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Abstract

Accurate simulation of complex biological processes is an essential
component of developing and validating new technologies and inference
approaches. As an effort to help contain the COVID-19 pandemic, large
numbers of SARS-CoV-2 genomes have been sequenced from most re-
gions in the world. More than 5.5 million viral sequences are publicly
available as of November 2021. Many studies estimate viral genealogies
from these sequences, as these can provide valuable information about
the spread of the pandemic across time and space. Additionally such
data are a rich source of information about molecular evolutionary pro-
cesses including natural selection, for example allowing the identification
of new variants with transmissibility and immunity evasion advantages.
To our knowledge, there is no framework that is both efficient and flexible
enough to simulate the pandemic to approximate world-scale scenarios
and generate viral genealogies of millions of samples. Here, we intro-
duce a new fast simulator VGsim which addresses the problem of simu-
lation genealogies under epidemiological models. The simulation process
is split into two phases. During the forward run the algorithm generates
a chain of population-level events reflecting the dynamics of the pan-
demic using an hierarchical version of the Gillespie algorithm. During
the backward run a coalescent-like approach generates a tree genealogy
of samples conditioning on the population-level events chain generated
during the forward run. Our software can model complex population
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structure, epistasis and immunity escape. The code is freely available at
https://github.com/Genomics-HSE/VGsim.

1 Introduction

The unprecedented world-wide effort to produce and share viral genomic data
for the ongoing SARS-CoV-2 pandemic allows us to trace the spread and the
evolution of the virus in real time, and has made apparent the need for improved
computational methods to study viral evolution [1]. These data yield important
insights into the effects of population structure [2–5], public health measures [6,
7], immunity escape [8,9], and complex fitness effects [10,11]. It is essential that
we also have tools to accurately simulate viral evolutionary processes so that the
research community can validate inference methods and develop novel insights
into the effects of such complexities. However, there are no software packages
capable of simulating the scale and apparent complexity of viral evolutionary
dynamics during the SARS-CoV-2 pandemic.

Pandemic-scale datasets impose technical problems associated with the scal-
ability and memory usage of computational methods. There is already sub-
stantial progress in building scalable simulators and data analysis methods for
human genome data. The current state-of-the-art human genome simulator
msprime [12] is capable of simulating millions of sequences with length compara-
ble with human chromosomes. Methods such as the Positional Burrows-Wheeler
Transform (PBWT) [13], its ARG-based extension tree consistent PBWT [14],
and tsinfer [15] can be used to efficiently process and store genomic sequences,
but all of these approaches are designed for actively recombining organisms.
Moreover, the primary population models underlying these methods are the
Kingman coalescent [16], the Wright-Fisher model [17, 18] and the Li-Stephens
model [19]. We recently developed approaches for compressing and accessing vi-
ral genealogies that dramatically reduce space and memory requirements [20,21],
but there are no viral genealogy simulation methods that can efficiently produce
pandemic-scale datasets.

Coalescent models are powerful tools for studying humans, many other eu-
karyotes, and pathogen populations (e.g. [22]). However, their assumptions are
often violated in epidemiological settings. First, the effective population size is
usually modelled either as piece-wise constant or as exponential growth. How-
ever, the coalescent with exponential growth and birth-death do not result in
equivalent genealogies [23]. Second, it’s not simple to use coalescent models to
describe the effects of selection. If we consider the pandemic on a longer time
period, basic birth-death models (e.g. [24]) are not an appropriate choice, since
the reproductive rate usually decreases with time as collective immunity builds
up or as the susceptible population is exhausted. These limitations are often
addressed in epidemiology using compartmental models, such as SI, SIS and
SIR [25], or their stochastic realisations, which are also birth-death processes.

Simulating realistic selection in backward-time models is a well-known chal-
lenging problem. A common workaround is to assume a single deterministic
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frequency trajectory or to generate a stochastic frequency trajectory in forward
time, and then to simulate the ancestry of the samples around the selected site
in a coalescent framework (e.g., [26, 27]). However, more complex models of
selection, including e.g., gene-gene interactions, or epistasis, are often beyond
the scope of such coalescent models. Nonetheless, epistasis is thought to be an
important component of viral evolutionary processes [28, 29], and incorporat-
ing the effects of such complex evolutionary dynamics is essential for accurate
simulations of evolution.

We introduce a novel simulation method that can rapidly generate pandemic-
scale viral genealogies. Our approach is a forward-backward algorithm where we
generate a series of stochastic events forward in time, then traverse backwards
through this event series to generate the realized viral genealogy for a sample
taken from the full population. Our framework includes the accumulation of
immunity within host populations and of viral mutations that affect the fitness of
descendant lineages. Our method is extremely fast, and can produce a phylogeny
with 50 million total samples in just 88.5 seconds. The genealogies output from
our simulation are compatible with phastSim [30], making it possible to generate
realistic genome data for the simulated samples. This framework empowers
efficient and realistic simulation of pandemic-scale viral datasets.

