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1  |  INTRODUC TION

Dilated cardiomyopathy (DCM) is a progressive heart muscle dis-
ease with left ventricular (LV) or biventricular dilatation and systolic 

dysfunction.1 Structural or functional abnormalities of the myocar-
dium accompanied with DCM potentially lead to life-threatening 
events such as arrhythmias, heart failure (HF) and sudden cardiac 
death.2 Decades of research have revealed multiple causes of DCM, 
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Abstract
The relationship between autophagy and immunity has been well studied. However, 
little is known about the role of autophagy in the immune microenvironment dur-
ing the progression of dilated cardiomyopathy (DCM). Therefore, this study aims to 
uncover the effect of autophagy on the immune microenvironment in the context of 
DCM. By investigating the autophagy gene expression differences between healthy 
donors and DCM samples, 23 dysregulated autophagy genes were identified. Using 
a series of bioinformatics methods, 13 DCM-related autophagy genes were screened 
and used to construct a risk prediction model, which can well distinguish DCM and 
healthy samples. Then, the connections between autophagy and immune responses 
including infiltrated immunocytes, immune reaction gene-sets and human leukocyte 
antigen (HLA) genes were systematically evaluated. In addition, two autophagy-
mediated expression patterns in DCM were determined via the unsupervised con-
sensus clustering analysis, and the immune characteristics of different patterns were 
revealed. In conclusion, our study revealed the strong effect of autophagy on the 
DCM immune microenvironment and provided new insights to understand the patho-
genesis and treatment of DCM.
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including genetic mutations, infections, inflammations, autoim-
mune diseases, exposure to toxins and endocrine or neuromuscular 
causes.1 Due to different causes, DCM is usually classified as familial 
(genetic) or nonfamilial (nongenetic) forms. Around 15–30% DCM 
patients were diagnosed as familial DCM.3,4 In the past 20 years, 
with the help of next-generation sequencing, several mutations have 
been identified as DCM marker genes,5–7 which are LMNA44, MYH7, 
TNNT2, TTN, RBM20, BAG3 and so on.8–12 Among them, TTN trun-
cation mutation is the most common cause of DCM, occurring in 
~25% of familial DCM cases and 18% of sporadic cases.7,13 Although 
genetic prediction based on gene mutation is becoming a useful tool 
in clinic, there are limited reports on DCM diagnosis based on gene 
expression.

Besides genetic mutations, immune microenvironment changes 
are also leading causes for DCM.7,14 Myocardial damage caused by 
DCM leads to inflammation with recruited immune cells into heart 
to repair damaged myocardium. Pathological examination of myo-
cardial biopsy samples (or autopsy) from DCM patients often reveals 
evidence of activated inflammatory cell infiltration with gene expres-
sion patterns compatible with activated immune cells.1,15 Moreover, 
cardiac-specific autoantibodies can be detected from ~60% DCM 
patients and their relatives, which directly affect cardiomyocyte 
function and disease prognosis.16–18 In patients, inflammatory DCM 
may be familial and related to HLA antigens.19 For instance, cardiac 
infiltrated immune cells with abnormal class II HLA expression oc-
cupied approximately 50% among all biopsy samples.20 Therefore, 
determining the proportion and type of infiltrated immune cells and 
HLA genes expression pattern is crucial to establish the best treat-
ment plan.

Among the entire immune system, autophagy is essential for 
cell development, function and homeostasis.21,22 Cell-autonomous 
inflammation is one of the key contributions of autophagy to the 
immunity.23,24 Furthermore, it is also proved that autophagic activa-
tion participates in innate immunity response by mediating foreign 
pathogens clearance.25 By affecting cell metabolism, cytoplasmic 
quality and tissue homeostasis, autophagy has various connec-
tions with many human diseases.26–28 Recent years, autophagy has 
emerged as a major regulator of cardiac homeostasis. Autophagy 
preserves cardiac structure and function in normal conditions and 
is activated in a stress response, which will limit damage in both 
physiological and pathological conditions.29,30 There are some stud-
ies focusing on the effects of autophagy on DCM. For example, 
Gil-Cayuela et al. analysed the autophagy-related gene expression 
changes in DCM patients by RNA-seq.31 They found that in DCM 
patients, the expression changes of NRBP2 and CALCOCO2 were 
related to LV dysfunction and remodelling. Furthermore, primary 
fibroblasts from severe autosomal recessive DCM patients with 
mutations in PLEKHM2 gene exhibited abnormal endosomal sub-
cellular distribution, abnormal lysosomal localization, and impaired 
autophagic flux marked by RAB5, RAB7 and RAB9 respectively.32 In 
addition, the combination of overactivated AKT–mTOR pathway and 
defective autophagy has been described in a mouse model of DCM 
carrying LMNA mutations.33 This study showed that intraperitoneal 

