterations in G-I-CC. Some cases of H3 K27-altered G-I-CC
have been also reported [47], but the role of routine assessment for H3 K27 mutations in
G-I-CC remains unclear as no cases of H3 K27-altered tumors were detected in a single-
institution retrospective series of 49 G-I-CC [77]. Of note, Mistry et al. [41] suggested
that G-I-CC’s worse prognosis is likely related to the tumor’s contact with the ventriculo-
subventricular and/or granular zones (i.e., neurogenic zones harboring neural stem cells)
rather than with the CC itself, but their findings have yet to be externally confirmed.

Historically, G-I-CC were deemed “inoperable” owing to the potentially severe post-
resection complications, with early series preferring diagnostic biopsy to establish palliative
care [21,61,65]. The advent of superior imaging techniques and intraoperative adjuncts,
coupled with better knowledge of brain connectomics, has increased the surgical inclina-
tion toward G-I-CC resection, similarly to other gliomas [37,71,78,79]. Given its known
association with improved survival, maximally safe tumor resection, when feasible, also
represents the primary treatment for G-I-CC, further enabling patients to complete post-
surgery radiation and chemotherapy protocols [34]. Surgeries are mostly performed with
interhemispheric trans-sulcal and transcortical approaches, often assisted with intraop-
erative mapping and neuromonitoring for neurocognitive function preservation and/or
intraoperative imaging tools for better tumor localization [9,10]. Boaro et al. [13] and Cui
et al. [14] demonstrated that multimodal G-I-CC resection significantly correlates with
higher rates of extended resection and lower rates of complications. Burks et al. [37]
described their cingulum-sparing surgical technique, which involves awake subcortical an-
terior G-I-CC resection with high-order attention tasks to avoid disruption of the cingulum
and default mode network (DMN). Using this awake monitoring technique, the authors pre-
served the functional DMN (i.e., the white-matter network involved in high-order attention)
and noted significantly lower rates of post-surgery abulia/akinesia but no OS differences
than their conventional surgical technique. In their cohort, Forster et al. [53] found no cases
of abulia or post-operative callosal disconnection syndrome with both cingulum-resection
and cingulum-sparing techniques, but noted higher rates of post-operative transient supple-
mentary motor area syndrome after resection of tumors within the corpus callosum. More
recently, Dadario et al. [62] achieved ≥95% G-I-CC resection with minimal complication
rates using their endoscope-assisted transcortical or interhemispheric trans-sulcal approach,
which offered angled surgical views, allowing optimal instrument maneuvering around
complex anatomical structures.

Maximal resection of high-grade G-I-CC combined with adjuvant radiation and/or
chemotherapy was correlated with significantly longer OS compared to tumor biopsy
(p < 0.001) or partial resection (p = 0.041). Although the early study of Chaichana et al. [10]
in 2014 noted a significantly shorter median survival in butterfly glioblastomas (n = 40)
compared to non-butterfly glioblastomas (n = 336) (p < 0.001), mostly treated before the
introduction of Stupp protocols, the heterogeneity between the two cohorts in terms of
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size and treatment strategies (i.e., higher GTR rates in non-butterfly glioblastomas) largely
limited the actual quantification of the impact of CC-invasion on patients’ prognosis. No
further comparative studies analyzed the prognostic role of glioma’s CC-invasion on
patient’s survival, impeding the conduction of a retrospective comparative literature review
on gliomas with CC infiltration versus gliomas without CC infiltration. Future retrospective
and prospective studies are warranted to compare matching cohorts of patients with G-I-CC
and non-CC infiltrating gliomas to define the prognostic impact of CC-invasion and other
related factors (e.g., tumor type and size, CC location, treatment strategies).