2 Design and Implementation

Our epidemiological model is a compartmental model [31] (see SI 1 for a brief
introduction to compartmental models), and the realisations of the stochastic
processes are drawn using the Gillespie algorithm [32]. The different compart-
ments in our model are defined based on several interacting real-world complex-
ities: (1) host population structure with corresponding population-specific viral
frequencies and contact rates, (2) separate host infectious groups resulting from
different viral haplotypes, and (3) different host susceptibility groups.

We break the simulation into two phases. In the first one (the forward pass),
we generate a population-level epidemiological process which is represented as
the series of events (Figure 1) resulting from the “reactions” (Table 1). These
events then influence the properties of the viral genealogy, which is sampled in
the second phase (the backward pass). The specific viral genealogy is sampled
conditioned of the population-level epidemiological process using a coalescent
framework.

Table 2 lists all the features which determine the simulation. In the be-
ginning, the user should specify the number U of mutable sites (see Section
2.1), the number T of susceptibility types (Section 2.2), and the number K of
populations (Section 2.3).

2.1 Mutations

Because this simulation framework focuses on generating the viral genealogy,
and not genomes, we track only mutations at genome sites that have a large
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Figure 1: The scheme of the nested family Gillespie algorithm used to generate
an event in the forward run. The corresponding reactions are listed in Table
1. Black squares correspond to the consecutive steps, where the subfamilies are
chosen with the weights given by their propensities. The propensities for each
step are cached and updated only if they change due to an event. For migration
propensities, the rejection approach is used instead (SI 3).
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Reaction Description
Number of
reactions

Ss
i , I

s
h → Ish, I

s
h Transmission of haplotype h to an

individual of susceptibility type i in
population s

4UTK

Ish → Ss
i(h) Recovery or sampling of an individ-

ual infected with haplotype h in
population s. Susceptibility type
i(h) is determined by the haplo-
type.

2 · 4UK

Ish → Isl , h ̸= l Mutation of haplotype h into hap-
lotype l in population s as a result
of a single nucleotide substitution.

4U3U

Ss
i → Ss

j , i ̸= j Susceptibility transition of an indi-
vidual with susceptibility type i to
susceptibility type j (e.g. vaccina-
tion or loss of immunity) in popu-
lation s.

T (T − 1)

Sr
i , I

s
h → Irh, I

s
h, r ̸= s Migration is a transmission of hap-

lotype h from population s to an
individual of susceptibility type i in
population r.

4UTK(K − 1)

Table 1: The list of reactions and corresponding epidemiological events simu-
lated by the Gillespie algorithm in our model, and the number of reactions in
each category in function of the number of mutable sites U , number of suscep-
tible individuals T , and the number of populations K.

positive effect on viral fitness. That is, these mutations enhance the transmissi-
bility of the virus or lead to immunity escape. We expect this will typically be
a relatively small number of mutations relative to the size of the viral genome,
simplifying the problem. To efficiently model neutral genetic variation we sug-
gest using phastSim [30] on a tree generated by our algorithm; the output pro-
duced by our method can be directly imported into phastSim for downstream
processing.

To define the intended model of selection on new mutations, the user spec-
ifies the number U of mutable sites and their specific fitness effects (i.e., their
effect on the birth rate). The mutations are modelled as single nucleotide sub-
stitutions, so each site has four possible variants (A, T, C and G). Mutations
lead to the appearance of different haplotypes with different transmission and
immunological properties. Up to H = 4U different haplotypes can appear in
the simulation. Each haplotype h can be assigned its own specific U mutation
rates mu(h) and 3U substitution probabilities puh1

, puh2
, puh3

, one for each site u
and for each of the 3 possible new nucleotides at site u. Transmission, recovery,
and sampling rates, as well as mutation rates, susceptibility, and triggered sus-
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Model Feature Description Value

Epidemiological model:
every parameter
can be set individually
for each haplotype.

Transmission rate
The expected number of new infections per time unit
caused by an individual infected with haplotype h if
all the population were completely susceptible.

λh ∈ (0;∞)

Recovery rate
Rate at which an infectious individual becomes recovered
after being infected with haplotype h.

ρh ∈ (0;∞)

Sampling rate
Rate at which an infectious individual is sampled after
being infected with haplotype h.

ζh ∈ [0;∞)

Mutation rate
Rate at which a genetic site u mutates. Can be set independently
for each mutable site in function of haplotype h.

mu(h) ∈ (0;∞)

Substitution
probabilities

The probabilities of particular nucleotide substitution at haplotype h
given that the mutation occurred at the site u.

[puh1
, puh2

, puh3
]

0 ≤ puhi
≤ 1

puh1
+ puh2

+ puh3
= 1

Susceptibility
The multiplier which allows to change the relative
susceptibility to haplotype h of an individual
with susceptibility type i.

σih ∈ [0;∞)

Susceptibility
transition rate

The rate at which susceptible individuals move from one
susceptibility type to another without being infected.
This allows to model the loss of immunity with time
or vaccination efforts.