injection of temsirolimus, a derivative of the mTOR inhibitor rapamy-
cin (sirolimus), in mice could reduce cardiac dilatation and enhance 
cardiac function. The authors demonstrated temsirolimus treatment 
decreased mTORC1 signalling, increased LC3-II and decreased p62 
protein level. Although all these studies have shown that there is 
a link between autophagy activity and DCM disease progression, 
this only explains the tip of the iceberg of autophagy's impact on 
DCM. The mechanism of how a large number of autophagy genes 
affect the immune microenvironment to regulate DCM remains to 
be explored.

Here, we systematically evaluated the effect of autophagy on 
DCM immune microenvironment. The risk prediction model based 
on the expression of 13 DCM-related autophagy genes could effec-
tively distinguish healthy and DCM samples. Next, to explore the 
connection between immune microenvironment and DCM, immu-
nocyte infiltration, immune responses and HLA status in DCM were 
investigated, which showed strong correlation with autophagy. To 
further study how autophagy regulates DCM, the unsupervised 
clustering on the autophagy expression profile in DCM samples 
was performed, and two autophagy-mediated regulation patterns in 
DCM were determined. These two subtypes showed distinct char-
acteristics of immune microenvironment. Gene set variation anal-
ysis (GSVA) and the functional enrichment analysis indicated that 
the two autophagy-mediated patterns are mainly respectively re-
sponsible for disease and metabolism related pathways. In addition, 
through weighted gene co-expression network analysis (WGCNA), a 
co-expression module (blue module) which strongly correlated with 
autophagy subtypes was identified. The findings provide a compre-
hensive overview about how autophagy regulates DCM through the 
immune microenvironment.

2  |  MATERIAL S AND METHODS

2.1  |  Data preprocess

The data used in this study were RNA sequencing data of the LV from 
166 healthy donors and 166 DCM samples from The Myocardial 
Applied Genomics Network (MAGNet; www.med.upenn.edu/mag-
net). The LV free-wall tissues were harvested at the time of cardiac 
surgery from subjects with heart failure undergoing transplantation 
and from unused donor hearts with apparently normal function. 
The expression matrix was reserved in the gene expression omni-
bus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/query/​acc.
cgi?acc=GSE14​1910),34 and the clinical characteristics of involved 
samples in GSE141910 were listed in Table  S1. In addition, the 
validation of autophagy model was performed in another microar-
ray dataset GSE57338 (https://www.ncbi.nlm.nih.gov/geo/query/​
acc.cgi?acc=GSE57338).35 The gene expression was detected by 
Affymetrix Human Gene 1.1 ST Array microarray. Gene probes were 
annotated as gene symbols. Probes without matching gene symbols 
and matching multiple symbols were excluded. Gene expression 
value of duplicate gene symbol was calculated as the median value.

http://www.med.upenn.edu/magnet
http://www.med.upenn.edu/magnet
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE141910
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE141910
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE57338
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE57338
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2.2  |  Alteration analysis of autophagy between 
DCM and healthy samples

The differential analysis of autophagy genes between healthy and 
DCM samples was carried out using R package ‘limma’,36 and dif-
ferentially expressed autophagy genes were identified with adjusted 
p-value <0.01 and |log2FC| > 0.5. The protein–protein interac-
tion network was constructed via STRING database (https://strin​
g-db.org/).37 The DCM-related autophagy genes were identified 
by univariate logistic regression with the cut-off criteria of p value 
<0.0001. Then least absolute shrinkage and selection operator 
(LASSO) regression was performed to select the most useful bio-
markers among DCM-related autophagy genes and the diagnostic 
model with nonzero coefficients was constructed using the R pack-
age ‘glmnet’. Risk scores (RS) were calculated based on the regres-
sion coefficient of DCM-related autophagy genes, defined as the 
risk of suffering from DCM:

Risk-score = BCL2L1*​(−1.7447) + BID*(−0.4268) +CALCOCO2*(−
3.4052) + CASP1*0.3661 + CCL2*(−0.7031) + CX3CL1*1.0324 + CXC
R4*0.2951 + EIF4EBP1*(−0.8020) + GRID1*0.0424 + NAMPT*(−1.44
51) + NLRC4*(−0.4771) + NRG1*0.3089 + TP63*0.2200.

Principal components analysis (PCA) was used to reduce the 
number of dimensions to find similarities and differences of RS be-
tween healthy and DCM samples. The ROC curve was plotted to 
assess the classification performance of the classifier.

2.3  |  Validation of DCM-related autophagy genes 
using Real-Time Quantitative PCR (RT-qPCR)

Serum samples were lyzed in QIAzol Lysis Reagent and miRNeasy 
Serum/Plasma Kit(QIAGEN)and quantified using Nanodrop 2000 
software (Nanodrop Products). For mRNA quantification, cDNA was 
synthesized using the PrimeScript RT reagent kit (Takara,). RT-qPCR 
was performed using PCR 218 reaction mixture (11203ES08,) on a 
LightCycler 480II system (Roche). Each sample was performed in six 
biological and three technical replications. The relative transcript 
levels were calculated using the 2−ΔΔCT method, and 18S rRNA was 
used as the internal control to normalize the same samples. Primers 
are listed in Table S2. This study was approved by the Institutional 
Review Board of Sir Run Run Shaw Hospital, School of Medicine 
Zhejiang University (research 20,220,215–38). Informed consent 
was obtained from all the participants.

2.4  |  Correlation analysis between immune 
microenvironment and autophagy

Immune cell infiltration was calculated using CIBERSORT algorithm 
based on the expression matrix of 22 types of immunocytes.38 The 
relative enrichment of the activity of immune pathways was de-
termined by single-sample gene set enrichment analysis (ssGSEA). 
The immune reaction gene sets used to evaluate the activity of 

immune-related pathways were obtained from ImmPort (http://
www.immpo​rt.org).39 The relative fraction of immunocytes, enrich-
ment score of immune-related pathways and expression of HLA 
genes between healthy and DCM samples were compared using the 
Wilcox test. The correlation analysis between the relative fraction 
of immunocytes, enrichment score of immune pathways and expres-
sion of HLA genes and autophagy genes were done by Spearman 
correlation analysis with R package ‘corrplot’.

2.5  |  Identification of autophagy 
expression patterns

Unsupervised clustering analysis was performed to identify dis-
tinct autophagy expression patterns according to the expression of 
all 201 autophagy genes. Consensus clustering was implemented 
to evaluate the autophagy expression pattern using the R package 
‘ConsensuClusterPlus’.40 This algorithm was repeated 1000 times to 
ensure the stability of classification. The expression of the DCM-
related autophagy genes, immunocyte relative fraction, immune 
reaction scores and expression of HLA genes between the two sub-
types were compared using the Wilcox test.

2.6  |  Functional enrichment analysis of the two 
autophagy expression patterns

To screen for autophagy expression pattern related genes, differen-
tially expressed genes between two subtypes were identified using 
the R package ‘limma’.36 The criterion for DEGs was |log2FC| > 0.5 
and adjusted p-value <0.001. The biological characteristics of au-
tophagy phenotype-related genes and were uncovered by GO and 
KEGG enrichment analysis using the R package ‘clusterProfiler’.41

To further reflect biological changes that occurred in each sub-
type, the gene-sets of ‘h.all.v7.0.symbols’ and ‘c2.cp.kegg.v7.0.sym-
bols’ were downloaded from MSigDB (http://www.gsea-msigdb.
org/).42 Next, the activity of HALLMARKS and KEGG pathway was 
quantified using the GSVA algorithm,43 and was compared between 
two subtypes using the Wilcox test. Pathways with adjusted p-value 
<0.01 were considered to be significantly different in activity be-
tween the two subtypes.