Management strategies should also focus on improving patient quality-of-life by
relieving symptoms while minimizing complication risks. We assume that the moderate
rates of symptom improvement noted in our pooled cohort (42.9%) were likely related to
irreversible tumor-induced disruption of white-matter networks. Similarly, the occurrence
of post-surgery complications likely derived from the surgical manipulation of white-
matter tracts with post-operative edema formation, often leading to motor deficits and
cognitive decline, especially in patients with splenium G-I-CC [13,62]. Forster et al. [53]
suggested three prognostic factors likely related to their low incidence of post-surgery
complications, including: (1) selection of patients with favorable preoperative performance
status scores; (2) tumors mainly involving the frontal lobe and genu/cingulum of the
CC; (3) surgical resection performed with intraoperative awake subcortical mapping and
neuromonitoring. The authors also analyzed the rates of neurocognitive impairment
before and after tumor resection. In contrast to Ng et al. [80], who reported early post-
surgery cognitive improvement (except for executive function) after resection of lobar
gliomas, Forster et al. [53] noted early post-operative deterioration in all cognitive domains
with significant improvement at later long-term follow-up times. The only permanent
deficits involved functions critically depending on interhemispheric transfer, such as visual
memory, altered with lesions or surgeries involving the genu or cingulum, and bimanual
coordination with tactile recognition, impaired after disruption of the CC’s posterior body
and splenium. Of note, owing to the frequent frontal and/or parietal lobe involvement
of G-I-CC, we observe that some post-surgical complications may be related to lobar
damage during the tumor’s resection [81]. However, currently available studies were
not able to differentiate post-operative complications related to CC resection versus those
related to frontal/parietal lobe resections, owing to the difficulty of characterizing such
iatrogenic outcomes in a retrospective fashion. Future studies, designed in a prospective
comparative cohort fashion, may be able to differentiate and quantify the impact of surgical
disruption of distinct white-matter tracts during G-I-CC surgery using diffusion tensor
techniques and/or machine-learning-based connectomics algorithms currently available
for preoperative planning of tumor resection [82].

In this review, no significant differences in pooled rates of outcomes and complications
were noted after resection of tumor-infiltrated CC. This probably stems from the structural
and functional reorganization of interhemispheric CC connectivity induced by progres-
sive tumor growth and disruption of white-matter tracts [68]. In addition, some studies
noted higher rates of G-I-CC recurrence in patients with non-resected tumor-infiltrated
CC, confirming the role of gross-total resection in obtaining prolonged rates of tumor con-
trol [9,13]. Hence, the tumor-infiltrated CC may be safely resected during G-I-CC surgery,
but preoperative advanced imaging planning and intraoperative monitoring of high-order
neurocognitive functions should be appropriately considered on a case-by-case basis.

Limitations

Our review has some limitations. All pooled studies were retrospective and were
likely subjected to patient selection and data recall biases. These studies also covered
a 73-year time period characterized by major changes in histopathological grading and
adjuvant treatments, which may have introduced confounding variables into our analyses.
Publication bias needs to be considered, favoring series from centers experienced in surgery
of deep-seated tumors, and with possible reporting biases presenting patients with overall
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positive post-operative outcomes. The assessment of post-treatment clinical improvement
was subjective in most studies. As with all retrospective extent-of-resection survival analy-
ses, there is significant selection bias in tumor anatomy and safety of removal. In addition,
data on molecular alterations, in particular IDH mutation status, were not available on
a patient-level basis, which prevented us from performing separate survival analyses for
IDH-mutant gliomas and IDH-wildtype gliomas. Due to lack of granular data, we could
not comprehensively analyze objective post-operative changes in patients’ performance
status, nor the impact of tumor size on clinical outcomes, nor the impact of CC resection on
tumor recurrence, nor the impact of CC resection compared to frontal/parietal lobe damage
on post-surgical complications. Finally, in view of the high heterogeneity within the current
literature on lobar non-CC infiltrating gliomas, coupled with the limited availability of
studies reporting G-I-CC, we note that a retrospective systematic review/meta-analysis
comparing the two entities is not currently pursuable. Yet, as CC-infiltration is of high clini-
cal relevance in the management of patients with gliomas, especially in terms of patient’s
prognosis and quality-of-life, future original cohort studies should strictly analyze the
unique impact of CC-invasion on survival outcomes to better devise treatment strategies
for these patients.

5. Conclusions

Gliomas infiltrating the CC are uncommon yet challenging neoplasms, with a ma-
jor impact on patient cognitive and functional status. Maximally safe tumor resection
combined with adjuvant treatment should be preferred but weighted to surgical risks.
Novel intraoperative adjuncts and surgical techniques may offer higher tumor resec-
tion rates while minimizing complication risks. G-I-CC appear to be related to more
aggressive underlying molecular patterns. Future studies should evaluate the role of
PDGFRA and H3 K27 alterations in predisposition to CC invasion by glioma cells and worse
clinical outcomes.
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