[0;∞]

Population model
Population size Total number of individuals in population s. Ns ∈ (0;∞)

Contact density

The multiplicative modifier of transmission rate
corresponding to the relative number of contacts in
population s. It is used to describe differences in social behaviour of
the host population (e.g. population density, wearing
masks, lockdown effect).

δs ∈ [0;∞)

Lockdown
Conditions to impose and lift lockdown in population k
(determined by the proportion of infectious individuals
in the population) and the contact density during the lockdown.

Sampling
effort

This modifier increases or decreases the sampling
rate in population s.

cs ∈ [0;∞]

Migration
probability

The probability that an individual from population s
is temporarily visiting population r.

µsr ∈ [0; 1]

Table 2: List of features which determine the simulation scenario. All the rates
are normalized by the number of individuals in a particular group (i.e. the
number of individuals infected with a particular haplotype or individuals of a
certain susceptibility type). The rates are measured in terms of events per time
unit.

ceptibility types can be defined individually for every haplotype. Of particular
interest, gene-gene, or epistatic, interactions can be flexibly modelled using this
approach.

We refer to sequences carrying particular sets of variants as “haplotypes”,
because two identical sequences can appear as a results of different mutation
events, so they might not belong to the same clade in the final tree.

2.2 Epidemiological model

To model the host immunity process, we use a generalised SI-model. The com-
partments within each population represent different types of susceptible indi-
viduals or infectious individuals.

Different susceptible compartments in the same host population are used
to model different types of immunity. These can correspond for example to
host individuals that have recovered from previous exposure to different viral
haplotypes. Susceptible compartments can also be used to represent different
vaccination statuses. For each susceptible compartment Si, and for each viral
haplotype h we consider a susceptibility coefficient σih which multiplicatively
changes the transmission (birth) rate of the corresponding haplotype. In partic-
ular, σih = 0 corresponds to absolute resistance, similar to the R-compartment
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in SIR-model, but specific to individuals who have immunity type i and are
exposed to haplotype h. 0 < σih < 1 would correspond to partial immunity,
while σih > 1 corresponds to increased susceptibility.

Different infectious compartments within a host population correspond to
individuals infected by a haplotype and can potentially infect susceptible hosts.
As we mentioned in the section 2.1, the transmission rate λh, recovery rate ρh
and mutation rates can be set independently for each haplotype h. After recov-
ery, a host individual that was infected with haplotype h, and therefore was in
compartment Ish for some population s, is moved to the corresponding suscepti-
bility (immunity) compartment Ss

i(h). Different haplotypes might however lead
to the same types of immunity.

NB: The evolution of individual immunity is modeled as Markovian - it is
determined only by the latest infection, and does not have memory about pre-
vious infections. Whether this assumption provides an accurate approximation
of the immunity dynamics within the host population is an important consid-
eration and may depend on the specific pathogen biology. Different haplotypes
can lead to the same immunity. Some immunity types can be specific, e.g., to
vaccination immunity without being associated with any haplotypes at all.

The rate of transmission of viral lineages within a population also depends
on how frequently two host individuals come in contact with each other. To
flexibly accommodate such differences, each population s is assigned a contact
density δs parameter. This parameter can be used to simulate differences in the
local population density, social behaviours etc. The rate for an individual from
susceptibility class Ss

i (the susceptible compartment i within population s) to
be infected with haplotype h by another individual within population s is

|Ss
i |σihλh|Ish|δs/Ns,

where |Ss
i | is the number of individuals in Ss

i , Ish is the class of individuals
infected with haplotype h in population s, λh is the baseline transmission rate
of individuals infected with haplotype h, and Ns is the total population size of
deme s.

Direct transitions between susceptible compartments are possible, for which
users can specify a transition matrix for susceptible compartments. A tran-
sition between susceptible compartment can be used for example to model a
vaccination event, or the loss of immunity with time.

2.3 Population model

2.3.1 Demes

The population model is based on an island (demic) model. Each population
is described at each point in time by its total size Ns, number |Ish| of infec-
tious individuals with each viral haplotype h, number |Ss

i | of susceptible host
individuals for each susceptibility type i, relative contact density δs, and a
population-specific lockdown strategy and effectiveness.
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2.3.2 Lockdown

Several governments have imposed lockdowns during the COVID-19 pandemic
as an effort to control the spread of SARS-CoV-2. Understanding the effects
of lockdowns is a crucial concern for designing effective public health strate-
gies. We implement lockdowns as follows. When the total number of simulta-
neously infectious individuals in population s surpasses a certain user-defined
population-specific percentage (e.g. 1%) of the population size Ns, the lock-
down is imposed and the contact density δs is changed to a new (typically
lower) lockdown- and population-specific value. When the percentage of the in-
fectious individuals drops below a user-specified value (e.g. 0.1%) the lockdown
is lifted and the contact density in population s reverts to its initial value δs.