2.7  |  Identification of autophagy expression 
pattern related gene modules

Prior to analyse co-expressed genes, the coefficient of variation 
(CV) of each gene based on their expression values were calculated 
and genes with low variability (CV <0.1) were filtered. Next, the R 
package WGCNA was used to identify modules of highly correlated 
genes across all samples.44 The parameters of WGCNA used default 
settings, except for the power was 2, network type was signed, min-
ModuleSize was 30. Eigengenes and clusters were calculated based 

https://string-db.org/
https://string-db.org/
http://www.immport.org
http://www.immport.org
http://www.gsea-msigdb.org/
http://www.gsea-msigdb.org/
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on the correlations to quantify the co-expression similarity of entire 
modules, using a strict cut-off of 0.25, corresponding to correlation 
of 0.75. Then, kME, known as the module membership value, was 
calculated using SignedKME algorithm to represent the correlation 
between a gene and the module eigengene value. Intramodular hub 
genes of module blue were identified if their kME >0.95.

3  |  RESULTS

3.1  |  The landscape of autophagy gene alterations 
in DCM

To explore the expression status in DCM, 222 known autophagy 
genes were collected from Human Autophagy Database (http://
www.autop​hagy.lu/). Here, a set of RNA-seq data sampled from 
the LV of 166 healthy donors and 166 DCM patients was used for 
analysis, and the expression of 201 autophagy genes in all samples 
were obtained. The differential analysis revealed that there were 23 
significantly dysregulated autophagy genes, 10 of which were sig-
nificantly induced in DCM samples, while the rest were significantly 
suppressed (Figure 1A-C, Table S3). In particular, NAMPT had the 
largest fold change and CALCOCO2 had the most statistically sig-
nificant change. To reveal the interactions between these autophagy 

genes, the protein–protein interaction network was constructed 
(Figure 1D). Among them, HIF1A and BCL2L1 interacted with more 
than 10 autophagy genes.

3.2  |  Autophagy genes can well distinguish 
healthy and DCM samples

To further verify crucial autophagy genes in DCM, a series of bio-
informatic algorithms were applied to the 23 significantly altered 
autophagy genes. First, univariate logistic regression was used 
to identify DCM-related autophagy genes, and all 23 autophagy 
genes were verified closely related to DCM (Figure  2A). Next, 
LASSO regression was performed for feature selection and di-
mension reduction to exclude redundant autophagy genes, and 
13 DCM-related autophagy genes were found (Figure  2B,C). To 
develop a classifier to distinguish healthy and DCM samples, the 
prediction model was constructed based on the LASSO regression 
coefficient of DCM-related autophagy genes and the RS of each 
sample was obtained (Figure 2D, Table S4). As expected, the over-
all RS of the DCM samples were significantly higher than those of 
the healthy samples (p < 2.22e-16). Since the RS of the 365/366 
healthy samples were less than −100, while 363/366 DCM sam-
ples were greater than −100, −100 could be regarded as the risk 

F I G U R E  1  Expression landscape autophagy genes in DCM. (A) The volcano-plot shows the summary of expression changes of 201 
autophagy genes between healthy and DCM samples and the 23 significant dysregulated autophagy genes are labelled. (B,C) The heatmap-
plot and box-plot demonstrate the expression pattern of 23 significantly dysregulated autophagy genes between healthy and DCM samples. 
(D) The 23 significant dysregulated autophagy gene protein–protein interaction network
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threshold for distinguishing healthy and DCM samples (Table S5). 
Furthermore, principal component analysis (PCA) demonstrated 
that there were diverse autophagy gene expression patterns be-
tween healthy and DCM samples (Figure 2E). In addition, the re-
ceiver operating characteristic (ROC) curve also showed that this 
autophagy model achieved an AUC value of 0.996 in classifying 
healthy and DCM (Figure 2F). Given that the result was based on 
the model training dataset, another dataset including 82 DCM sam-
ples and 136 healthy samples was selected to further validate this 
model. The validation generated a similar result (AUC = 0.9797), 
which indicated the robustness of the model (Figure 2G). In addi-
tion, in order to clarify the spatiotemporal regulation of autophagy 
in DCM in the human body, peripheral serum samples from 6 DCM 
patients and 6 healthy people were collected. RT-qPCR results 
showed that the expression trend of 6/13 DCM-related autophagy 
genes (BCL2L1, BID, CALCOCO2, NAMPT, EIF4EBP1, CCL2) in 
peripheral serum were opposite to those in LV (Figure S1), which 
also indicated that the risk prediction model may not be suitable 
for peripheral serum samples.

3.3  |  Autophagy is associated with immune 
microenvironment in DCM

To further investigate the biological connections between autophagy 
genes and immune microenvironment, the correlation analysis for 
dysregulated autophagy genes with infiltrating immunocytes, im-
mune reaction gene-sets and HLA gene expression in DCM was per-
formed. Immune infiltration analysis showed that dramatic changes 
in 11 of 22 immunocytes occurred in DCM samples (p < 0.05). Most 
of the dysregulated immunocytes were upregulated in DCM such as 
B cells naive, Dendritic cells activated and T cells CD8 (Figure 3A, 
Table S6), suggesting a great change of immune microenvironment 
during DCM progression. Correlation analysis showed autophagy 
genes were closely related to many immunocytes (Figure  3D, 
Table  S7). The significant positively correlated immunocyte-
autophagy gene pair is CALCOCO2-eosinophils (Figure S2A), while 
the most positively correlated is NAMPT-eosinophils (Figure S2B). In 
contrast, the most negatively correlated pair is CX3CL1-eosinophils 
(Figure S2C).

F I G U R E  2  Autophagy genes can distinguish healthy and DCM samples. (A) Univariate logistic regression investigates the relationship 
between dysregulated autophagy genes and DCM. (B) LASSO coefficient profiles of 23 DCM-related autophagy genes. (C) Ten-fold cross-
validation for tuning parameter selection in the LASSO regression. The partial likelihood deviance is plotted against log (λ), where λ is the 
tuning parameter. Partial likelihood deviance values are shown, with error bars representing SE. The dotted vertical lines are drawn at the 
optimal values by minimum criteria and 1-SE criteria. (D) The box-plot compares the RS obtained by the LASSO regression model between 
healthy and DCM samples, where DCM has a much higher RS than healthy samples. (E) Principal component analysis (PCA) of 10 DCM-
related autophagy genes between healthy and DCM samples. (F,G) ROC curves and AUC values evaluate the discrimination ability for 
healthy and DCM samples by autophagy genes in the training and validation set
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Likewise, the activity of immune-related pathways and ex-
pression levels of HLA genes were calculated and obvious 
changes were observed between healthy and DCM samples 
(Figures  3B,C). Interestingly, nearly all HLA genes were highly 
expressed in DCM samples (p < 0.05). Their correlations with au-
tophagy were also fully revealed (Figures 3E,F, Table S8–S11). For 
immune-related pathways, the most positively correlated pair 
is NAMPT-TGFb Family Member Receptor (Figure  S3A); while 

the most negatively correlated pair is CALCOCO2-cytokines 
(Figure  S3B). For HLA genes, the most positively correlated 
HLA-autophagy pair is CASP1-HLA-DMB (Figure S4A); while the 
most negatively correlated pair is NAMPT-HLA-F (Figure S4B). It 
is worth mentioning that CASP1 and CXCR4 were significantly 
positively correlated with all dysregulated HLA genes, which in-
dicated that these two autophagy genes were closely related to 
HLA in DCM.