2.3.3 Migration

Migration is described by a matrix µsr which defines the probabilities at which
an individual from source population s can be found in target population r. In
our model, new infections occur from the contact between infectious individuals
from one population and susceptible individuals from the second population.
It can be due to the travel of a susceptible individual to a source population,
where it contracts an infection, and then returns back to the home population
(first term in equation 1); or, to the travel of an infectious individual into a
target population where this individual transmits the infection to a susceptible
individual (second term in equation 1). The derivation of each term is similar
to the derivation of within-population transmission (see SI equation 1). This
model corresponds to short-term travel such as tourist or business trips, where
an individual returns soon back to the home population. The proposed process
is different from the traditional migration modelling in the population genetics,
when an individual moves to a new population and remains there. The rate at
which new infections of individuals with immunity i in population r are caused
by haplotype h in population s is

M(r, i; s, h) = λhσihµss

(
µrsδ

s|Sr
i |
|Ikh |
Ns

+ µsrδ
r |Sr

i |
Nr

|Ish|
)
, (1)

where µss = 1 −
∑

q ̸=s µsq is the probability that an individual originally
from population s is currently not in a different population. Since it is computa-
tionally demanding to keep track of how each migration rate between each pairs
of compartment is affected by each simulation event, instead we keep track of
cumulative upper bounds on such migration rates (see SI 3 for details). In the
case a potential migration event is sampled according to these upper bounds, we
then proceed to calculate the precise migration rates and only sample a specific
migration event according to its own exact rate. This is efficient when cross-
population transmissions (migrations) are rare compared to within-population
transmissions. This algorithmic implementation might perform suboptimally if
population structure is extremely weak.
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2.4 Sampling

Sampling is modelled using a continuous sampling scheme. In this scheme every
individual infected with haplotype h in population s is sampled at rate csζh, the
product of the haplotype-specific sampling rate ζh and the population modifier
cs. Sampled individuals then instantly recover and are moved to susceptible
group Ss

i(h), effectively increasing the recovery rate ρh for Ish by csζh. Alterna-
tively, one can think about this sampling scheme as setting the recovery rate for
Ish to ρh + csζh and sampling an individual in Ish upon its recovery with proba-
bility csζh/(ρh+csζh). More details can be found in supplementary information
7.

2.5 Algorithm

The simulation process is split into two parts, forward and backward. In the
forward run, a chain of events (including sampled cases) describing the dynam-
ics of the epidemiological process at the population level is generated with the
Gillespie algorithm [32]. In the backward run, our method simulates the geneal-
ogy of the samples in a coalescent-like manner while conditioning on the events
generated during the forward run.

2.5.1 Forward run

The forward run generates a chain of events which reflects the dynamics of the
pandemic. Our implementation of the Gillespie algorithm is based on three
algorithmic ideas: logarithmic direct method [32] (the events, or “reactions”,
are organised in nested families, Figure 1), rejection-based approach [33] for
migrations (see SI 3 for details), and organising propensity dependencies to
avoid updating those propensities which are not affected by events [34]. Details
are given in SI 4.

2.5.2 Backward run

The backward run randomly builds a genealogical tree of the samples while
conditioning on this chain of events generated in the forward run.

All of the ancestral lineages of the samples generated in the forward run
belong to one of the infectious compartment corresponding to a haplotype h in
a specific population s. Lineages are exchangeable within each compartment.
Conditional on any event generated in the forward run, it is straightforward
to calculate the probability that the event affected zero, one or two sample
ancestral lineages in the backward run (see SI 5 for details).

2.5.3 Implementation details

VGsim provides a convenient Python user interface. Performance-critical parts
are implemented in C++ via Cython [35]. The dependencies are kept to a
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minimum: NumPy [36] and mc lib —a small wrapper of the NumPy C API for
generation of pseudorandom numbers in Cython [37].

3 Results

3.1 Forward run performance

To test the scalability of the population model, we performed simulations with
K = 2, 5, 10, 20, 50 and 100 total host populations with 2 · 109/K individuals
in each and generated 10 million events (see Figure 1) in each run (see Table
3). There are 16 haplotypes resulting from two segregating sites with mutation
rates 0.01 in each of them (this is unrealistically high, but it ensures that all
the haplotypes appear in the simulation), and three susceptibility group with
the first group corresponding to the absence of immunity, the second group cor-
responding to partial immunity and the last one corresponding to resistance to
all strains. The transmission rate is λ = 2.5 for all haplotypes except one, and
λ = 4.0 for this last haplotype. The recovery rate is ρ = 0.9, the sampling rate
is ζ = 0.1 (so, the effective reproductive number is 2.5 which approximately
correspond to SARS-CoV-2 [38] if the time unit is interpreted as one week). All
the migration probabilities were set to µ = M/(K − 1), where M is the cumu-
lative migration rate from a population. The runtime of the forward algorithm
does not depend only on the cumulative migration rate M , but also on the
percentage of potential migrations rejected by the algorithm (see Section 2.3.3
for details), which appears to grow with M . However, the effect on runtime is
relatively modest (in contrast to the naive algorithm which is quadratic in the
number of populations, see Table 1) indicating that this approach scales well to
pandemic-scale simulations.