F I G U R E  3  The correlation between immune microenvironment characteristics (infiltrating immunocytes, immune reaction gene-sets, 
HLA genes) and autophagy genes. (A-C) The difference in the abundance of each infiltrating immunocyte, immune reaction gene-set and 
HLA gene between healthy and DCM samples. (D-F) The dot-plot demonstrate the correlations between each dysregulated infiltrating 
immunocyte, immune reaction gene-set and HLA gene, and each dysregulated autophagy gene
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3.4  |  Two autophagy mediated modification 
patterns and their relationship to the immune 
microenvironment in DCM

To explore the autophagy mediated patterns in DCM, the un-
supervised consensus clustering analysis was conducted on 
DCM samples based on the expression of 201 autophagy genes 
(Figure  4A–C). Two distinct subtypes of DCM were identified 
with qualitatively different expression of 201 autophagy genes, 
including 87 samples in subtype-1 and 79 samples in subtype-2 
(Table S12). PCA analysis revealed that there was a remarkable dif-
ference in transcriptome between the two subtypes (Figure 4D). 
Then, the expression of the 23 significantly dysregulated au-
tophagy genes were compared between two DCM subtypes, 
and only 16 of them dramatically altered (Figure 4E,F). This indi-
cated that these 16 autophagy genes may be involved in different 
mechanisms of regulating DCM, while the rest may regulate DCM 
indiscriminately.

To uncover the differences of immune microenvironment char-
acteristics between the two subtypes, infiltrating immunocytes, 
immune response gene-sets and HLA gene expression were eval-
uated. As expected, the two subtypes demonstrated very distinct 
autophagy-mediated immune characteristic (Figure  5, Table  S13). 
For example, much more eosinophils and resting memory CD4 T 
cells were observed in subtype-1, while higher levels of Monocytes, 

CD8 T cells and regulatory T cells (Tregs) were found in subtype-2 
(p < 0.0001). As for immune responses, TCR signalling pathway and 
TGF family member receptor related genes were enriched more in 
subtype-1, while antigen processing and presentation and TNF fam-
ily members receptors were more active in subtype-2 (p < 0.0001). 
In particular, with the exception of HLA-F-AS1, all dysregulated HLA 
genes had higher expression levels in subtype-2, suggesting sub-
type-2 represents immune enrichment.

3.5  |  Biological functions behind autophagy 
expression patterns

Differences in expression and immune microenvironment character-
istics illustrated that there are two mechanisms for autophagy genes 
to regulate DCM. In order to clarify the respective roles of the two 
subtypes, GSVA analysis was employed to calculate the enrichment 
scores of HALLMARK and KEGG pathways. Interestingly, some sig-
nificantly enriched HALLMARK pathways that may be directly re-
lated to the dilation of the heart of DCM patients were detected. 
For example, heme metabolism was highly enriched in subtype-1, 
and myogenesis was enriched in subtype-2 (Figure  6A). Besides, 
several cancer related KEGG pathways were dramatically enriched 
in subtype-1, such as renal cell carcinoma, pancreatic cancer, pros-
tate cancer and melanoma (Figure 6B). In contrast, various metabolic 

F I G U R E  4  Unsupervised clustering of 201 autophagy genes identifying 2 distinct autophagy-mediated regulation pattern subtypes in 
DCM. (A) Consensus clustering cumulative distribution function (CDF) for k = 2–10. (B) Relative change in area under the CDF curve for 
k = 2–10. (C) Heatmap of the matrix of co-occurrence proportions for DCM samples. (D) Principal component analysis for the transcriptome 
profiles of 2 autophagy regulation patterns, showing a clear distinction in transcriptome between different regulation patterns. (E,F) The 
box-plot and heatmap-plot demonstrate the expression pattern of 23 significantly dysregulated autophagy genes between 2 autophagy 
regulation patterns
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pathways were more active in subtype-2, including arachidonic acid 
metabolism, fructose and mannose metabolism, phenylalanine me-
tabolism, glutathione metabolism and drug metabolism other en-
zymes. To further understand the role of autophagy in immunity, 
9604 differentially expressed common genes (|log2FC| > 0.5, adjusted 
p-value <0.001) between the two subtypes were identified as au-
tophagy subtype-related genes (Table S14). Gene ontology (GO)-BP 
enrichment analysis revealed that they were mainly involved in pro-
teasomal protein catabolic process, regulation of GTPase activity 
and endomembrane system organization (Figure 6C). Furthermore, 
KEGG enrichment result also demonstrated the autophagy subtype-
related genes were mostly enriched in multiple disease related path-
ways, such as Alzheimer disease, Huntington disease, Prion disease 
and Coronavirus disease-COVID-19 (Figure 6D). This was consistent 
with the results of GSVA analysis.

3.6  |  Co-expression network analysis identified 
autophagy expression pattern related gene modules

Next, a comprehensive gene landscape correlated to each au-
tophagy expression patterns was constructed, and gene co-
expression modules related to distinct autophagy regulations 
were identified by weighted gene co-expression network analy-
sis (WGCNA) (Figure  7A,B). Seven gene modules were deter-
mined and different expression pattern matched their related 
genes (Figure 7C, Table S15). Among them, the most relevant to 
the autophagy subtype was the blue module (Figure  7D), which 
was closely correlated to the subtype-2 (cor =  0.99, p < 1e-200). 
In order to further figure out the regulatory roles of autophagy 
genes in the blue module, the interaction network including DCM-
related autophagy genes and the hub genes (kME >0.95) in this 

F I G U R E  5  Diversity of immune 
microenvironment characteristics 
between distinct autophagy-mediated 
regulation patterns. (A) The abundance 
differences of infiltrating immunocytes 
between 2 autophagy regulation patterns. 
(B) The activity differences of immune 
reaction gene-sets between 2 autophagy 
regulation patterns. (C) The expression 
differences of HLA genes between 2 
autophagy regulation patterns
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module was explored. As a result, the interaction between four 
autophagy genes (NRG3, SPHK1, ATG9B, TMEM74) and 64 hub 
genes was discovered (Figure  7E). Overall, these results could 
shed light on the gene expression regulation network mediated 
by autophagy.

4  |  DISCUSSION

Autophagy is a bridge connecting innate immunity and adaptive im-
munity.21,45 For a long time, it has been considered to play an im-
portant role in antigen presentation, maintenance of lymphocyte 
homeostasis and regulation of cytokine production.23 However, 
there are few reports on how autophagy shapes the immune mi-
croenvironment of DCM. Knowing that autophagy is essential for 
immune response, we believe that autophagy must have a significant 
impact on the shaping of the immune microenvironment of DCM. 
The dataset GSE141910 used in this study includes 200 HF sam-
ples and 166 non HF samples. The HF samples consist peripartum 
cardiomyopathy, hypertrophic cardiomyopathy and DCM samples. 
Although the publication of GSE141910 has not yet been released, 
two studies have conducted a series of bioinformatics analyses 
using this dataset. These two studies were focused on evaluating 

the significance of immune infiltration in the pathogenesis of hy-
pertrophic cardiomyopathy,34 and screening hub genes involved in 
developmental HF as well as to explore active drug molecules,46 
respectively. Through reanalysis of this dataset, this study system-
atically evaluated the relationship between autophagy and immune 
microenvironment (immune cells, immune responses, HLA genes) in 
DCM (Figure 3). In this way, we could find out some novel connec-
tions between autophagy and immune microenvironment changes, 
and enrich the understanding of the reported relationships. For in-
stance, CALCOCO2 and NAMPT, two autophagy genes known to be 
associated with LV dysfunction,31,47 were found to be significantly 
positively correlated with Eosinophils in this study. This suggested 
that the two autophagy genes may regulate DCM by affecting the 
infiltration of Eosinophils. These findings could play a very enlight-
ening role in the development of immunotherapy from the perspec-
tive of autophagy in DCM.

The heterogeneous aetiology and clinical characteristics of DCM 
make a correct and timely diagnosis challenging.1,3 At present, echo-
cardiography and other imaging techniques are needed to assess 
ventricular dysfunction and poor myocardial remodelling. When in-
flammation or infection is suspected, immunological and histological 
analysis of endocardial myocardial biopsy samples are also required, 
which makes the diagnosis of DCM in the clinic too cumbersome. 