3.2 Backward run and overall performance

Our implementation of the backward run algorithm relies on an efficient and
compact tree representation, a Prüfer-like code [39]. Each node is associated
with an index in an array, and the corresponding entry in the array is the index
of the parent node. The time needed to generate a tree mainly depends on two
factors: the total number of events generated in the forward run, and the total
number of samples in a tree. We report the execution time of the backward run
in Table 4. The combined approach is sufficiently fast that it can be used to
generate many replicate simulations as is often required to validate empirical
methods and to train model parameters. Table 4 also shows the forward time,
the total number of generated events and the total number of infected individuals
over the simulation for various sampling rate (where the sampling rate ζ = 0.01
is 1 in 100 cases is sampled, ζ = 0.1 corresponds to 1 in 10 cases is sampled,
and ζ = 1.0 means that every case is sampled), and various sample sizes. The
simulation assumes the absence of immunity after infection (SIS-model), which
allows to run the simulation sufficiently long to collect enough samples (instead,
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Cumulative
migration

probability M

Number of demes K

2 5 10 20 50 100
0.001 28.7s 30.0s 31.9s 35.1s 47.2s 69.3s

0.09% 0.12% 0.11% 0.11% 0.11% 0.12%
0.002 29.2s 30.4s 32.3s 35.3s 47.0s 70.1s

0.17% 0.21% 0.16% 0.2% 0.21% 0.2%
0.005 29.4s 30.7s 32.5s 35.6s 48.1s 70.4s

0.33% 0.51% 0.25% 0.46% 0.52% 0.43%
0.01 29.4s 30.6s 32.9s 35.5s 48.0s 70.9s

0.75% 1.16% 0.85% 0.78% 0.93% 0.95%
0.1 30.3s 31.9s 33.8s 37.0s 50.3s 73.0s

2.04% 6.56% 6.15% 6.94% 5.98% 5.08%

Table 3: Run time to generate 10 million events. The second number is the
percentage of discarded events (due to migration acceptance/rejection). There
are 16 = 42 haplotypes and 3 susceptible compartments. The sampling rate is
set to ζ = 0.1, recovery rate is ρ = 0.9, transmission rate is λ = 2.5. The tests
were run on a server node with Intel Xeon Gold 6152 2.1-3.7 GHz processor and
1536GB of memory.

with an SIR-model susceptible individuals can be exhausted before the desired
number of samples is simulated).

To showcase the limit of applicability of our simulator, we also show in
Table 4 the computational demand for the simulation of an unrealistically large
(for now) genealogy of 150 million samples (with 1 in 100 cases sampled), for
which we almost reached the memory limit available on our supercomputer node
(1536GB) [40]. The total number of infections in the population is more than
15 billion cases, with the total number of events being more than 30 billions.
The forward run time was approximately 9.5 hours and the backward run time
was 13.5 minutes.

3.3 Comparison with other simulators

There are many epidemiological simulators which are capable of producing vi-
ral genealogies. Agent-based simulators (e.g. nosoi [41], FAVITES [42]) allow
to create very detailed models, because every agent’s parameters can be set
individually. The trade-off is they are computationally demanding, so only rel-
atively small scenarios can be modelled. Other simulators (e.g. MASTER [43]
and TiPS [44]) implement Gillespie algorithm for compartmental models, but
they currently lack a simple user interface, instead requiring users to specify the
full set of reaction equations, and they might be not specifically optimised for
epidemiological purposes. On the other hand, both MASTER and TiPS implement
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Sampling
rate

Sample size
(number of tree leaves)

105 106 5 · 106 107 5 · 107 1.5 · 108

0.01

Forward time 27.84s
290.86s

(4min 50.86s)
1275.53s

(21min 15.53s)
2487.73s

(41min 27.73s)
11295.01s

(3h 8m 15.01s)
34558.86s

(9h 35m 58.86s)

Backward time 0.85s 7.44s 26.93s 50.27s
217.51s

(3min 37.51s)
813.25s

(13min 33.25s)
Memory 1.67MB 10.87GB 49.54GB 94.64GB 442.69GB 1.34TB
Total number of
generated events

34,038,092 286,381,088 1,120,365,070 2,121,897,004 9,878,131,708 30,152,423,891

Total number of
infections

24,040,769 185,954,943 619,559,504 1,119,957,985 4,994,200,627 15,121,211,248

0.1

Forward time 2.18s 29.89s
154.15s

(2min 34.15s)
296.43s

(4min 56.43s)
1283.01s

(21min 23.01s)
3470.47s

(57min 50.47s)

Backward time 0.1s 0.96s 4.68s 8.99s 34.2s
90.29s

(1min 30.29s)
Memory 1.68MB 1.68MB 5.51GB 12.5GB 53.27GB 143.32GB
Total number of
generated events

3,491,562 34,125,248 155,922,768 285,874,161 1,120,657,092 3,122,658,422

Total number of
infections

2,489,943 24,101,573 105,814,516 185,656,462 619,705,716 1,619,831,406

1.0

Forward time 0.23s 2.2s 13.63s 30.32s
154.99s

(2min 34.99s)
405.39s

(6min 45.39s)
Backward time 0.01s 0.15s 0.92s 2.08s 11.35s 32.48s
Memory 1.67MB 1.68MB 1.66MB 1.67MB 5.54GB 20.9GB
Total number of
generated events