F I G U R E  6  The underlying biological characteristics diversity between 2 autophagy-mediated regulation patterns. (A,B) The top 20 
HALLMARKS and KEGG pathways with the most significant differences between 2 autophagy regulation patterns (A for HALLMARKS 
pathway and B for KEGG pathway). (C, D) GO-BP functional and KEGG enrichment analysis for autophagy phenotype-related genes (C for 
GO enrichment and D for KEGG enrichment)
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Recent years, although gene sequencing technology based on the 
gene mutation analysis has been used for the diagnosis of DCM,5,7,48 
this relies heavily on the detailed information of family genetic his-
tory. Besides, the accuracy of this approach needs to be improved. 
With the outbreak of COVID-19, the nucleic acid detection method 
has become the most popular genetic diagnosis technology. In this 
study, 13 DCM-related autophagy genes were screened through 
a series of bioinformatics methods and a risk diagnosis model was 
constructed, which can distinguish healthy and DCM samples well 
(Figure 2). This model may play an important role in the diagnosis 
and treatment of DCM, but the effect on the diagnosis of early DCM 
needs to be further verified by more data.

Morever, we have identified two distinct autophagy expres-
sion patterns, which are different from any other classification for 
DCM. The autophagy expression patterns could help us deepen 
our understanding of autophagy in DCM and how it shapes the 
immune microenvironment. It is worth mentioning that a previ-
ous study identified 12 up-regulated proteins between DCM and 

healthy samples by proteomics.49 Although autophagy genes 
were not included, three proteins (GSTP1, SORBS2, MYBPC3) were 
differentially expressed between the two autophagy subtypes, 
suggesting that these three DCM up-regulated proteins may be in-
volved in autophagy regulation. Since a close correlation between 
autophagy and immune microenvironment was detected in DCM, 
we wonder if different autophagy subtypes would show different 
immune characteristics. The results proved our point, that these 
two subtypes were very different in terms of immunocyte compo-
sition, immune responses and HLA gene expression. Additionally, 
to further clarify the regulation mechanism of autophagy on DCM, 
GSVA was performed on different autophagy subtypes, and the 
results may provide ideas to explain some DCM clinical charac-
teristics (Figure 6). For example, men generally have a higher risk 
for DCM than women.1 It has been reported that sex hormones 
can change cardiac function by binding to androgen and oestro-
gen receptors on cardiac vascular endothelial cells, smooth mus-
cle cells, fibroblasts and muscle cells.50 In addition, the binding of 

F I G U R E  7  Co-expression gene modules related to autophagy-mediated patterns. (A) Analysis of the scale-free fit index and analysis 
of the mean connectivity for various soft-thresholding powers. (B) Gene dendrogram obtained by average linkage hierarchical clustering. 
The colour row underneath the dendrogram shows the module assignment determined by the Dynamic Tree Cut, in which 7 modules were 
identified. (C) Heatmap of the correlation between module eigengenes and the autophagy-mediated regulation subtypes. (D) A scatterplot 
of gene significance (GS) for autophagy-mediated subtype-2 versus module membership (MM) in the blue module. GS and MM exhibit a very 
significant correlation, implying that hub genes of the blue module also tend to be highly correlated with autophagy-mediated regulation 
subtype-2. (E) The interaction network of DCM-related autophagy genes and hub genes in the blue module
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sex hormones to their receptors directly changes the functions of 
immune cells and platelets, thereby affecting the type of cardiac 
inflammation, remodelling and thrombosis in DCM. Interestingly, 
the androgen response pathway was highly enriched in autoph-
agy subtype-1, while the oestrogen response pathway was highly 
enriched in subtype-2. This indicated that these two distinct 
autophagy-mediated expression patterns respond to different 
sex hormones, which may lead to gender differences in the risk of 
DCM. In addition, some cancer-related pathways were highly en-
riched in subtype-1, and the KEGG enrichment analysis of the dif-
ferential expressed genes between the two subtypes also showed 
that the most significantly enriched pathways were related to 
diseases. This suggested that the regulation of autophagy may be 
involved in the complications of DCM and other diseases.

Overall, our findings revealed how autophagy affects the im-
mune microenvironment of DCM, and provided new insights to 
understand the pathogenesis of DCM. This study was the first to 
systematically reveal the potential connections between autoph-
agy and immune microenvironment in DCM. These findings provide 
clues for further studying the mechanism of autophagy in DCM.
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