350,517 3,492,789 17,271,140 34,113,125 155,899,482 401,912,500

Total number of
infections

250,290 2,490,805 12,261,217 24,093,104 105,799,613 251,613,148

Table 4: Run time in seconds to generate a random genealogy for a sample of a
certain size for different sampling rates. The execution time is shown split into
the time demand for the forward run and the one for the backward run only.
We simulated 16 = 42 haplotypes and no host immunity. The recovery rate is
ρ = 1.0− ζ, with ζ the sampling rate, while the transmission rate is λ = 2.5 for
all 16 haplotypes. The tests were run on a server node with an Intel Xeon Gold
6152 2.1-3.7 GHz processor and 1536GB of memory.

approximate methods (tau-leaping and hybrid approaches), which decrease the
time of forward simulation by orders of magnitude and hence might outper-
form our simulator depending on simulation scenario. VGsim is optimised to
scale for large epidemics and genealogies, though approximate approaches are
not available in the current implementation. It also has a simple and flexible
user interface which helps merge together several complexities (epidemiology,
evolution, population structure and cross-immunity). The detailed discussion
of different simulating frameworks and detailed comparisons with them can be
found in SI 8.

3.4 Simulating realistic nucleotide mutations

Our simulation framework generates a phylogenetic tree, and if the user specifies
a scenario with strongly selected mutations, these are included in the output;
we, however, do not include a method for simulating many neutral variants.
To facilitate studies that require full viral genome sequences we have made
the output of our approach compatible with that of phastSim [30]. Briefly, a
user can easily load the output of our software into phastSim, and phastSim

will generate neutral mutations, while leaving previously determined selected
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mutations unaffected.

4 Availability and Future Directions

VGsim is freely available from https://github.com/Genomics-HSE/VGsim un-
der GPL-3.0 License. It is tested for Python 3.6 and later under Ubuntu and
macOS. The documentation and tutorials are published at https://vg-sim.

readthedocs.io/.
The future development of VGsim will include the following updates. We

will consider improving performance by adding the τ -leaping algorithm and
optimizing memory usage to handle larger numbers of genetic sites. We will
also extend the available models by adding super-spreading events, life-cycle
compartments, and new sampling schemes. We will also add recombination
events, though they seem to be relatively rare [45] and so far are not a major
driver of SARS-CoV-2 genetic diversity and evolution.

VGsim is particularly useful for simulating large datasets, in particular, in
those cases when agent-based simulators become inefficient (see SI for more
detailed discussion 8). It is primarily optimised for the studies of world-wide
pandemic scenarios, and it is motivated by the features of the ongoing SARS-
CoV-2 pandemic. We plan for the future to add more features which would
generalise its applicability to different pathogens (e.g. with complex life-cycle).
Further possible optimisations of our algorithm will also be investigated.

Our implementation allows simulations of scenarios with a few loci with
strong phenotypic effects. However, we cannot simulate the effect of many loci
with mild fitness effects. While mild and widespread fitness effects can be sim-
ulated by phastSim, they are simulated in a typical phylogenetic way (using
a substitution codon matrix with specifiable nonsynonymous/synonymous ra-
tios) and so their impact on the tree shape and epidemiological dynamics are
neglected.

5 Conclusion

We developed a fast simulator VGsim which can be used to produce genealogies
of millions of samples from world-scale pandemic scenarios. Our method models
many major aspects of epidemiological dynamics: viral molecular evolution, host
population structure, host immunity, vaccinations and lockdowns. We expect
that VGsim will be a useful tool in method validation and in simulation-based
statistical inference.

The performance of our simulator should meet the performance requirements
of most studies. The flexible Python API, combination of epidemiological (in-
cluding cross-immunity), population and evolutionary models make it a timely
tool for the modern and future research.
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[10] Zeng HL, Dichio V, Rodŕıguez Horta E, Thorell K, Aurell E. Global
analysis of more than 50,000 SARS-CoV-2 genomes reveals epistasis be-
tween eight viral genes. Proceedings of the National Academy of Sciences.
2020;117(49):31519-26. Available from: https://www.pnas.org/content/
117/49/31519.

[11] Rochman ND, Wolf YI, Faure G, Mutz P, Zhang F, Koonin EV. Ongoing
global and regional adaptive evolution of SARS-CoV-2. Proceedings of
the National Academy of Sciences. 2021;118(29). Available from: https:

//www.pnas.org/content/118/29/e2104241118.

[12] Kelleher J, Etheridge AM, McVean G. Efficient Coalescent Simulation
and Genealogical Analysis for Large Sample Sizes. PLOS Computational
Biology. 2016 05;12(5):1-22. Available from: https://doi.org/10.1371/
journal.pcbi.1004842.

[13] Durbin R. Efficient haplotype matching and storage using the positional
Burrows–Wheeler transform (PBWT). Bioinformatics. 2014 01;30(9):1266-
72. Available from: https://doi.org/10.1093/bioinformatics/btu014.

[14] Shchur V, Ziganurova L, Durbin R. Fast and scalable genome-wide in-
ference of local tree topologies from large number of haplotypes based on
tree consistent PBWT data structure. bioRxiv. 2019. Available from:
https://www.biorxiv.org/content/early/2019/02/06/542035.

[15] Kelleher J, Wong Y, Wohns AW, Fadil C, Albers PK, McVean G. Infer-
ring whole-genome histories in large population datasets. Nature Genet-
ics. 2019 Sep;51(9):1330-8. Available from: https://doi.org/10.1038/

s41588-019-0483-y.

[16] Kingman JFC. On the genealogy of large populations. Journal of Applied
Probability. 1982;19(A):27–43.

15

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 2, 2021. ; https://doi.org/10.1101/2021.04.21.21255891doi: medRxiv preprint 

https://www.medrxiv.org/content/early/2021/01/20/2021.01.08.20248677
https://www.medrxiv.org/content/early/2021/01/20/2021.01.08.20248677
https://doi.org/10.1038/s41591-021-01255-3
https://doi.org/10.1038/s41591-021-01255-3
https://www.sciencedirect.com/science/article/pii/S0092867421002981
https://www.sciencedirect.com/science/article/pii/S0092867421002981
https://doi.org/10.1038/s41591-021-01290-0
https://www.pnas.org/content/117/49/31519
https://www.pnas.org/content/117/49/31519
https://www.pnas.org/content/118/29/e2104241118
https://www.pnas.org/content/118/29/e2104241118
https://doi.org/10.1371/journal.pcbi.1004842
https://doi.org/10.1371/journal.pcbi.1004842
https://doi.org/10.1093/bioinformatics/btu014
https://www.biorxiv.org/content/early/2019/02/06/542035
https://doi.org/10.1038/s41588-019-0483-y
https://doi.org/10.1038/s41588-019-0483-y
https://doi.org/10.1101/2021.04.21.21255891
http://creativecommons.org/licenses/by-nc-nd/4.0/


[17] Fisher RA, Russell EJ. On the mathematical foundations of the-
oretical statistics. Philosophical Transactions of the Royal Society
of London Series A, Containing Papers of a Mathematical or Phys-
ical Character. 1922;222(594-604):309-68. Available from: https://

royalsocietypublishing.org/doi/abs/10.1098/rsta.1922.0009.

[18] Wright S. EVOLUTION IN MENDELIAN POPULATIONS. Genet-
ics. 1931;16(2):97-159. Available from: https://www.genetics.org/

content/16/2/97.

[19] Li N, Stephens M. Modeling Linkage Disequilibrium and Identifying Re-
combination Hotspots Using Single-Nucleotide Polymorphism Data. Ge-
netics. 2003;165(4):2213-33. Available from: https://www.genetics.org/
content/165/4/2213.

[20] Turakhia Y, Thornlow B, Hinrichs AS, De Maio N, Gozashti L, Lanfear R,
et al. Ultrafast Sample placement on Existing tRees (UShER) enables
real-time phylogenetics for the SARS-CoV-2 pandemic. Nature Genet-
ics. 2021 Jun;53(6):809-16. Available from: https://doi.org/10.1038/

s41588-021-00862-7.

[21] McBroome J, Thornlow B, Hinrichs AS, De Maio N, Goldman N, Haussler
D, et al. matUtils: Tools to Interpret and Manipulate Mutation Anno-
tated Trees. bioRxiv. 2021. Available from: https://www.biorxiv.org/
content/early/2021/04/04/2021.04.03.438321.

[22] De Maio N, Wilson DJ. The Bacterial Sequential Markov Coalescent.
Genetics. 2017 05;206(1):333-43. Available from: https://doi.org/10.

1534/genetics.116.198796.

[23] Lambert A, Stadler T. Birth–death models and coalescent point pro-
cesses: The shape and probability of reconstructed phylogenies. Theo-
retical Population Biology. 2013;90:113-28. Available from: https://www.
sciencedirect.com/science/article/pii/S0040580913001056.

[24] Stadler T. On incomplete sampling under birth–death models and con-
nections to the sampling-based coalescent. Journal of Theoretical Biol-
ogy. 2009;261(1):58-66. Available from: https://www.sciencedirect.

com/science/article/pii/S0022519309003300.

[25] Brauer F. Compartmental models in epidemiology. In: Mathematical epi-
demiology. Springer; 2008. p. 19-79.

[26] Kern AD, Schrider DR. Discoal: flexible coalescent simulations with se-
lection. Bioinformatics. 2016 08;32(24):3839-41. Available from: https:

//doi.org/10.1093/bioinformatics/btw556.

[27] Ewing G, Hermisson J. MSMS: a coalescent simulation program in-
cluding recombination, demographic structure and selection at a single

16

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 2, 2021. ; https://doi.org/10.1101/2021.04.21.21255891doi: medRxiv preprint 

https://royalsocietypublishing.org/doi/abs/10.1098/rsta.1922.0009
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.1922.0009
https://www.genetics.org/content/16/2/97
https://www.genetics.org/content/16/2/97
https://www.genetics.org/content/165/4/2213
https://www.genetics.org/content/165/4/2213
https://doi.org/10.1038/s41588-021-00862-7
https://doi.org/10.1038/s41588-021-00862-7
https://www.biorxiv.org/content/early/2021/04/04/2021.04.03.438321
https://www.biorxiv.org/content/early/2021/04/04/2021.04.03.438321
https://doi.org/10.1534/genetics.116.198796
https://doi.org/10.1534/genetics.116.198796
https://www.sciencedirect.com/science/article/pii/S0040580913001056
https://www.sciencedirect.com/science/article/pii/S0040580913001056
https://www.sciencedirect.com/science/article/pii/S0022519309003300
https://www.sciencedirect.com/science/article/pii/S0022519309003300
https://doi.org/10.1093/bioinformatics/btw556
https://doi.org/10.1093/bioinformatics/btw556
https://doi.org/10.1101/2021.04.21.21255891
http://creativecommons.org/licenses/by-nc-nd/4.0/


locus. Bioinformatics. 2010 06;26(16):2064-5. Available from: https:

//doi.org/10.1093/bioinformatics/btq322.

[28] Kryazhimskiy S, Dushoff J, Bazykin GA, Plotkin JB. Prevalence of Epista-
sis in the Evolution of Influenza A Surface Proteins. PLOS Genetics. 2011
02;7(2):1-11. Available from: https://doi.org/10.1371/journal.pgen.
1001301.

[29] Sanjuán R, Moya A, Elena SF. The contribution of epistasis to the archi-
tecture of fitness in an RNA virus. Proceedings of the National Academy of
Sciences. 2004;101(43):15376-9. Available from: https://www.pnas.org/

content/101/43/15376.

[30] De Maio N, Weilguny L, Walker CR, Turakhia Y, Corbett-Detig R, Gold-
man N. phastSim: efficient simulation of sequence evolution for pandemic-
scale datasets. bioRxiv. 2021. Available from: https://www.biorxiv.

org/content/early/2021/03/16/2021.03.15.435416.

[31] Kermack William Ogilvy MAG, Thomas WG. Thomas A contribution to
the mathematical theory of epidemics. Proceedings of Royal Society A.
1927;115:700 721.

[32] Gillespie DT. Stochastic Simulation of Chemical Kinetics. Annual Review
of Physical Chemistry. 2007;58(1):35-55. PMID: 17037977. Available from:
https://doi.org/10.1146/annurev.physchem.58.032806.104637.

[33] Thanh VH, Priami C, Zunino R. Efficient rejection-based simulation of
biochemical reactions with stochastic noise and delays. The Journal of
Chemical Physics. 2014;141(13):134116. Available from: https://doi.

org/10.1063/1.4896985.

[34] Cao Y, Li H, Petzold L. Efficient formulation of the stochastic simula-
tion algorithm for chemically reacting systems. The Journal of Chemi-
cal Physics. 2004;121(9):4059-67. Available from: https://doi.org/10.

1063/1.1778376.

[35] Behnel S, Bradshaw R, Citro C, Dalcin L, Seljebotn DS, Smith K.
Cython: The best of both worlds. Computing in Science & Engineering.
2011;13(2):31-9.

[36] Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P,
Cournapeau D, et al. Array programming with NumPy. Nature.
2020 Sep;585(7825):357-62. Available from: https://doi.org/10.1038/

s41586-020-2649-2.

[37] Burovski E, Godyaev D, Gorbunova V. mc lib: Assorted small utilities
for MC simulations with Cython;. Available from: https://doi.org/10.
5281/zenodo.5169027.

17

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 2, 2021. ; https://doi.org/10.1101/2021.04.21.21255891doi: medRxiv preprint 

https://doi.org/10.1093/bioinformatics/btq322
https://doi.org/10.1093/bioinformatics/btq322
https://doi.org/10.1371/journal.pgen.1001301
https://doi.org/10.1371/journal.pgen.1001301
https://www.pnas.org/content/101/43/15376
https://www.pnas.org/content/101/43/15376
https://www.biorxiv.org/content/early/2021/03/16/2021.03.15.435416
https://www.biorxiv.org/content/early/2021/03/16/2021.03.15.435416
https://doi.org/10.1146/annurev.physchem.58.032806.104637
https://doi.org/10.1063/1.4896985
https://doi.org/10.1063/1.4896985
https://doi.org/10.1063/1.1778376
https://doi.org/10.1063/1.1778376
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.5281/zenodo.5169027
https://doi.org/10.5281/zenodo.5169027
https://doi.org/10.1101/2021.04.21.21255891
http://creativecommons.org/licenses/by-nc-nd/4.0/


[38] Billah MA, Miah MM, Khan MN. Reproductive number of coronavirus: A
systematic review and meta-analysis based on global level evidence. PLOS
ONE. 2020 11;15(11):1-17. Available from: https://doi.org/10.1371/

journal.pone.0242128.
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